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Abstract: An appropriate representation of faults is fundamental for hydro-mechanical reservoir
models to obtain robust quantitative insights into the spatial distribution of stress, strain and pore
pressure. Using a generic model containing a reservoir layer displaced by a fault, we examine three
issues which are typically encountered if faults have to be incorporated in reservoir-scale finite
element simulations. These are (1) mesh resolution aspects honoring the scale difference between
the typical cell size of the finite element (FE) reservoir model and the heterogeneity of a fault zone,
(2) grid geometry relative to the fault geometry and (3) fault dip. Different fault representations were
implemented and compared regarding those on the modeling results. Remarkable differences in
the calculated stress and strain patterns as well as the pore pressure field are observed. The modeling
results are used to infer some general recommendations concerning the implementation of faults
in hydro-mechanical reservoir models regarding mesh resolution and grid geometry, taking into
account model-scale and scope of interest. The goal is to gain more realistic simulations and, hence,
more reliable results regarding fault representation in reservoir models to improve production,
lower cost and reduce risk during subsurface operations.
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1. Introduction

Since the beginning of the 21st century, the hydrocarbon industry has shifted towards faulted
and structurally more complex conventional or unconventional reservoirs, which require a thorough
understanding of both the hydraulic and the mechanical reservoir behavior [1–3]. Fluid flow simulations
are a well-established tool in the industry [4,5] and geomechanical modeling has also turned out to
be of tremendous help when trying to gain quantitative insights into the spatial distribution of stress
and strain on the reservoir-scale [6–10]. Due to the interaction of fluid flow and mechanical behavior,
fully-coupled hydro-mechanical simulations gain more and more importance.

Various numerical modeling techniques have been tried and tested, e.g., finite difference (FD),
boundary element (BE), discrete element (DE) and hybrid methods [11–15], but the most commonly
used approach for hydro-mechanical reservoir simulations is the finite element (FE) method which
the present study focuses on. Such FE reservoir models typically have a lateral size between kilometers
to tens of kilometers and applications can range from hydrocarbon and geothermal reservoirs to sites
for underground gas storage [16–18]. In order to obtain a realistic subsurface representation for reliable
stress and fracture predictions as well as fluid flow path analysis, the reservoir models have to take into
accounts faults, i.e., discontinuities offsetting the strata, in addition to the lithostratigraphic horizons.
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However, faults are not only characterized by local discrete deformation. Faults can also induce
stress perturbations, i.e. local changes in stress orientation and stress magnitude, which differ distinctly
from the regional trends [19]. Hydraulically, faults can either act as barriers or conduits for fluid
flow between different reservoir compartments [20,21]. Considering the usually weaker mechanical
properties of fault zones, if compared to the undeformed rock, they are more sensitive to pore
pressure changes resulting from fluid injection into or fluid withdrawal from the reservoir. Those pore
pressure changes can reactivate preexisting faults, leading to induced seismicity potentially causing
critical situations like, fault seal breach, land subsidence and well collapse [6,21,22]. Consequently,
a realistic representation of faults in a hydro-mechanical reservoir simulation proves to be invaluable for
the reliability of the numerical model predictions. This has been an issue in various studies over the past
years [8,10,21,23,24]. Several authors suggest that in order to honor the architecture and internal
heterogeneity of faults, they should be treated as volumetric features in the numerical simulations,
even if the fault zone thickness seems to be negligible in contrast to the overall model and element
size, respectively [25,26]. This is considered of particular relevance for complex, intensively faulted
reservoirs [4,27] and could improve projects where faults are part of the full-scale reservoir model
e.g., [25,28,29].

In this paper, we analyze the representation of fault zones as volumetric weak zones in
hydro-mechanical simulations regarding three commonly used assumptions in FE reservoir modeling.
These are (1) mesh resolution aspects honoring the scale difference between the typical cell size of the FE
reservoir model and the heterogeneity of a fault zone, (2) grid geometry relative to the fault geometry
and (3) fault dip. Different combinations of these three parameters were investigated and compared
regarding their impact on the modeling results. The primary goal is to provide guidelines for appropriate
fault representations in numerical reservoir models regarding mesh resolution, grid geometry and scope
of interest. Such guidelines will assist in building more realistic hydro-mechanical simulations of
faulted reservoirs. Furthermore, the modeling techniques developed and experiences gained are also
considered as a starting point for further studies to investigate the effect of fault zone heterogeneities
and to develop refined upscaling techniques for hydro-mechanical fault zone properties.

General information about the state of the art of fault modeling in FE reservoir models can be found
in Section 2 for both fluid flow and geomechanical simulations as well as coupled hydro-mechanical
simulations. Section 3 describes the three commonly used assumptions to incorporate faults in reservoir
models which we investigate in this study. The model setup as well as the constitutive laws for
the simulation can be found in Section 4. Section 5 provides the modeling results, which are discussed
in Section 6 and lead to the conclusions given in Section 7.

2. State-of-the-Art: Fault MODELING in Finite Element Reservoir Models

2.1. Faults in Fluid Flow Simulations

For fluid flow simulations, the use of transmissibility multipliers is widely used in reservoir
engineering [30–33]. Transmissibility multipliers are assigned to the cells of the calculation grid
intersected by the fault plane. Depending on the selected hydraulic properties which are averaged
over the entire fault zone and adjacent rock, these cells then act as barriers or conduits for fluid
flow. Different concepts have been suggested over the past years to estimate fault transmissibility
multipliers [34–36]. More recently, a fault facies concept was developed to improve fault representation
in reservoir-scale fluid flow simulations by representing faults as 3D structures with variable material
properties for different parts of the fault zone. The fault facies concept tries to include the internal
complexity of fault zones and their permeability structure by assigning various (hydraulic) material
properties to the rock bodies influenced by faulting. It is assumed that the fault volume can be
populated with a fault facies similar to how geological models are populated with a sedimentary facies
concept [3,5,20,24,25,37]. However, the basic challenge remains how to properly upscale the complex
internal structure and the heterogeneous permeability distribution which exist in real fault zones.
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2.2. Faults in Geomechanical Simulations

In addition to hydraulic properties, fault zones are also highly heterogeneous with respect to
mechanical properties. This heterogeneity together with the complex fault geometry and internal
architecture will strongly control the mechanical behavior of a fault zone and how it affects the stress
field in its vicinity [38–40]. There are different approaches to implement faults in geomechanical
models, but for FE modeling, which is the most commonly used approach in hydro-mechanical
reservoir simulations, there are: (1) Contact or interface elements [11,41,42] and (2) volumetric weak
zones [43–45].

