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Abstract: Although there are many studies available in literature about biomass pyrolysis or
devolatilization using thermogravimetric analysis (TGA), the effects of important operating parameters
have infrequently been investigated for pine wood particle combustion. Consequently, the present
study investigates the influence of particle size (63 µm to 1 mm), heating rate (5 to 243 ◦C/min),
and air flow rate (10 to 150 mL/min) on the mass loss of pine wood using TGA. Additionally,
the kinetic parameters considering the different conditions were determined to be incorporated
in a numerical model. The effect of the heating rate on the thermal decomposition behavior has
shown that the thermogravimetric and derivative thermogravimetric curves were shifted to higher
temperatures with the increase in the heating rate. In this way, the heating rate affects the temperature
at which the highest mass loss rate occurs as well as its value. Furthermore, comparing the higher and
lower heating rate, the time to complete the combustion and the release are around 22 times higher
when a higher heating rate is applied. On the other hand, the effects of four different air flow rates
were compared and similar results were obtained. Regarding the kinetic analysis, it was verified at
various heating and air flow rates with different particle sizes that the highest activation energy was
mostly obtained during char combustion (~131–229 kJ/mol). Furthermore, in the second stage higher
heating rates had the highest reactivity, and in the third stage there were not too many changes. In
terms of the effect of air flow rates, a maximum variation of 15 kJ/mol was obtained in the third stage
and, therefore, no significant effect on the reactivity for all particles was found.

Keywords: pine wood; thermogravimetric analysis; heating rate; air flow rate; kinetics

1. Introduction

Biomass is a renewable energy source and an important fuel for heating and power generation
for two main reasons: it is an easily available renewable energy source and it is considered neutral
in carbon dioxide emissions [1]. These are important factors since there is an energy dependence on
fossil fuels, whose reserves are limited, and carbon dioxide emissions from these energy sources are
related to global warming and the greenhouse effect. In this way, biomass appears to be a sustainable
and alternative renewable energy source to contribute to a significant reduction in carbon dioxide in
the atmosphere [2].

Energies 2020, 13, 2756; doi:10.3390/en13112756 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-2276-0153
https://orcid.org/0000-0003-3518-7111
https://orcid.org/0000-0002-7464-3944
https://orcid.org/0000-0003-1884-2380
http://dx.doi.org/10.3390/en13112756
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/11/2756?type=check_update&version=2


Energies 2020, 13, 2756 2 of 22

Combustion is an efficient technology to convert biomass into energy, making it the technology of
choice for both conventional power plants and domestic boilers [3]. Particularly in Portugal, biomass
has been widely used for power generation and pellet production over the last two decades in order
to meet the targets defined by the government [4]. Since 2017—when devastating wildfires flogged
the central and northern regions of Portugal—to now, new dedicated biomass power plants have been
built with a total capacity of around 100 MW, and there are currently more than 20 solid biomass power
plants delivering more than 600 MW to the national power grid [5]. Regarding the pellets’ production,
there are more than twenty companies identified for the Portuguese National Pellets Association with
an estimated consumption of more than 1.77 million tons of biomass [6]. Furthermore, Portugal is
a country where the forest area is significant and represents about 36% of the territory, making Portugal
a country with great potential for the exploitation of forest biomass [7]. Viana et al. [8] estimated that,
in Portugal, the total amount of biomass averages around 1.097 million dry tons/year, with 579.91
thousand dry tons/year from maritime pine, the main solid biomass species of Portugal.

However, biomass combustion is a complex process that consists of various consecutive
homogeneous and heterogeneous reactions: heating, drying, devolatilization (producing char and
volatiles), volatiles combustion, and char combustion [9]. Therefore, it is important to understand
the physical and chemical processes involved at the particle level to enable the proper understanding and
modeling of small and/or large-scale biomass combustion systems in order to reduce pollutant emissions
and improve the combustion efficiency [10,11]. To understand these phenomena, thermogravimetric
analysis (TGA) is a powerful tool to study the devolatilization rate during the biomass combustion
process and obtain important parameters which are essential in characterizing and understanding
the behavior of biomass combustion [12,13]. TGA is a thermo-analytical method widely implemented
to investigate and compare thermal degradation events and kinetics during the combustion of
solid materials such as coal and biomass [14]. The decrease in mass is measured under controlled
conditions while the thermal process is taking place, as the temperature along with the time increases.
Non-isothermal experiments are generally adopted for the determination of kinetic parameters due
to them being considered more reliable and less time-consuming when compared with isothermal
experiments [15]. Moreover, TGA is very useful in studying the kinetics of biomass combustion
because it is a simple and effective way to obtain information on the processes taking place for
determining the kinetic parameters [16–19]. In addition, the ignition and burnout temperatures and
the temperature at which biomass reaches its maximum combustion rate are important fuel parameters,
especially in establishing the residence time in the combustion chamber. Such parameters can be
determined from the first derivative of the TGA curve. However, there are several factors that affect
the thermogravimetric and kinetic results, such as fuel type (physical and chemical composition of
the samples), reaction conditions (heating rate and atmosphere), and the experimental data analysis
methodology post-processing.