Contact or interface elements represent faults as discrete discontinuities [46,47], which is an
expansion of the classical continuum approach used in FE simulations. Those elements enable
differential movements between separate and individually meshed model parts. A contact surface
consists of contact and their correspondent target elements located at opposing sides of the predefined
fault. However, a contact- and target-element pair has the same coordinates. Hence, the fault is
represented as a line in 2D and a surface in 3D models, respectively [9,47], instead of a volumetric feature.

Infinitely high normal stiffness values would be needed to enforce compatibility between adjacent
fault surfaces and to create a zero thickness of the contact elements. In order to prevent numerical
instabilities, a certain mesh penetration at the interface has to be accepted. Thus, stiffness values close
to Young’s moduli of the adjacent rocks are commonly used for the contact elements. Shear and normal
stress can be transmitted through the contact elements and material properties like cohesion and a
friction coefficient can be used to describe frictional sliding. Therefore, once the stress state at the contact
elements violates the defined failure criterion [42], relative displacement between corresponding nodal
points will occur.

In contrast, the concept of volumetric weak zones describes faults in a FE model by assigning
(usually weaker) fault rock material properties to the grid cells intersected by faults. This concept can
be applied to a rectangular grid, resulting in a stair-stepped fault representation (Figure 1 Left) [48,49].
Alternatively, the FE mesh can be adapted to the fault zone geometry, resulting in a curvilinear grid
(Figure 1 Right) [12,44,50]. Both grid geometries are further explained in Section 3.2.
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FE analysis is affected by both the mesh quality and element quantity [55,56], so meshing is a 
key issue in FE modeling. While it is established that a finer grid resolution leads to better modeling 
results, the grid size used in FE reservoir models is often several orders of magnitude larger than the 
internal architecture of a fault zone and its material heterogeneities [57,58]. Next to upscaling 
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material heterogeneity of the fault zone [4], detailed rendering of the fault zone architecture through 
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Figure 1. Images (not to scale) showing the basic differences between the different grid geometries
applied. Left: The rectangular approach (R) uses a regular, rectangular grid in which fault zone
properties are assigned to those cells intersected by the fault plane. Due to the underlying grid
geometry, a staircase-shaped fault representation results. Right: The curvilinear approach (C) uses
an irregular grid geometry which is adapted to the fault geometry. This allows the representation of
the true shape of the fault zone in the FE model.
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For reservoir models with a typical cell size distinctly larger than the thickness of the fault
zone and its subunits, no details of the fault architecture and material heterogeneity can hardly
be considered explicitly. Instead, mechanical properties, which represent the joint effects of host
rock, damage zone and fault core, i.e., following a homogenized continuum approach, are used.
Optionally, anisotropic properties can be assigned to the fault cells [4,51]. However, at least to a
certain extent, local grid refinement techniques or detailed submodeling of specific faults in reservoir
models allow for incorporation of further details in the fault zone architecture and mechanical property
distribution [3,52].

2.3. Faults in Coupled Hydro-Mechanical (HM) Simulations

Hydraulic and mechanical processes are closely related [19,21,38]. Hence, pore pressure changes
can lead to mechanical reactivation of a fault zone and fault reactivation can lead to increasing
permeability, fluid flow and fault seal break [1,53]. Coupled hydro-mechanical simulations can
reproduce those relationships. It is the volumetric representations of faults that can map both weaker
mechanical properties and fault-specific hydraulic parameters onto fault-intersecting elements [1,54].

3. Some General Aspects of Representing Faults in Finite Element Reservoir Models

The goal of this study is to show the sensitivity of the fault representation as a volumetric weak zone
regarding three common assumptions used to incorporate fault zones into coupled hydro-mechanical
reservoir simulations.

3.1. Mesh Resolution

FE analysis is affected by both the mesh quality and element quantity [55,56], so meshing is a key
issue in FE modeling. While it is established that a finer grid resolution leads to better modeling results,
the grid size used in FE reservoir models is often several orders of magnitude larger than the internal
architecture of a fault zone and its material heterogeneities [57,58]. Next to upscaling techniques for both
hydraulic and mechanical properties, which include the internal features and material heterogeneity of
the fault zone [4], detailed rendering of the fault zone architecture through high-resolution local grid
refinements around fault zones can lead to simulation results closer to reality [27]. However, more
elements result in an exponential increase in the computing time for the simulations [55,56]. Since longer
run-times of simulations mean higher costs, it is of importance to find a proper mesh resolution
and simultaneously minimize the computational costs. Consequently, a thorough understanding of
the influence the mesh resolution has on numerical fault simulations is crucial.

3.2. Grid Geometry

We apply two different basic approaches used in previous studies to implement faults as volumetric
weak zones in FE hydro-mechanical models (Figure 1). These approaches differ regarding the basic
grid geometry and whether the grid is adapted to the fault geometry or not.

3.2.1. Rectangular Approach

Rectangular grid geometry is a frequently used approach for the representation of faults in FE
reservoir models (Figure 1 Left) [48,49]. Such a rectangular element grid often is already available from
preceding flow simulations or property modeling. A volumetric weak zone is generated by intersecting
this grid with a structural model, e.g., a fault interpretation derived from 3D seismic interpretation
and assigning fault rock properties to those cells cut by the fault planes [48,49,59,60].

The fault rock properties assigned to the corresponding grid cells normally use a homogenized
continuum, optionally with anisotropic properties, to incorporate the joint effects of fault core
and fractured damage zone [4,51] since the cell size is typically much larger than the material
heterogeneities inside a fault zone. Neighboring cells maintain the intact rock properties. Such a
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rectangular grid is fast and easy to generate, and therefore, saves time in model generation. However,
the staircase-shaped fault geometry can suppress deformation within the fault zone [45].

3.2.2. Curvilinear Approach

Compared to the rectangular grid with a staircase-shaped fault geometry, a mesh adapted to
the fault zone geometry allows a representation of the fault which is closer to reality, e.g., a lenticular
or elliptical fault shape, which is common for normal faults in sedimentary environments [61,62].
If the FE grid geometry is adjusted to the fault geometry (Figure 1 Right) [43], an irregular, curvilinear
grid following the shape of the fault zone results. The approach permits to represent the fault zone as a
continuous feature in contrast to the stair-stepped geometry inevitably connected to the rectangular
approach. In most cases, the cell size representing the fault zone will be too large to reproduce
details of the internal fault zone architecture. Thus, similar to the rectangular grid, the actual
heterogeneity of the fault zone has to be upscaled to the size of the elements representing the fault,
e.g., by using a homogenized continuum approach (optionally with anisotropic properties). Adjusting
the grid to the fault geometry takes significantly more time to generate, especially for large reservoir
models including multiple fault zones. Thus, understanding the influence the fault shape has on
the modeling results can allow to decide how accurate the shape has to be regarding to the aim of
the hydro-mechanical study.

3.3. Fault Dip

Faults, besides other subsurface structures, are commonly detected through geophysical methods.
Due to the ability of elastic waves to sense a fault in the subsurface, active seismic is the tool mostly
used to detect faults [62–65]. However, there are certain limitations and dependencies, like e.g.,
the wavelength of the seismic source or the rock density [66,67], influencing the seismic resolution
and, hence, the ability to detect details of the fault zone. The vertical seismic resolution is dependent
on the wavelength and depth, but for reservoirs, it is usually in the range of tens of meters. Further
difficulties exist when trying to detect small structures, such as small-scale faults or particular fault
zone features, like fault core, fault throw or damage zone [68]. Identification of steeply inclined
fault zones is complex [65,69,70] and although different migration techniques exist [67,71,72], finding
the correct fault dip remains difficult for the seismic interpreter. Thus, a frequently used simplification
in reservoir modeling is to assume vertical faults, i.e., a fault dip of 90◦. We compare this value with
the typical dip angle of 60◦ for normal faulting [73]. The aim is to show the impact that improper fault
dip estimations can have on the mechanical response of the fault zone.

4. Model Setup

In order to compare the different options for volumetric fault representations in the FE models
outlined above, we use as the basic model setup a high-permeability reservoir layer embedded in low
permeability over-/underburden and offset by a normal fault. The various scenarios studied differ
regarding (1) the basic grid geometry (rectangular vs. curvilinear), (2) the mesh resolution of the fault
zone (1, 3 and 9-elements width) and (3) the fault dip (60◦ vs. 90◦). The material properties for each
of the three model units (fault zone, reservoir rock and over-/underburden) remain the same in all
scenarios. Table 1 and Figure 2 give an overview of the characteristics of the seven cases studied.

The geological rationale for the model setup, i.e., a lenticular fault zone displacing a reservoir
horizon, is presented in Figure 3a. The resulting model domain, the dimensions as well as all initial
and boundary conditions are shown Figure 3b. For the fully coupled hydro-mechanical simulations,
the FE software Ansys 19.2 is used [74].
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Table 1. Overview of the seven scenarios studied and the corresponding model names. The scenarios
differ regarding the basic grid geometry, the mesh resolution of the fault zone and the fault dip.

Model Name Grid Geometry Fault Zone Width (Number of Elements) Fault Dip (◦)

R1-60 rectangular 1 60
R3-60 rectangular 3 60
R3-90 rectangular 3 90
R9-60 rectangular 9 60
C3-60 curvilinear 3 60
C3-90 curvilinear 3 90
C9-60 curvilinear 9 60
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The 3D model represents a slice through the center of a normal fault offsetting a reservoir 
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Figure 3. (a) The 3D model represents a slice of one-element width through the central section of a
fault zone displacing a reservoir horizon (not to scale). (b) General model set-up (in side view) as
well as initial and boundary conditions for the hydro-mechanical simulation. Model dimensions are
1 × 1 × 0.001 km centered around a 500 m long fault displacing a reservoir horizon. The model is
located between 1 and 2 km depth. No displacements orthogonal to the model boundary are allowed
at the base and vertical sides of the model (‘roller boundary condition’), whereas a pressure equivalent
to the weight of the overburden acts on the model top. Initially, a hydrostatic pore pressure field is
assumed. Subsequently, the pore pressure at the nodes on the right side of the downthrown reservoir
section is increased at a rate of 0.75 MPa every 3 months until after 5 years a final increase of 15 MPa
is reached.

4.1. Model Geometry

The 3D model represents a slice through the center of a normal fault offsetting a reservoir horizon
(Figure 3a). The overall geological setting is a normal faulting regime, including an elliptically shaped
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fault zone offsetting a reservoir horizon into upper and lower compartments. The model dimensions
of the 3D-slice are 1 × 1 km2 and 1-element thickness (Figure 3b). The total height of the fault is 500 m,
whereas the offset of the 25 m thick reservoir horizon is 47 m. Since the fault zone is represented as one
material rather than explicitly subdividing it into fault core and damage zone, scaling relationships [75]
for both features are combined and the total width of the fault zone is assumed to be 12 m. The fault
dip is either 60◦ or 90◦, depending on the scenario studied.

Depending on the mesh resolution inside the fault zone (1-, 3- or 9-element width) the whole model
has between 126,000 and 1,134,000 elements for the rectangular and between 45,684 and 312,164 elements
for the curvilinear approach. The differences arise from the different mesh resolution towards the model
boundaries. The fault zone itself is represented by 119 (1-element width), 358 (3-element width) or 3226
(9-element width) elements for the rectangular and 564 (3-element width) or 4004 (9-element width)
elements for the curvilinear models. The actual size of the elements describing the fault geometry are
12 × 12 × 9 m (1-element width), 4 × 4 × 3 m (3-element width) and 1.3 × 1.3 × 1 m (9-element width).

4.2. Boundary Conditions

The initial as well as the mechanical and hydraulic boundary conditions used for the simulations are
shown in Figure 3b. No displacements orthogonal to model boundaries (‘roller boundary conditions’)
are allowed at the basal, left, right, front and back side of the model. A lithostatic pressure boundary
condition equivalent to the weight of the overburden holds for the model top. As the top of the model
is assumed to be 1000 m beneath the earth’s surface, the corresponding pressure acting on the model
can be calculated according to [76]:

pr = ρr·g·d (1)

where ρr is the average density of the overburden rock (assumed to be 2300 kg/m3) [21], g is gravitational
acceleration (9.8 m/s2) and d is depth (1000 m). Since no further tectonic (horizontal) stress components
are considered in the simulations, the initial stress field results entirely from gravitational loading.
Consequently, the model is located in a normal faulting regime, i.e., outside the area affected by the fault
the vertical stress Sv corresponds to the maximum principal stress S1.