To date, several studies have considered these different parameters, including particle size [20–22]
and heating rate [15,23–40], to study their influence on the thermal degradation behavior and kinetics.
According to Vamvuka et al. [20], decreasing the oxygen concentration and increasing the particle size
and moisture content will cause the ignition and burnout temperature to increase. Consequently, these
variations will increase the residence time in the combustion chamber. Furthermore, Vamvuka et al. [20]
reported that the composition of the gases, tars, and chars derived from biomass combustion depends
on the heating rate and final temperature among other factors. Mani et al. [21] also investigated
the influence of different parameters and found that the curves corresponding to the third stage of
pyrolysis differ for variations in the particle size, initial weight, and heating rate of the pyrolysis
process. Furthermore, an increase in the particle size and heating rate increases the char yield at
the end of the experiments. Boriouchkine et al. [22] investigated the combustion of different particle
sizes of spruce bark and wood residues. This study revealed that larger particles produced the highest
maximum mass loss rate when compared to smaller particles. Regarding studies where the heating
rate effect was studied, Yorulmaz et al. [31] analyzed the combustion kinetics of treated and untreated
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waste wood using TGA under three different heating rates. This study revealed that by increasing
the heating rate, the peak and burnout temperatures for all the samples were also increased, and higher
temperatures were detected for the same weight loss. Shen et al. [32] examined the effect of heating
rate on the combustion of four different biomass species, and the experimental results were used to
develop a two-step reaction kinetic scheme with activation energy values from different heating rate
experiments. There have also been some studies that analyzed the effect of different heating rates
on biomass decomposition under inert atmospheres [15,23,26,29,30,37,40]. However, as reported by
Shen et al. [28] and Anca-Couce et al. [27], the presence of oxygen enhances biomass decomposition and
promotes char combustion. Furthermore, the kinetic parameters derived from oxidative environments
differ remarkably from experiments in the absence of oxygen [41]. Therefore, in order to simulate
combustion conditions, it is important to study thermal behavior and kinetics in an oxygen atmosphere.
In this sense, Kok and Özgür [24], Garcia-Maraver et al. [36], and Álvarez et al. [33] have studied
the combustion behavior and kinetics of agricultural residuals. Soria-Verdugo et al. [35,39] have
studied the validity of a kinetic model when the kinetic parameters from lower heating rate curves
are extrapolated and used in applications such as industrial systems where higher heating rates are
present. Additionally, the uncertainties of the experimental results were evaluated and a minimum of
five different heating rates were needed in order to neglect the effect of uncertainties of the heating rate
and temperature on the activation energy calculation.

Heating rate is one of the most relevant parameters in TGA as it affects thermal decomposition
and, usually, experiments need to be performed with several heating rates in order to solve possible
compensation effects [36]. In this way, the Kinetics Committee of the International Confederation
for Thermal Analysis and Calorimetry recommends that no less than three different temperature
programs should be applied to obtain quality kinetic data [42]. However, White et al. [43] reported that
many factors could affect the kinetic parameters, including the process conditions, systematic errors,
heterogeneity of the sample, heat and mass transfer limitations, and processing of the TGA results.
Consequently, a wide range of kinetic parameters values have been reported in the literature and,
therefore, direct comparisons are not possible. Furthermore, most of the TGA experiments have been
performed under low heating rate conditions, and thus the kinetic parameters estimated from these
experiments cannot be used in numerical models as thermal degradation in real equipment occurs at
high heating rates [44].

The present work presents a parametric investigation including the variation in heating rate and
air flow rate on thermogravimetric experiments, complemented by a kinetic analysis of the combustion
of pine wood particles with different particle sizes. This works aims to evaluate the effect of different
heating and air flow rates on combustion behaviour and kinetic parameters. Although there are several
studies available in the literature about biomass pyrolysis and/or combustion using TGA, the effects
of important parameters such as particle size, heating rate, and air flow rate have infrequently been
investigated for pine wood particles. This is an important investigation, as understanding transport
phenomena at particle level is central to the proper understanding and modeling of biomass combustion
equipment and to provide valuable information for power and energy generation.

2. Materials and Methods

2.1. Materials

Commercial wood pellets, certificated according to the European Standard 14961-2 and
ENPlus®A1, were milled into powdered samples and sieved into three different batches according to
their particle size. Consequently, experimental tests with three particle sizes—smaller than 0.0063 mm,
0.125 up to 0.25 mm, and larger than 1 mm—were performed. The wood particles employed in this
study are shown in Figure 1, and their composition is summarized in Table 1.
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Figure 1. Samples of the fuels used in the experiments: (a) < 0.063 mm, (b) 0.125 up to 0.25 mm, and (c)
> 1 mm.

Table 1. Elemental analysis of pine wood pellets.

Proximate Analysis (wt.%, As Received) Ultimate Analysis (wt.%, Dry Ash Free)

Moisture 6.90 Carbon 50.90
Volatile matter 77.80 Hydrogen 5.30

Ash 0.60 Nitrogen 1.55
Fixed carbon 14.70 Sulphur 0.03

Oxygen 42.22

The ultimate and proximate analysis values, as well as the calorific value of the pine wood samples,
correspond to the samples obtained after the milling process. The proximate and ultimate analyses
were performed according to the technical specification of European standards and the sulfur content
of the samples was measured by a Leco TruSpec Series. The heating value measurement was also
performed according to specific procedures from a standard and it was measured by a calorimeter,
Leco AC500. The pine wood lower heating value estimated was 17.10 MJ/kg.