Hydraulic boundary conditions assume impermeable boundaries at the top and base of the model
as well as no horizontal flow through the vertical model sides. Initially, hydrostatic pore pressure
conditions are assumed throughout the model. The corresponding pore fluid pressures Pf can be
calculated according to:

pf = ρf·g·dn (2)

where ρf is the fluid density (1000 kg/m3; assumed average density of the pore fill in the overburden)
and dn is the depth of the corresponding element node, i.e., between 1000 m (model top) and 2000 m
(model base).

After the initial load step, i.e., after mechanical and hydraulic equilibrium in response to
the boundary conditions has been achieved, successively higher pore pressures are applied to
the boundary nodes of the reservoir layer in the hanging wall of the fault (lower right in Figure 3b).
This represents fluid injection in the downthrown block and is continued for 5 years at a rate of
0.75 MPa every 3 months, i.e., in 20 time steps, until the maximum injection pressure of 15 MPa is
reached. Therefore, pore pressure (pf) for the nodes at the boundary of the reservoir layer is increased
according to:

pf = ρf·g·dn + pi·t (3)

where pi is the pressure increment (0.75 MPa) and t is the time step (1 to 20).

4.3. Constitutive Laws

Poroelasto-plastic material behavior and fluid flow through a porous medium is assumed for
this hydro-mechanical simulation. In a saturated porous medium, stresses are split between the solid
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phase and the fluid phase, so the total stresses are reduced by the pore pressure in the rock volume.
This relationship can be described by:

σ′ij = σij − α·p·δij (4)

where the effective stresses (σ′ij) are derived from the total stress tensor (σij) by subtracting the pore
pressure (p), weighted by the Biot coefficient (α) and Kronecker’s delta (δij) [74–76].

The mechanical material behavior in the poroelastic domain is described by the following
stress–strain relationship:

εij =
1 + υ

E
· σ′ij −

υ

E
·σ′kk·δij (5)

It links strain (εij) and effective stress (σ′ij) through the material properties of Young’s modulus
(E) and Poisson’s ratio (υ) and the sum of the effective principal stresses (σ’kk) [77–79]. The failure
criterion delimiting the poroelastic range and initiating plastic material behavior in a hydro-mechanical
analysis can be defined by a variant of the Mohr–Coulomb law according to:

τcrit = (σn − pf)·tan ϕ′ + c′ (6)

where τcrit is the critical shear stress at failure, σn is the normal stress,ϕ’ is the effective angle of internal
friction and c’ is the effective cohesion [76]. Injection leads to an increase in pore pressure, which
reduces the effective stresses and the effective normal stress. In the σn—τ diagram, this pore pressure
increase shifts the Mohr Circle towards the left until it ultimately reaches the failure line and shear
failure occurs. Tensile failure is incorporated via a tension cut-off delimiting the Mohr–Coulomb failure
line for tensile stresses (Figure 4).
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Figure 4. Shear stress τ vs. normal stress σn diagram showing the Mohr–Coulomb failure criterion
with a tension cut-off delimiting the elastic domain. An increase in pore pressure leads to a decrease
in the effective stresses. Thus, the corresponding Mohr circle is shifted to the left towards the shear
failure line. If the failure line is ultimately touched, plastic straining and—in case of a fault zone—fault
reactivation occurs.

Besides the hydrostatic pressure, also the injection pressure affects the model and the increase
in pore pressure propagates through the model. This is described by Darcy’s law as fluid flow (q) is
determined according to:

∇

[k
n
·(∇p− ρf·g)

]
= S·
∂p
∂p

(7)

where k is the intrinsic permeability of the porous medium, n the fluid viscosity, p the pore pressure, ρf

the fluid viscosity, S the specific storage (as a function of porosity) and t the time [77].
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The fully coupled hydro-mechanical simulation accounts for the interaction of the hydraulic
and mechanical behavior as changes in pore pressure result in effective stress changes and related
volumetric strain. This in turn alters porosity and permeability, which again affect the pore pressure
field [11,76,80].

4.4. Material Input Parameters

The hydraulic and mechanical material properties assigned to the various model units are listed in
Table 2. For the mechanical properties, only Young’s modulus and the frictional properties are varied
between the fault zone on one side and the reservoir rock and over-/underburden on the other. For ease
of comparison, Poisson’s ratio and density are kept the same for all three units. A friction angle of
10◦ was used for the fault zone, which is substantially lower than the typical values for most intact
rocks [38]. However, various studies have pointed out that processes like cataclasis and formation of
clay minerals, among others, lower the friction angle and reduce the strength of fault rocks, thus leading
to mechanically weak fault zones [81–83]. In this study, we focus on mechanical weak fault zones,
where plastic deformation and therefore fault reactivation are most likely to occur.

Table 2. Hydraulic and mechanical parameters used for the three model units.

Mechanical Symbol Fault Zone Reservoir Over-/Underburden

Young’s modulus (GPa) E 10 30 30
Poisson’s’ ratio (–) ν 0.23 0.23 0.23
Friction angle (◦0) ϕ 10 40 40
Cohesion (MPa) c 4 20 20

Tensile strength (MPa) TS 5 20 20
Density (kg/m3) ρ 2400 2400 2400

Hydraulic - - - -

Biot coefficient (–) A 0.9 0.5 0.5
Permeability (m2) k 10−14 5−12 10−17

Porosity (–) φ 0.15 0.15 0.025

In order to study fluid flow along the fault zone and how it alters its mechanical strength by
changes in effective stress, we decided to choose a permeable fault zone. However, impermeable faults
frequently also occur in sandstone-shale regimes [82,84,85].

5. Results

The following section presents the simulation results for the various scenarios. First, the stress
and strain patterns as well as the pore pressure distribution of a reference model are shown, which
provides a baseline for the following comparison between different model setups. The modeling
results are visualized by means of contour and vector plots as well as detailed sections of the fault
zone. Please refer to Table 1 for relating the model name to the details of the different model setups.

5.1. Reference Model (C3-60)

The model setup C3-60 describing the fault zone as a 3-element wide unit embedded in a curvilinear
grid is used as a reference model. Applying the material properties and boundary conditions outlined
in Sections 4.2 and 4.4 (see also Figure 3) leads to the initial model state, i.e., before fluid injection
into the reservoir horizon starts, shown in Figure 5a–c. As was defined, the hydrostatic pore pressure
increases linearly from 9.81 MPa at the model top (1000 m depth) to 19.62 MPa at the base (2000 m
depth) (Figure 5a). The effective maximum principal stress (S1,eff) ranges from 15 MPa at the top to
37 MPa at the bottom of the model (Figure 5b). Due to its higher Biot coefficient, the fault zone exhibits
lower effective stress magnitudes than the surrounding rock. Some minor perturbations in the stress
pattern occur in the immediate vicinity of the fault. For the initial and boundary conditions selected,
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the fault zone is entirely in an elastic state prior to fluid injection. This ensures, that initial loading
does not already cause plastic deformation and fault reactivation (Figure 5c).
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Figure 5. Some simulation results for the reference model (C3-60) with a curvilinear grid adapted to a
fault with 60◦ dip and 3-element width. (a–c) show the spatial variation in pore pressure (a), magnitude
of the effective maximum principal stress (S1,eff); (b) and total von Mises plastic strain (c) for the initial
state, i.e., prior to fluid injection. (d–f) show the corresponding simulation results after 5 years of
injection and a pore pressure increase in the lower reservoir horizon of 15 MPa, respectively.

Figure 5d–f show the modeling results after 5 years of injection at a rate of 0.75 MPa every 3
months, increasing the pore pressure in the downthrown reservoir section to 30 MPa, i.e., 15 MPa above
hydrostatic. This pore pressure increase has propagated from the injection point through the fault zone
all the way up to the upper reservoir section. There, the increase is still about 8 MPa, which results in a
pore pressure of about 22 MPa (Figure 5d). The pore pressure increase in the reservoir as well as in
the fault zone is also indicated in the S1,eff pattern, as these model parts show 5 to 10 MPa lower stress
magnitudes than the surrounding rock mass and for the initial state (Figure 5e). While the reservoir
rock as well as the over-/underburden remain in an elastic state, pore pressure increase results in plastic
straining of the fault zone elements. The corresponding maximum effective stress pattern shows an
increase at the upper left and lower right end of the fault and a decrease over the entire fault zone.
Plastic straining occurs in the whole fault zone with deformation ranging between 0.5% within the fault
zone and about 3% at the fault tips (Figure 5f).

In Figure 6, the magnitude of the maximum total principal stress (S1) is displayed together with a
detailed view of the orientation of S1 at the fault tips for both the initial (Figure 6a,b) and the final
calculation step (Figure 6c,d) of the base model approach (C3-60). The basic pattern is similar to
the magnitudes for S1,eff, albeit at higher values as pore pressure effects are not considered (Figure 6a).
Due to the assumed normal faulting regime, the regional maximum principal stress orientation is
vertical. Only the fault cells properly exhibit a slight rotation of about 5◦ relative to regional (Figure 6b).
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Figure 6. Results of the base model (C3-60). Initial state: (a) magnitude of the maximum principal stress
(S1) for the whole model domain. (b) detailed view of the orientation S1 in the vicinity of the upper
fault tip. After 5 years of injection: (c) magnitude S1 for the whole model domain. (d) detailed view of
the orientation S1 in the vicinity of the upper fault tip.

Examining the model state after 5 years of injection, both the minimum and maximum peaks at
the upper fault tip in the close surrounding of the fault zone are around 15 to 20 MPa higher than
the magnitudes for S1,eff (Figure 6c). The orientation of S1 near the fault tip has rotated up to 30◦

clockwise at the downthrown side. The rotation decreases towards the right until it reaches vertical
again. On the left side of the fault tip, the rotation is lower, i.e., about 5◦ counterclockwise near
the fault (Figure 6d).

5.2. Mesh Resolution

The impact of the mesh resolution of the fault zone is compared by implementing different element
sizes for the same total width of the fault zone, i.e., the number of elements used to resolve the fault
zone varies. Figures 7 and 8 display the results after the last load step, i.e., after 5 years of injection,
for the magnitude of S1,eff and the orientation of S1 for different mesh resolutions. Thereby, the fault
is represented either as 1-, 3- or 9-element wide zone in a rectangular grid. In general, significant
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differences between the 1-element (R1-60) on one side and the 3- (R3-60) and 9-element (R9-60) width
on the other can be observed.Energies 2020, 13, 2673 14 of 28 
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Figure 8. Detailed view of the orientation of the maximum principal stress (S1) after the last load
step for 1-element- (a), 3-element- (b) and 9-element- (c) wide fault zones dipping at 60◦ and using a
rectangular grid.

After the last load step, approach R1-60 displays a similar stress pattern, with subhorizontal
contour lines like the initial step of the base model. Only the reservoir horizon in the downthrown block
shows a reduction of the effective stress because of injection and the resulting increase in pore pressure.
The upper left reservoir horizon, however, has not experienced any pore pressure increase (Figure 7a).

In contrast to the 1-element wide fault models, both, the 3- and 9-element wide fault zones clearly
undergo a pore pressure increase inside the fault zone. In both models, the entire fault zone is precisely
visible by the corresponding decrease in the magnitude of the effective maximum principal stress
(S1,eff). Peaks of S1,eff occur at the upper and lower fault tips after 5 years of injection (Figure 7b,c).
Those peaks are missing in the results for the 1-element width fault zone.

Comparing both higher mesh density models R3-60 and R9-60, only minor differences are found
for the S1,eff values. Somewhat higher and, respectively, lower values are produced at the fault tips
for the higher mesh resolution. Mesh resolution R3-60 has maximum values of 30 MPa for the upper
and 50 MPa for the lower fault tip, while for mesh resolution R9-60 the corresponding values are
40 and 60 MPa. Although these small areas up to 10 m around the fault tips have different maximum
values for S1,eff, the overall appearance of the S1,eff-pattern is the same for the multiple element row
approaches (Figure 7b,c).

Likewise, approach R1-60 does not show rotation of the vertical orientation of S1 except a very
slight one (less than 5◦) for the actual fault cells for the last load step (Figure 8a). The R3-60 and R9-60
approaches exhibit rotations of S1 similar to the base model. Both display up to 30◦ clockwise rotations
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on the right side of the upper fault tip and between 5◦ and 10◦ counter clockwise rotation on the left
side, respectively. The orientation rotates back to the vertical orientation with increasing distance from
the fault (Figure 8b,c).