2.2. Experimental Approach

In TGA experiments, a wide combination of airflow and heating rates was applied. Regarding
the heating rate, four levels were selected for all samples: 5, 10, 20, and 50 ◦C/min. Furthermore,
the heating rates of 100 and 243 ◦C/min (maximum value of the equipment) were applied but only for
a particle size of 0.125 up to 0.25 mm. In this set of experiments, dry air (H2O < 3 ppm) with a constant
flow rate of 100 mL/min was used. However, experiments with air flow rates of 10, 50, and 150 were
performed for the three different classes of particle size, while the heating rate was maintained at
10 ◦C/min. In all the experiments, the initial mass of the samples was approximately 6 ± 0.7 mg and
the final temperature was 750 ◦C. The first initial condition was based on previous experiments that
were performed to ensure there was no possible effect on the mass and heat transfer during the biomass
decomposition. Regarding the final temperature value, experiments at higher temperatures beyond
750 ◦C were performed and there were no significant differences in the final mass, which ensured that
any temperature increase did not contribute to the further weight loss of the sample.

Various parameters were measured and recorded along with the time using the TA INSTRUMENTS
SDT 2960 simultaneous thermogravimetric and calorimetric analysis (DSC-TGA): the weight of
the sample (mg), temperature (◦C), and heat flow (W). The TGA and the derivative thermogravimetric
curve (DTG) profiles obtained during the experiments enabled the identification of different key
temperatures: initial decomposition (Tin), peak (Tmax), and burnout (Tb). Tin corresponds to
the beginning of the weight loss and is defined as the temperature at which the rate of weight
loss reaches 1%/min after the initial moisture loss peak in the DTG profile. Tmax is the point at
which the maximum reaction rate occurs. Tb is identified when the last peak comes to the end and is
the temperature at which the sample is completely oxidized. It is taken as the point immediately before
the reaction ceases, when the rate of weight loss is down to 1%/min [45]. The ignition temperature (Tig)
is obtained by applying the TG-DTG tangent methods [46].
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Furthermore, these experiments enable the identification of the combustion rate and heat
released at different temperatures and times. All this information allows the thermal decomposition
characterization of the pine wood samples. The experimental procedure and the most important points
are illustrated in Figure 2.
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Figure 2. Interpretation of the thermogravimetric and calorimetric analysis (DSC-TGA) results. Mass
loss as a function of temperature (dashed line) and derivative thermogravimetric curve (DTG) curve
(continuous line) during the combustion of wood.

Furthermore, these experiments allow the identification of the combustion rate and the heat
released at different temperatures and times. All this information allows the characterizing of
the thermal decomposition of the pine wood samples. In this way, in addition to the characteristic
temperatures, two combustibility indexes from the mass loss rate data can be determined to provide
a more accurate measure of the reactivity. The first one, the ignition index (D), indicates the ignition
performance defining how fast or slowly the fuel is ignited. This index is defined by Equation (1) [20]:

D =
(dm/dt)max

tmax · tig
, (1)

where (dm/dt)max is the maximum mass loss rate (wt.%/min) and tmax and tig (min) are the times
corresponding to the maximum combustion rate and ignition, respectively.

The second index, the combustion index (S), indicates the comprehensive characteristics of the fuel.
The higher its values, the more significantly the samples are burned and the faster the char is burned
out [47]. This index is defined by Equation (2):

S =
(dm/dt)max · (dm/dt)avg

Tb · T2
ig

, (2)

where (dm/dt)avg is the average mass loss rate (wt.%/min). These two indexes were calculated for all
the samples to enable a more rigorous measure of the reactivity of each fuel in each particular condition
since different heating and air flow rates were applied.
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2.3. Determination of Kinetic Parameters

For understanding and modeling the biomass combustion in furnaces, knowledge of the biomass
combustion kinetics is essential. Furthermore, this knowledge is also mandatory for the design and
operation of biomass combustion equipment [48]. The solid-state transformation rate from solid-state
to volatile products is generally described by Equation (3):

dα
dt

= k · f (α), (3)

where t is the time; f(α) is a function called the reaction model, which describes the dependence of
the reaction model on the conversion rate (α); and k is the thermal dependence term that can be defined
by the Arrhenius equation (Equation (4)):

k = A · exp
(
−E
RT

)
, (4)

where E is the activation energy (kJ/mol), T is the absolute temperature (K), R is the universal gas
constant (kJ/mol.K), and A is the pre-exponential factor (min−1). Regarding α, this can be defined as
a relation between the initial (m0), final (mf), and instantaneous (mt) sample mass. These data can be
obtained from each thermogravimetric experiment and defined by Equation (5):

α =
m0 −mt

m0 −m f
. (5)

For non-isothermal experiments, at a constant heating rate (β = dT/dt), Equation (3) can be
expressed as a function of temperature at a constant heating rate:

dα
dT

= k · f (α) ·
1
β

. (6)

The experimental conditions and reaction stage are used to study the influence of the reaction
model. However, as it is considered a first order reaction, this function can be expressed as (1 −
α) [46,49]. After this consideration, Equation (6) can be simplified as:

dα
(1− α)

=
A
β
· exp

(
−E
RT

)
· dT. (7)

The left side of Equation (7) is a function of the conversion rate and the right side is a function of
the temperature. By integrating both sides of Equation (7), Equation (8) is obtained:

α∫
0

dα
(1− α)

=
A
β
·

T∫
T0

exp
(
−E
RT

)
· dT. (8)