Figure 9 shows the results for the von Mises plastic strain after the last load step for the three
mesh resolutions examined. The 1-element wide fault zone of model R1-60 does not show any plastic
straining at all and, hence, is not reactivated (Figure 9a). This contrasts significantly with the strain
patterns calculated for the 3- and 9-element fault zone models. Thereby, the finer meshed fault zone
shows a larger spatial extent of higher plastic strain values reaching up to 1.3% inside the fault zone
(Figure 9c). Apart from this difference, the overall results for the plastic strain are rather similar, i.e.,
both approaches show larger plastic straining in the fault center, which is reducing towards the fault
tips (Figure 9b,c).
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5.3. Grid Geometry

The modeling results for different gird geometries, rectangular (here, R9-60) and curvilinear
(C9-60) are illustrated for 9-element rows fault zone.

5.3.1. Pore Pressure and Effective Stress Magnitude

In general, the increase in pore pressure by injection into the downthrown reservoir section
propagates through the fault zone in both models. However, there is a slight difference between
the rectangular and curvilinear approach in the absolute value reached in the upper reservoir section.
While approach C9-60 shows pore pressures up to 25 MPa in this part of the reservoir, they remain
below 20 MPa in approach R9-60 stays. Within the fault zone proper, the pore pressure increase
expands more towards the fault tips in model C9-60 e.g., the pore pressure for C9-60 is between 27.5 to
32.5 MPa from the spot where the lower reservoir and the fault meet about 100 m towards the fault
tip. The remaining distance of the pressure is still between 22.5 and 25 MPa. R9-60 has values of 25 to
30 MPa and 20 to 22.5 MPa, respectively. (Figure 10a,c).

The stress magnitudes for S1,eff display the same overall behavior, but due to the higher pore
pressures, S1,eff is lower in the central part of the fault zone for the curvilinear approach (C9-60). There,
magnitudes of less than 10 MPa are observed and the spatial extent is up to 12 m wide to both sides of
the fault. The magnitudes achieved with the rectangular approach (R9-60) only gain around 10 to 15
MPa in the middle of the fault and the spatial extent is only about 8 m. Considering the magnitudes of
S1,eff at the fault tips for both grid geometries, the approach C9-60 exhibits higher peaks with 68 MPa
for the lower and 47 MPa for the upper fault tip. The values observed for the rectangular approach are
around 2 MPa lower with 66 and 45 MPa respectively (Figure 10b,d).

A detailed view of S1,eff in the vicinity of the lower fault tip is presented in Figure 11. The spatial
extent for both the minimum and maximum peak values is smaller for approach C9-60. The lower



Energies 2020, 13, 2673 15 of 27

values (<10 MPa) for S1,eff taper towards the fault tip. In contrast, R9-60 has a wider zone of low values
(<10 MPa) which seems to expand towards the fault tip. At distances of more than 10 m from the fault
zone, both approaches exhibit the same pattern.
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5.3.2. Stress Orientation

The magnitude and orientation of the maximum total principal stress (S1) is shown in Figure 12
for the last load step. The S1 magnitude distribution shows similar patterns for both grid types.
The values range from about 25 MPa at the model top to about 45 MPa at the model bottom. Both
models exhibit similar S1 peaks at the fault tips, which reach 56 and 58 MPa at the upper fault tip
and 77 and 78 MPa at the lower fault tip, respectively (Figure 12a,c). Likewise, the orientation of S1 in
the vicinity of the fault tips is very similar. However, there are slight differences in the actual numbers.
For the rectangular grid the rotation to the vertical orientation is about 5◦ counter clockwise on the left
and 20◦–25◦ clockwise on the right side of the fault. While left of the fault tip, the rotation is also 5◦

counter clockwise, the reorientation differs on the right side, where between 25◦ and 30◦ clockwise are
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achieved for the curvilinear approach. From the fault to the sides of the model, the orientation rotates
back towards the vertical orientation of S1 again (Figure 12b,d).
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5.3.3. Elastic and Plastic Strain

After the last load step, the von Mises elastic strain shows the highest values at the fault tips for
both fault grid geometries. At the lower tip, the elastic strain is up to 0.13%. Comparing the elastic
strain throughout the fault zone, it is obvious that R9-60 achieves higher values towards the middle
of the fault. In contrast, elastic strain in the curvilinear approach decreases strongly from the lower
tip towards the middle of the fault and to a lesser extent from the upper tip towards the fault center
(Figure 13a,c).

The main difference between both approaches is observed for the von Mises plastic strain. After
the last load step, the plastic strain occurs mostly at the fault tips for C9-60. The plastic strain for
the curvilinear approach reaches up to 3.2% at the lower fault tip. Towards the middle of the fault,
plastic strain decreases to about 0.3%. For R9-60, the plastic strain behaves the other way around. It
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decreases from the middle of the fault towards the fault tips. The rectangular approach has its highest
values of about 1.5% in the middle of the fault and decreases to about 0.4% at the fault tips. Outside
the fault zone no plastic straining occurs (Figure 13b,d). A more detailed view of these plastic strain
patterns in the vicinity of the lower fault tip is pictured in Figure 11b,d. This figure shows the von
Mises plastic strain for both approaches within 50 m from the fault tip.
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Figure 12. Results after the last load step for a 9-element wide fault zone with 60◦ dip embedded with
different grids. Rectangular grid: (a) magnitude of the maximum principal stress (S1). (b) detailed view
of the orientation of S1. Curvilinear grid: (c) magnitude of S1. (d) detailed view of the orientation of S1.

5.4. Fault Dip

The effect of different fault dips is investigated using the curvilinear approach with a 3-element
wide fault zone with 60◦ (C3-60) and 90◦ fault dip (C3-90), respectively. Figure 14 shows the results
for pore pressure, S1,eff and total plastic strain after the last load step. Similar results are achieved
for the pore pressure distribution, albeit somewhat higher pore pressures are observed in the upper
reservoir section for the vertical fault (Figure 14a,d). For S1,eff, approach C3-60 shows peak values of
up to 60 MPa for the lower and 50 MPa for the upper fault tip. Those local stress peaks do not occur in
case of a vertical fault, i.e., C3-90. Otherwise, the effective stress magnitudes within the fault zone of
about 5 MPa are quite similar for both fault dips (Figure 14b,e).
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Substantial differences are again observed for plastic straining, as no plastic straining occurs for
a vertical fault. In contrast, von Mises plastic strain in case of a fault zone dipping at 60◦ is 0.6% in
the middle of the fault and up to 3.2% at both fault tips (Figure 14c,f).