Equation (8) has no exact solution and there are two main mathematical approaches to solve
Equation (8) and obtain the kinetics data from the thermogravimetric analysis: 1) model-free methods
and 2) model-based methods [36]. The Coats–Redfern method, from the model-based method category,
has been frequently used and is considered appropriate for the calculation of the frequency factor,
apparent reaction order, and activation energy [15,33,36,50,51]. Therefore, the Coats–Redfern method
is the model applied in this work. The model uses the asymptotic series expansion for approximating
the exponential integral in Equation (8) [52]. According to this model, the kinetic parameters can be
determined by Equation (9):

ln
[
−

ln(1− α)
T2

]
= ln

(
AR
βE
·

(
1−

2RT
E

))
−

( E
RT

)
. (9)
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The term 2RT/E can be considered much lower than one and, therefore, it can be neglected. With
this assumption, Equation (9) can be expressed as:

ln
[
−

ln(1− α)
T2

]
= ln

(
AR
βE

)
−

( E
RT

)
. (10)

According to Equation (10), a plot of the term in the left side versus 1/T corresponds to a straight
line with a slope −E/R and an intercept of ln (AR/βE), from which the values of E and A can be obtained.
This method can be applied to the second stage (between Tin and the temperature between the 2nd
and 3rd peak), where the release and combustion of volatile matter occurs, to the third stage (the
temperature between the 2nd and 3rd peak and Tb), which is the char combustion and overall range
(between Tin and Tb).

3. Results and Discussion

3.1. Combustion Analysis

The experiments using TGA, as mentioned before, were performed with different heating and air
flow rates to study their influence on the thermal decomposition as a function of different particle sizes.
The next sections will present the results.

3.1.1. Influence of the Heating Rate

One of the significant factors in the thermal decomposition of pine wood particles is the heating
rate. In this way, to analyze its effect Figure 3a–c presents the variation in mass loss during combustion
in a thermogravimetric (TG) curve (dashed lines) and shows the heat flow (continuous lines) during
the experiment for the three pine wood particle sizes examined. The first derivative of the TG
curve—called a derivative thermogravimetric (DTG) curve—showing the rate of change in mass
is also presented in Figure 3d–f. Based on the TG, DTG, and heat flow curves, the characteristic
temperatures and characteristic parameters of the combustion process for each particle size under
all heating rates were determined. All these parameters are presented in Tables 2 and 3. These data
include the most relevant variables that identify the various transitions occurring during the couplet
combustion of biomass.

The dashed lines in Figure 3a–c allow the identification of three different stages of biomass
combustion: moisture evaporation (drying), devolatilization, and char combustion. It is possible to
observe that the heating rate affects the behavior of the weight loss curves. The figures also include
a horizontal dashed line at the moisture content of the samples (≈7%). As can be observed in Figure 3d–f,
the thermal decomposition for all the particle sizes examined starts at approximately 260 ◦C for lower
heating rates and 211 ◦C for higher heating rates. Therefore, as the heating rate increases, the initial
decomposition temperature decreases. This is because, at low heating rates (<10 ◦C/min), the heat
release took place at a slower rate and allowed enough time for water to be removed completely from
the sample.
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Figure 3. Thermogravimetric (TG) and heat flow ((a), (b), and (c)) and DTG ((d), (e), and (f)) profiles
for the different particle sizes under different heating rates.

Table 2. Characteristic temperatures and burnout time for all particle sizes under different heating rates.

Particle
Size (mm)

Heating Rate
(◦C/min) Tin (◦C) Tig (◦C) Tmax,2

(◦C)
Tmax,3
(◦C) Tb (◦C) tb (min)

<0.063

5 252 270 319 443 458 87
10 239 280 328 451 456 44
20 231 295 347 449 481 23
50 211 304 365 462 529 11

0.125–0.25

5 260 280 321 456 473 90
10 250 288 332 472 492 47
20 239 300 350 484 523 25
50 233 314 371 503 559 11

100 206 329 386 516 600 6
243 204 330 401 553 688 4

>1

5 261 283 321 458 475 91
10 251 290 330 466 483 47
20 244 301 350 478 523 25
50 232 318 369 442 533 11
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Table 3. Characteristic parameters obtained from the DTG and heat flow curves.

Particle Size
(mm)

Heating Rate
(◦C/min)

Maximum Combustion
Rate (%/min)

Maximum Heat
Released at DSC Total Heat

Released (µJ)
2nd peak 3rd peak W/g ◦C

<0.063

5 −6.40 −2.12 9.63 327 211
10 −13.34 −27.06 151.26 456 225
20 −22.64 −30.07 198.45 465 388
50 −53.53 −26.57 29.99 488 543

0.125–0.25

5 −6.30 −2.09 11.28 333 118
10 −12.07 −4.01 53.63 476 230
20 −23.07 −7.38 83.87 495 235
50 −53.09 −14.43 247.21 528 418

100 −103.10 −22.75 380.65 540 641
243 −213.45 −25.10 772.39 658 2618

>1

5 −6.38 −2.45 10.34 461 53.2
10 −12.87 −17.05 91.79 473 449
20 −23.88 −20.42 150.39 480 367
50 −60.21 −23.63 240.11 522 499

However, at higher heating rates (>20 ◦C/min), the initial decomposition starts at a lower
temperature, as increasing the heating there is not enough time for the moisture to be fully
removed from the sample and, therefore, the drying phase is controlled by the water diffusion
inside the biomass structure. This was indicated by the mass loss of the sample that is below 7% after
the initial decomposition.

A major mass loss follows, where the main devolatilization occurs with a maximum combustion
rate between 319 to 365 ◦C for particles smaller than 0.063 mm—321 to 401 ◦C for particles between
0.125 and 0.25 mm and from 321 to 369 ◦C for particles larger than 1 mm. In this way, as the particle size
and heating rate increase, the maximum combustion rate increases, although the effect of the heating
rate is stronger. This means that the residence time of the sample in the furnace decreases with an
increasing heating rate.

Furthermore, during the thermal decomposition, as can be observed in the heat flow curves, there
are two different exothermic reaction regions. The first region is associated with the combustion of
the light volatile matter which provides the reactivity of biomass fuels. The second region is associated
with the char combustion [33]. Consequently, heat, in general, is released between approximately
300 ◦C and 500 ◦C, reaching the highest value close to 450 ◦C for all pine wood particles analyzed
at lower heating rates (5, 10, and 20 ◦C/min). However, for higher heating rates, as in the case of
243 ◦C/min, the temperature range is wider and the highest value is close to 680 ◦C. Therefore, according
to the DTG curves, as presented in Figure 3d–f, when the heating rate was increased, the thermal
decomposition peaks were shifted to a higher magnitude. According to Kok and Özgür [24], the reason
for these shifts is due to the different heat transfer and kinetic rates delaying the sample decomposition.
Additionally, as the thickness of the gas cushion around the particle and the intensity of degassing
increase, a temporary slow-down in the intensity of convective heat transfer to the interior of the particle
occurs [53]. Another effect is that heat transfer is not as effective and efficient at slower heating rates and,
therefore, the minimum heat required for particles’ cracking is reached later at higher temperatures [21].
Conversely, at lower heating rates, the heating of pine wood samples occurs more slowly, leading to
a better heat transfer to the particles and, consequently, a more effective fuel cracking. The heat flow
was higher at higher heating rates and the temperatures at which the maximum heat flow occurred
corresponded to the char combustion stage where the volatiles were almost completely oxidized.

The peak temperature in the DTG curves is a measure of the reactivity of the char. As the peak
temperature decreases, the easier the ignition of the pine wood particles will be. The combustion
reactivity regions are proportional to the height of the DTG peak and, therefore, at higher heating rates
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a more reactive combustion takes place. The reactivity is due to the combustion of the volatiles and
the energy released is mainly due to the combustion of the fixed carbon, as can be concluded from
the third peak of the heat flow curves for all the pine wood particles examined.

However, when it is applied higher heating rates on large particles, as can be observed in
Figure 3b,c, only one peak is visible. In such conditions, the heat released was very high, the material
reached high temperatures in less time, and the thermal decomposition started earlier than at lower
heating rates (see Table 2). For instance, at 243 ◦C/min, the time to complete the combustion was
only about 4 minutes. It is also observed that, as the heating rate increases, there is a shift to higher
ignition temperatures. This increase in temperature is independent of the particle size, which suggests
that the temperature gradients inside the sample push the initiation of the decomposition to higher
temperatures [54]. This is a result of the decrease in the heat transfer efficiency in the sample [20,54].
Furthermore, the combustion rate and temperatures of the second and third peak in the DTG curves
increase significantly with the heating rate. Consequently, the maximum combustion rate increases as
the heating rate increases and, therefore, the heat released during the experiments also increases. It is
important to note that similar results were obtained for all particle sizes.

Also, increasing the heating rate increases the residue at the end of the experiments, as revealed
by Mani et al. [21]. However, as presented in Figure 4, this feature was not observed in the present
work, which shows that there is no consistent trend as far as the heating rate is concerned.
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Figure 4. Remaining mass at different heating rates for particles between 0.125 and 0.25 mm.

This result may be influenced by the uncertainty either from the instruments or the random
selection of the sample from the batch of pine wood samples. To verify the randomness hypothesis,
three tests with the same conditions at 10 ◦C/min, 100 mL/min, and the middle particle size range (0.125
and 0.25 mm) were conducted. Figure 5 presents the results of the three different experiments and
the different values of the remaining mass that were obtained. This observation approves the previous
hypothesis as the effect of the randomness in the sample.
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Figure 5. The remaining mass of the three tests in the same condition with the middle particle size.

Following the procedure previously described, the ignition (D) and combustion (S) indexes are
presented in Figure 6 for different heating rates. The results show that the D index is correlated with
the Tig. Higher ignition indexes were observed when a better ignition performance was obtained.
The S value also follows a similar trend, where the value increases with the increasing heating rate.
Furthermore, as reported by Vamvuka et al. [20], there was no significant effect of particle size on
the ignition and combustion indexes.
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Figure 6. Combustion indexes of the pine wood particles at different heating rates.

3.1.2. Influence of the Air Flow Rate

Figure 7 presents the TG, DTG, and heat flow curves for the three pine wood particle sizes at four
different air flow rates: 10, 50, 100, and 150 mL/min. Based on the TG and DTG curves, the characteristic
temperatures and characteristic parameters of the combustion process for each particle size under all
air flow rates were determined. All these parameters are presented in Tables 4 and 5.
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Table 4. Characteristic temperatures for all the particle sizes under different air flow rates.

Particle
Size (mm)

Air Flow rRate
(mL/min) Tin (◦C) Tig (◦C) Tmax,2

(◦C)
Tmax,3
(◦C) Tb (◦C) tb (min)

<0.063

10 242 282 332 460 476 45
50 242 283 331 461 474 46

100 239 280 328 451 456 44
150 242 282 332 460 473 45

0.125–0.25

10 250 293 334 474 499 47
50 248 290 334 471 498 47

100 250 290 332 472 492 47
150 250 291 334 476 497 47

>1

10 251 292 334 456 498 49
50 251 290 335 476 495 47

100 251 290 330 466 483 47
150 251 290 334 475 485 47
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Table 5. Characteristic parameters obtained from the DTG and heat flow curves.