6. Discussion

For the initial load step, the expected model behavior is observed. The hydrostatic pressure
and the loading result in vertical gradients of both pore pressure and the maximum principal stress
(S1 = Sv). Outside the area affected by the predefined fault zone, S1 is vertical and the stress regime
displays normal faulting [73]. No plastic straining is observed after the initial load step which proves
that the fault is not already reactivated by the initial and boundary conditions selected. The results of
the last load step, i.e., after 5 years of injection, show higher pore pressure in both reservoir horizons,
and therefore, indicates fluid migration through the fault zone. Plastic straining occurs throughout
the entire fault zone. Hence, fault reactivation is achieved from pore pressure increase due to fluid
injection into the reservoir.

The calculated stress pattern can be compared to other numerical simulations which incorporate
faults [1,50,86]. The corresponding stress perturbations derived from such numerical models resemble
the results of the base model regarding both spatial extent and magnitude of the stress changes induced
by the fault.

6.1. Mesh Resolution

A general recommendation is to use a finer mesh in those areas where stress and strain gradients
are large. To identify the regions where greater mesh density or local grid refinement is required,
preliminary simulations with a coarse mesh appear useful [53,87–89].

In our study, the representation of a fault as 1-element row in a rectangular grid appears to be
a special case, but they are not unusual for reservoir simulations. In the last several years, different
authors have used this kind of fault zone representation to investigate a multitude of reservoir-related
tasks like fault reactivation [49,60], CO2-Storage [59] and fully-coupled reservoir simulations [29,49].
However, our modeling results indicate substantial differences compared to fault representations with
multiple element rows. For the mechanical part, the stress and strain patterns as well as magnitudes
are different and for the hydraulic part, the fault seems to act as barrier for fluid flow in the case of a
1-element representation.

Only minor differences in the resulting stress and strain patterns as well as stress magnitudes
exist if the fault is represented as a 3-element or 9-element wide zone. The higher mesh resolution
inside the fault zone only increases the maximum values for both stress and strain at the fault tips,
but the spatial extent of these differences remains less than 10 m near the fault tips.

Several studies [87,90,91] have evaluated the effects of mesh density on finite element analysis.
There are two issues which can be responsible for the punctually higher stress and strain values in
the simulations using the higher mesh resolution. First, stress and strain fields have higher gradients
in the localization zone, such as the tip of a fault zone, for higher mesh densities [92]. This implies that
the finer mesh resolution leads to a more punctually concentrated stress, which in turn, is higher [93,94].
The higher stress values ultimately cause higher plastic strain, which is also observed in the finer mesh
resolution. The second issue is that models with a lower mesh resolution, i.e., with less elements,
appear to be somewhat stiffer, while increasing the number of elements softens the model slightly
and improves the accuracy of the stiffness integration [89,95]. Therefore, the slightly higher stress
and strain values for the models using a higher resolution may originate from the lower effective
stiffness at the fault tips.

However, the spatial extent of this variations is very small and the overall stress and strain pattern
as well as the hydraulic behavior for the whole model is the same for 3- and 9-element wide fault
zones. In order to determine the required mesh resolution inside the fault zone, it is crucial to evaluate
the required precision as well as the target location regarding the specific aim of the particular study.
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The differences between the one element (R1-60) approach and both multiple row approaches
(R3-60 and R9-60) stem from the arrangement of the elements to which the fault zone properties have
been assigned. Regarding R1-60, the rectangular grid geometry leads to the fault zone elements being
connected by only one common node, i.e., all neighboring elements which share joint edges exhibit
the non-permeable and mechanically stronger host rock properties. This subdues the formation of both
a through-going fluid pathway and deformation zone. In contrast, the fault zone with a higher mesh
resolution and more element rows has numerous common element faces and, hence, a continuous
fluid pathway through the entire fault zone can develop. Likewise, strain can accumulate and form a
continuous zone of deformation. The larger amount of fluid flow through the fault zone increases
the pore pressure inside the fault zone and leads to reduced effective stresses, which in turn, decreases
the shear strength again.

6.2. Grid Geometry

Comparing the two fundamental grid geometries studied, the different results in both hydraulic
and mechanical simulations can be explained by the special features of the rectangular grid for fluid
flow as well as stress and strain propagation.

On the hydraulic part, the rectangular grid induces a spatial restriction in the fluid pathway
since some of the elements forming the fault zone are connected by only one node. The reduced
fluid migration through the rectangular fault zone also explains the lower pore pressures observed in
the upper reservoir section for the rectangular grid geometry (see Figure 10a).

In a coupled simulation the hydraulic behavior directly effects the mechanical response. According
to the Mohr–Coulomb criteria (Figure 4), a pore pressure increase causes a decrease in the effective
stresses, which shifts the Mohr–Coulomb circle towards the shear failure line [21,38,76]. Thus, the higher
pore pressures in the curvilinear approach lead to a higher reduction of the effective stresses [19,78,96],
which explains the difference between both gird geometries regarding the magnitudes and the spatial
extent of S1,eff (Figure 10b,d).

For the rectangular grid, the increase in pore pressure is mainly in the center of the fault which is
also the reason for the location of the highest plastic strain values there. However, this does not fully
explain the different plastic strain distribution for both grid geometries. Fault geometry may also be
partly responsible for this different mechanical response. While the curvilinear approach offers a linear,
smooth boundary between the undeformed reservoir rock and the fault zone, the rectangular approach
has a stair-stepped geometry (Figure 15). This results in some kind of interlocking with the stronger
rock properties outside the fault zone, and therefore, constrains strain accumulation compared to
the curvilinear approach.

In addition, the grid geometry seems to be responsible for the different results of the plastic strain
occurring at the fault tips (Figure 11b,d and Figure 13b,d). The rectangular fault zone ends with a
rectangular block of elements. This favors the plastic strain to disperse over multiple elements, which
in combination with interlocking of the host rock cells, reduces the plastic strain values at the fault tips
even further (Figure 15R). In contrast, the fault in the curvilinear fault converges towards the fault tip
(Figure 15C). This causes the strain to accumulate at the fault tips, and thus, exhibits larger plastic
strain there.