Particle Size
(mm)

Air Flow Rate
(mL/min)

Maximum Combustion
Rate (%/min)

Maximum Heat
Released at DSC Total Heat

Released (µJ)
2nd Peak 3rd Peak W/g ◦C

<0.063

10 −12.58 −5.13 47.31 463 210
50 −13.39 −5.89 51.49 463 225

100 −13.34 −27.06 151.26 456 388
150 −12.63 −5.79 46.09 461 175

0.125–0.25

10 −12.30 −3.95 34.14 478 177
50 −13.73 −4.39 42.24 479 232

100 −12.07 −4.01 53.63 476 230
150 −12.27 −4.15 36.70 480 179

>1

10 −12.61 −21.46 91.86 461 216
50 −12.02 −5.63 57.06 479 247

100 −12.87 −17.05 91.79 473 449
150 −11.86 −16.49 93.96 478 163

The dashed lines in Figure 7a present the mass loss for particles smaller than 0.063 mm. It is
possible to see that the mass loss at different air flow rates has similar behavior. However, after
the devolatilization stage, there are differences between the mass loss behavior. In this way, at an air
flow rate of 50 and 100 mL/min, the mass loss occurred earlier when compared with other air flow rates.
These differences can be seen in the DTG profile in Figure 7d–f in the second peak for the 100 mL/min
air flow rate. Therefore, at 100 mL/min during the char combustion, the mass loss increased and,
consequently, in the heat flow curve (continuous lines of Figure 7) it is possible to see that more heat
was released at 100 mL/min during the devolatilization and char combustion stages.

For particles between 0.125 and 0.25 mm, similar results were obtained (Figure 7b,e). However,
during char combustion, the mass loss is independent of the air flow rate and the heat flow decreases
significantly when compared with the results presented previously for 100 mL/min. Furthermore,
as can be seen in Figure 7b, at 50 mL/min the heat flow was higher, which means that increasing
the particle size caused the air flow rate necessary to release more energy to be lower.

Regarding the experimental results with particles larger than 1 mm, in Figure 7c,e at 10 and
100 mL/min, the mass loss during the drying process occurred earlier and during devolatilization and
char combustion the mass loss was slower, at 150 mL/min. Figure 7f, at the second peak, presents
a similar trend, as the results were obtained with particles smaller than 0.063 mm. However, the second
peak occurred at 100 mL/min and also at 10 mL/min and 150 mL/min. Consequently, the heat flow
curve (Figure 7c) displays a higher value at the second peak for 10, 100, and 150 mL/min.

It should be noted that although the maximum heat flow peak is higher in the case of particles
smaller than 0.063 mm at 100 mL/min, more heat was released in the experiments with particles greater
than 1 mm for various airflows rate in this study, except at 50 mL/min. From these results, it can be
said that there is a negligible influence of the airflow rate on the thermal decomposition of the biomass
particles. The main devolatilization occurs at a maximum combustion rate between 328 to 332 ◦C for
particles smaller than 0.063 mm, 332 to 334 ◦C for particles between 0.125 and 0.25 mm, and 330 to
335 ◦C for particles larger than 1 mm. In this value, as the particle size and airflow rates increase,
the maximum combustion rate increases slightly. This may result from the surface area of the particle,
where an increase in the surface area of the particles minimizes the mass and heat transfer limitations
and improves the conversion efficiency [55].

However, as presents in Table 5, the heat released was in general higher when the air flow rate of
100 mL/min was applied to the different particle sizes. Consequently, with this air flow rate the oxidation
took place close to the stoichiometric conditions and, with the other values, the combustion happened
in an excess of comburent in the case of 150 mL/min and with a lack of stoichiometric comburent in
the remaining cases.
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Regarding the ignition and combustion indexes, Figure 8 presents their variation with different
air flow rates used in the experiments with distinct particle sizes. The results show that there is no
consistent trend regarding the effect of increasing and/or decreasing the air flow rate on the indexes.
However, an interesting trend was observed when decreasing the particle size, as higher values of
the combustion indexes were obtained for high air flow rates. For instance, for particles smaller than
0.063 mm the ignition and combustion indexes were higher for 100 mL/min, while for particles larger
than 1 mm the highest indexes were observed for 10 mL/min.Energies 2020, 13, x FOR PEER REVIEW  14 of 22 
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3.2. Kinetics Analysis

A kinetic analysis of the biomass combustion using the TGA for different heating and air flow
rates to study their influence on the thermal decomposition of different particle sizes was performed.
The kinetic parameters of the second stage and third stage of the biomass combustion process were
determined based on the first order Coats–Redfern method. Figure 9 presents the application of
the method followed to determine the kinetic parameters. This method can be applied separately
to the second or the third stages (defined by the first temperature and second temperature peaks,
respectively) or to the overall temperature range. The second stage data are highlighted by a dashed
line, the third stage data by a dashed dot line, and the global combustion data by a continuous line.
A linear regression curve was determined for each stage to obtain the first-order equation that will allow
determining the kinetic parameters. In the following sub-sections, the kinetic results are presented for
different operating conditions.
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3.2.1. Influence of the Heating Rate

The dependence of the activation energy on the heating rate was significant, and it is illustrated
in Figure 10 for all particle sizes. As can be observed in Figure 10, the activation energy value in
the second stage decreases with increasing the heating rate. This means that the reaction occurs faster
if we increase the heating rate because, as the heating rate increases, the heat transfer inside the particle
is enhanced, causing the reactivity of the biomass and its constituents to increase [36]. Regarding
the third combustion stage, higher activation energy values than in the second stage were obtained,
which indicates a slower reactivity. Similar results were obtained by Garcia-Maraver et al. [36] and
Álvarez et al. [33]. This condition was observed for all different particle sizes. However, for this last
combustion stage, there was no general trend of the heating rate effect. For instance, for particles
smaller than 0.063 mm the activation energy value increased with increasing the heating rate, except for
a heating rate of 10 ◦C/min, while for particles larger than 1 mm the opposite effect was obtained. On
the other hand, for the intermediate particle size, the activation energy value fluctuated substantially
when the heating rate was increased.
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Furthermore, Table 6 presents the temperature range, pre-exponential factor, and correlation
coefficient obtained using the Coats–Redfern method for each combustion stage, including the overall
one. It can be seen from Table 6 that the correlation coefficient is very high for all the heating rates
evaluated, so it shows that the first order kinetic model revealed a good data fit for all the fuel samples
(R2 > 0.90) and, therefore, can be considered feasible. However, for the overall process the correlation
coefficient is not as good (R2 > 0.80).
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Table 6. Temperature intervals, correlation coefficients, and pre-exponential factors for each stage of
combustion for all particles studied under different heating rates.

Particle
Size
(mm)

Heating
Rate

(◦C/min)

2nd Stage 3rd Stage Overall

T (◦C) A (min−1) R2 T (◦C) A (min−1) R2 T (◦C) A (min−1) R2

<0.063

5 252–370 8.42 × 1011 0.94 370–474 3.66 × 1014 0.92 252–474 6.43 × 105 0.82
10 238–370 2.41 × 1011 0.95 370–475 5.06 × 1015 0.90 238–475 1.93 × 106 0.85
20 230–390 1.08 × 1010 0.99 390–520 1.77 × 1014 0.95 230–520 7.13 × 105 0.94
50 200–410 2.21 × 108 0.97 410–530 1.10 × 1014 0.96 200–530 5.20 × 105 0.95

0.125–0.25

5 260–370 9.63 × 1012 0.94 370–491 1.29 × 1012 0.92 260–491 3.81 × 105 0.81
10 250–380 6.88 × 1011 0.95 380–502 2.24 × 1012 0.93 250–502 4.20 × 105 0.84
20 235–390 4.92 × 1010 0.97 390–530 1.05 × 1011 0.94 235–530 3.67 × 105 0.88
50 220–415 2.94 × 109 0.97 415–568 7.24 × 1010 0.94 220–568 3.52 × 105 0.90
100 190–430 1.33 × 108 0.99 430–602 3.34 × 109 0.94 190–602 2.17 × 105 0.94
243 219–510 3.45 × 107 0.99 510–683 2.01 × 109 0.94 220–683 3.40 × 104 0.93

>1

5 260–372 6.90 × 1012 0.94 372–488 1.39 × 1013 0.91 260–488 4.02 × 105 0.80
10 248–375 7.12 × 1011 0.96 375–508 6.98 × 1012 0.93 248–508 6.08 × 105 0.85
20 242–395 1.10 × 1011 0.97 395–544 1.71 × 1012 0.95 242–544 5.92 × 105 0.89
50 230–410 1.53 × 1010 0.98 410–569 2.94 × 1011 0.93 230–569 9.09 × 105 0.92

Regarding the pre-exponential factor for both the second and third combustion stages, when
the heating rate was increased this value decreased. As with the previous observations for the activation
energy values in the different combustion stages, higher values of the pre-exponential factor in the third
stage were recorded.

3.2.2. Influence of the Air Flow Rate

The influence of four different air flow rates on the activation energy for three different particle
sizes is presented in Figure 11. Table 7, as in the previous section, also presents the temperature range,
pre-exponential factor, and correlation coefficient obtained using the Coats–Redfern method.Energies 2020, 13, x FOR PEER REVIEW  17 of 22 
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Figure 11. Estimated activation energy as a function of the air flow rate for the three different
particle sizes.
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Table 7. Temperature intervals, correlation coefficients, and pre-exponential factors for each stage of
combustion for all particles studied under different air flow rates.

Particle
Size
(mm)

Air Flow
Rate

(mL/min)

2nd Stage 3rd Stage Overall

T (◦C) A (min−1) R2 T (◦C) A (min−1) R2 T (◦C) A (min−1) R2

<0.063

10 242–380 1.04 × 1011 0.95 380–476 6.46 × 1014 0.93 242–476 9.45 × 105 0.87
50 242–380 1.13 × 1011 0.96 380–474 1.16 × 1015 0.93 242–474 1.02 × 106 0.86
100 239–370 2.72 × 1011 0.96 370–456 7.95 × 1014 0.90 239–456 1.71 × 106 0.85
150 242–380 1.15 × 1011 0.95 380–473 1.61 × 1015 0.93 242–473 1.05 × 106 0.86

0.125–0.25

10 250–380 2.71 × 1010 0.96 380–499 2.63 × 1010 0.92 250–499 2.84 × 104 0.85
50 248–380 6.52 × 1011 0.96 380–498 8.82 × 1011 0.92 248–498 4.23 × 105 0.85
100 250–380 6.88 × 1011 0.95 380–492 2.96 × 1012 0.93 250–492 4.71 × 105 0.84
150 250–380 7.38 × 1011 0.96 380–497 1.04 × 1012 0.92 250–497 4.17 × 105 0.85