Particularly the plastic strain pattern of the curvilinear approach seems to be closer to nature.
During the development and the growth of a fault, stress concentrations at the fault tips lead to
strain localization [97–99]. Small discontinuities (i.e., Griffith cracks) in the so-called “intact rock”
can be stimulated and coalesced by those strain localizations [100–102] similar to the ones observed
for the curvilinear approach (see Figure 13d). This macroscale shear failure of the intact host rock at
the fault tips can expend through ongoing strain to extend a continuous fault surface [103]. Although
the FE method used in our approach cannot model fracturing and consequently, fault propagation,
the plastic strain accumulations at the fault tips for curvilinear fault representations seem to mimic
the behavior in nature.
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Figure 15. Image showing the rectangular (R) and curvilinear (C) grid geometries and their interaction
with the surrounding rock mass. While the fault cells in the rectangular approach tend to interlock
with the surrounding, stronger host rock, the edges of the fault cells in the curvilinear representation
form a surface almost parallel to the fault plane. Furthermore, the curvilinear representation ends in a
pointed geometry while the rectangular fault ends in as a block of cells.

6.3. Fault Dip

Different fault dip angles do not significantly influence fluid flow. Therefore, the pore pressure
distribution is similar for the 60◦ and 90◦ dip scenarios. However, the dip of the fault zone has a
strong influence on the mechanical behavior. Both stress and strain patterns are reduced for the 90◦

fault dip compared to the 60◦ fault dip. Particularly the difference in the plastic strain is striking.
There is no plastic straining and, consequently, no fault reactivation for the 90◦ case. This behavior can
be explained according to the Mohr–Coulomb failure criterion [21,38]. The stresses acting on the fault
plane are divided into the normal stress (σn) acting orthogonal to the fault and the shear stress (τ)
acting parallel on the fault, which can be calculated according to:

εij =
1 + υ

E
· σ′ij −

υ

E
·σ′kk·δij (8)

εij =
1 + υ

E
· σ′ij −

υ

E
·σ′kk·δij (9)

with maximum (σ1) and minimum (σ3) principal stresses and the fault dip (α) [73,94]. According to
the model setup, the initial stress field is the same for both, the 60◦- and 90◦-fault dip. If σ1 and σ3

acting on the fault are the same, the only different variable for the different fault dips in Formulas (8)
and (9) is the fault dip (α) itself.

The shear stress, calculated by formula (8), is zero when the sinus-term is zero, which is the case
for a 90◦ fault dip. Since the shear stress acting on the fault is zero, the shear failure line is not exceeded,
and the rock remains intact. Hence, the deformation takes only part of the elastic domain, no plastic
strain occurs for the models with a 90◦ fault dip.

6.4. Practical Aspects of Model Building

Between the various approaches there are huge differences due to the amount of work and time
needed, i.e., the costs required to incorporate faults into a hydro-mechanical reservoir model.
Computing time increases exponentially with the number of elements, so finer mesh resolutions within
and near the fault zone significantly increase the runtime of the simulations. Even if it is not readily
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available from preceding property modeling or a flow simulation, generating the grid geometry for
a regular rectangular model and intersecting it with a fault interpretation is quite straightforward
and by far the most rapid technique. Implementing the curvilinear approach for fault representations
requires a special grid adapted to the fault geometry. This step can be a rather time-consuming
and labor-intensive task, depending on the complexity of the geometry of the fault network being
modelled. As shown above, a rectangular grid with the same fault zone resolution can lead to similar
results, at least at larger distances from the fault zone.

The rectangular approach can therefore be suitable for a first-order evaluation before more complex
models with a curvilinear grid are performed. In addition, for reservoir simulations focusing on
the central parts of fault compartments rather than the fault zone itself, the rectangular approach can be
reasonable. In contrast, for reservoir simulations focusing on fault zones and their immediate vicinity,
better results can be expected by using the curvilinear approach.

7. Conclusions

Using a simple generic model setup, different scenarios for the incorporation of faults as volumetric
weak zones into hydro-mechanical reservoir models are analyzed. The various scenarios differ regarding
the mesh resolution of the fault zone (1-, 3- or 9-element width), the grid geometry (rectangular vs.
curvilinear) and the fault dip (60◦ and 90◦). Significant differences in the stress and strain patterns are
indicated in the results, which are induced by the fault depending on its incorporation in the numerical
model. Based on the numerical simulation results, five general recommendations can be given on how
to represent faults in FE reservoir models:

1. The mesh resolution has to be considered very carefully, since it can—combined with a rectangular
grid—lead to serious errors. It needs to be ensured that the fault cells do not interlock with
the surrounding, stronger and less permeable host rock as this effects both fluid flow through
and straining of the fault zone. This interlocking effect mainly occurs for 1-element width fault
zones. For grids with multiple element wide fault zones, the only differences are observed in
the vicinity of the fault tips. Three element wide fault zones appear to be appropriate for most
reservoir-scale models. Only if the aim of the study is within 10 m of the fault zone, a finer
resolution should be considered.

2. If the aim of the study is to model the fault zone properly, a curvilinear representation is
recommended. In addition to somewhat better fluid migration throughout the whole fault zone,
this approach shows higher plastic strain at the fault tips, which appears to be closer to reality.

3. If the aim of the study is at a distance of more than 10 m from the fault, both grid geometries
are interchangeable. They show similar stress and strain patterns. In this case, the advantage of
the rectangular grid is that it generally takes much less time to generate.

4. Different fault dips produce different mechanical results, i.e., stress and strain patterns. Therefore,
care should be taken to consider a realistic fault dip, e.g., from interpretation of depth-converted
seismic sections, rather than using a vertical fault dip for simplification.

5. Different fault dips produce similar hydraulic results. If the aim of the study is primarily on
hydraulic issues, vertical faults can be an acceptable simplification.

Regarding the upscaling of the material heterogeneity and complex fault zone architecture to a
volumetric weak material representing the fault zone, challenges remain. For a more detailed analysis,
including architectural and material heterogeneity, a volumetric fault zone description with a grid
adapted to the fault zone geometry seems more appropriate. The possibility of incorporating further
details can be presented by local mesh refinement rather than upscaling them to the size of one element.

This research investigates a simple generic fault model in a siliciclastic succession,
but the methodology and the findings can be transferred to structurally more complex models
as well as other lithologies, e.g., carbonate reservoirs. However, while the general recommendations
can be used, the reservoir structure has to be modelled according to the specific geological setting.
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Perspectives for future modeling work include sensitivity studies for the material parameters
defining the shear strength and the fluid flow of the fault zone as well as the influence of detailed
reproduction of the internal fault architecture.
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