>1

10 251–380 9.90 × 1011 0.96 380–498 4.10 × 1012 0.94 251–498 5.57 × 105 0.86
50 251–380 9.51 × 1011 0.96 380–495 1.86 × 1012 0.92 251–495 4.84 × 105 0.85
100 251–380 9.83 × 1011 0.96 380–483 3.24 × 1013 0.93 251–483 8.11 × 105 0.85
150 251–380 8.77 × 1011 0.96 380–485 1.64 × 1013 0.92 251–485 6.33 × 105 0.84

In general, for all the particle sizes and combustion stages, the effect of different air flow rates on
the activation energy values was marginal and there was no direct relationship between the activation
energy and air flow rate. The value of activation energy in the second stage and overall combustion
was not too different. In the third stage for the different particle sizes, the activation energy did not
show a clear trend. In addition, only the smallest of the particles showed an activation energy that
was significantly different from the other sizes for the second and third stages, although the influence
on the overall value was negligible. From the data, it is observed that in the second stage (early
step of devolatilization at a lower temperature), the smaller particles were the most reactive, while
the large ones exhibited the highest activation energy. As the presence of lignin is associated with lower
decomposition rates, it was expected that the fine grinding of biomass may break the larger molecules
of lignin and so contribute to a higher reactivity [56]. Harun et al. [57] stated that less collision occurs
by increasing the particle sizes and therefore a slower reaction will take place, thus causing the thermal
degradation characteristics and kinetic parameters to decrease, regardless of the reaction zones.

As can be seen in Table 7, similar trends were obtained for the pre-exponential factor, except for
particles with a size between 0.125 and 0.25 mm in the transition from 10 mL/min to 50 mL/min, where
there was a change in the order of magnitude of this parameter. Furthermore, for the third combustion
stage in all particles studied, there were some variations in the pre-exponential factor when the air
flow rate increased, but there was no direct influence of the air flow rate on the pre-exponential factor.

4. Conclusions

This paper presented an analysis of the effect of different operating conditions on the thermal
decomposition in the air atmosphere of pine wood particles complemented by kinetic analysis. In this
way, a widespread method such as TGA was performed to investigate and understand the transport
phenomena at the particle level with different operating conditions. In this research work:

• The thermal decomposition was analyzed by changing the particle size (from 63 µm up to more
than 1 mm), air flow rate (10, 50, 100, and 150 mL/min), and heating rate (5, 10, 20, 50, 100, and
243 ◦C/min);

• The biomass used in the experiments was derived from certified commercial wood pellets that
were milled into powdered samples;

• The kinetics was evaluated through the Coats–Redfern method and considering the first-order
reaction. This method was applied to the second stage (devolatilization), the third stage (char
combustion), and to the overall combustion stage.

The results and key findings led to the following conclusions:
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• With TGA, it was possible to identify three different phases that occur during the combustion of
the particles. These phases are related to the drying, devolatilization, and char combustion steps.

• The TG and DTG curves presented different mass loss characteristics that were influenced
mainly as the heating rate increased and they led to different kinetic parameters. A comparison
between the different heating rates presented a small displacement of the DTG profiles to higher
temperatures. For instance, the thermal decomposition for all particle sizes examined started at
approximately 260 ◦C for lower heating rates and at 211 ◦C for higher heating rates.

• It was possible to observe that the duration of devolatilization was shorter when compared to
drying and char combustion and decreased with an increasing heating rate. It was also observed
that the particle size influenced the heat flow and, consequently, the energy released during
the experiments. For instance, at 243 ◦C/min, the time to complete the combustion was only about
4 minutes, while around 90 minutes were necessary at 5 ◦C/min. Furthermore, the heat released in
the experiment at 243 ◦C/min was 22 times higher than the experiment with the lower heating rate.

• The effect of the heating rate was more noticeable when compared to the effect of the air flow
rate. The weight loss curve for the three particle sizes had almost the same behavior except
during the drying and char combustion stage; there were slight differences for different air flow
rates. In this way, with middle air flow rates—50 and 100 mL/min—the mass loss occurred earlier.
However, during the char combustion, the mass loss increased and, consequently, in the heat flow
curve it was possible to see that more heat was released at the 100 mL/min air flow rate during
the devolatilization and char combustion stage.

• Regarding the kinetic study for various air flow and heating rates with different particle sizes,
the highest activation energy was mostly obtained during the third stage (~131–229 kJ/mol).
For the second stage and for all particles analyzed, through increasing the heating rate lower
values were obtained. This means that the reaction occurred faster if we increased the heating
rate because, as the heating rate increased, the heat transfer inside the particle was enhanced.
Therefore, the heating rate has a significant effect on the activation energy and the pre-exponential
factor values.

• For the experiments with different air flow rates, no significant effect of different air flow rates
on the reactivity for all particles were observed. For instance, in the second stage a maximum
difference of 3 kJ/mol was verified when compared the effect of the air flow rate on samples with
the same size. However, in the third stage higher variations were identified (~15kJ/mol).
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Nomenclature

A pre-exponential factor, min−1

D ignition index, %/min3

E activation energy, kJ/mol
k rate of the chemical reaction, min−1

m mass, mg
R universal gas contant, kJ/(mol.K)
S combustion index, %/(min2

·K3)
t time, min−1

T temperature, ◦C

Greek symbols
α conversion rate, -
β heating rate, ◦C/min

Subscripts and superscripts
0 initial
2 second peak
3 third peak
a air
avg average
b burnout
f final
ig ignition
in initial decomposition
max maximum
t time
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