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Abstract: A new generalized Morse potential function with an additional parameter m is proposed
to calculate the cohesive energy of nanoparticles. The calculations showed that a generalized
Morse potential function using different values for the m and α parameters can be used to predict
experimental values for the cohesive energy of nanoparticles. Moreover, the enlargement of the
attractive force in the generalized potential function plays an important role in describing the stability
of the nanoparticles rather than the softening of the repulsive interaction in the cases when m > 1.
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1. Introduction

Cohesive energy is an important quantity that is used to drive almost all the thermodynamical
properties of materials [1] and is defined as the energy needed to dissociate a solid to its neutral
atomic components [2]. Cohesive energy can be calculated by summing the total potential energies
of all atoms in the solid materials. Many theoretical models were developed to investigate
the size-dependent cohesive energy such as bond energy model [3,4], surface-area-difference
model [1], embedded-atom-method potential [5], thermodynamic model [6,7], and a nonlinear,
lattice type-sensitive model [8,9]. Other models were also proposed to calculate the cohesive energy
based on the potential energy functions between two atoms inside metallic nanoparticles such as the
Lennard–Jones (or L–J (12-6)) potential function [10,11], the Mie-type (m, n) potential function [12],
and the Morse potential function [13]. Predicting cohesive energies and stabilities in solid particles can
be enhanced by re-parameterization (the bond order parameters) of the analytic potential functions
such as: A force field for zeolitic imidazolate framework-8 (ZIF-8) with structural flexibility [14],
parameterized analytical bond order potential for ternary the Cd–Zn–Te systems [15].

Potential energy functions contain a certain number of parameters. For example, the Mie-type
potential function contains two parameters (m, n) (where m > n) [16]. The Morse potential function
contains one parameter, α [17]. These parameters determine the strength and the range of the interaction
terms in the potential functions. The L–J potential function consists of two terms: The first term
represents Pauli’s repulsion, whereas the second term represents the attractive dipole [2].

Qi et al. [10] found a disagreement between the calculated cohesive energies arising from the
L–J (12-6) potential function and the experimental values of molybdenum (Mo) and tungsten (W)
nanoparticles in a face-centered cubic structure. However, the calculated cohesive energies using the
L–J (12-6) potential function agreed with the experimental values of Mo and W nanoparticles in a regular
octahedron structure [11]. Moreover, there was an agreement between the experimental values for the
cohesive energy of Mo and W nanoparticles and the calculated cohesive energy using the Mie-type
(m, n) potential function (with m = 6 and n = 5) [12] and the Morse potential function (with α ≈ 3) [13].
The stability of nanoparticles using the Mie-type potential function (6, 5) and the Morse potential
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function (α ≈ 3) was found to be a result of the softening in the repulsive interaction [12,13] in the
potential functions. However, the interaction terms in the Mie-type potential function (6, 5) and the
Morse potential function (α ≈ 3) do not represent the Pauli repulsion and attractive dipole terms.

A modified Morse/long-range potential function was proposed to analyze the spectroscopic data
of diatomic molecules N2 [18] and Co2-H2 complexes [19]. The aim of the present work was to propose
a new generalized Morse potential function that can predict the experimental values of cohesive energy
of nanoparticles. The proposed potential function should contain a term that represents the Pauli
repulsion interaction [2].

The paper is organized as follows. In Section 2 we describe the generalized Morse potential
theory. In Section 3, we describe a model to calculate the cohesive energy for nanoparticles based
on the generalized Morse potential. Finally, in Section 4, we discuss the numerical results with
present conclusions.

2. Theory

The potential energy Ui j that describes the bond between two atoms i and j in the nanoparticle
separated by a distance ri j has a complicated form which can be written in series form as:

Ui j
(
ri j

)
= Ui j(r0) +

dUi j

dri j

∣∣∣∣∣∣
r0

(
ri j − r0

)
+

d2Ui j

dri j2

∣∣∣∣∣∣
r0

(
ri j − r0

)2
+

d3Ui j

dri j3

∣∣∣∣∣∣
r0

(
ri j − r0

)3
+ · · · , (1)

where r0 is the distance between the nearest two atoms in equilibrium case. The potential energy that
describes the bond between the two atoms should satisfy the following requirements: (1) The potential
should have one minimum point −D at ri j = r0, (2) it should asymptotically go to zero as ri j →∞ ,
and (3) it should become infinite at ri j = 0.

A well-known potential that satisfies the requirements is the Morse potential [17]:

UMij = D
(
e−2α(

ri j
r0
−1)
− 2e−α(

ri j
r0
−1)

)
, (2)

where α is a unitless parameter depending on type and structure of metallic nanoparticles [20].
Lim [21,22] found that the parameter a can be expressed in terms of the Lennard–Jones parameters.

The Morse potential function contains two terms: The first term represents the attractive
short-range interaction, whereas the second term represents the repulsive long-range interaction.
However, the Morse potential function can be written using a summation form as follows:

UMij = D
2∑

k=1

(−1)k(2− (k− 1))e−kα(
ri j
r0
−1). (3)

The Morse potential function is the simplest form that was proposed to describe the interaction
potential between two atoms in metallic nanoparticles [13]. The form of the interaction potential function
between two atoms in metallic nanoparticles is more complex than the Morse potential, the Morse
potential was formulated by considering only the first three terms of the series in Equation (1) [17].
However, if more terms are considered, then additional exponential terms of higher order emerge.

In this current work, a new generalized Morse potential function was proposed that includes
more than two interaction terms. The additional terms are controlled by a new unitless parameter m
(= 1, 2, 3, · · · ) as follows:

UGMij =
D
m

∑2m

k=1
(−1)k(2m− (k− 1))e−kα(

ri j
r0
−1). (4)

For example, if m = 3, then the generalized Morse potential function will contain six terms.
If m = 1, then the generalized Morse potential function becomes the ordinary Morse potential function.
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The curves in Figure 1 represent the generalized Morse potential as a function of reduced separated
distance between two atoms for a fixed value of α and different values of m. All potential curves in
Figure 1 satisfy all requirements of the potential energy between the two nearest atoms in a nanoparticle.
As seen in Figure 1, when m > 1 the repulsive wall becomes stiffer with little change in the range of the
attractive interaction. Moreover, the repulsive walls of the potential curves converge as m and they
become large, as seen, again, in Figure 1.
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Figure 1. Generalized Morse potential curves for a fixed value of α = 3 and different values of
m: 1 (black solid line), 2 (blue dashed line), 3 (green dashed-dotted line), 4 (red dotted line), and 5
(purple dashed-dotted-dotted line).

3. The Model

The cohesive energy of the nanoparticles is obtained by the summation of the total energy of n
atoms in a nanoparticle:

En =
nD
2m

∑2m

k=1
(−1)k(2m− (k− 1))Ak(r∗), (5)

where
Ak(r∗) =

1
n

∑n

i=1

∑n

j = 1
i , j

e−αk(ai jr∗−1), (6)

ai j = ri j/r (r is the nearest distance between two atoms) and r∗ = r/r0 is the reduced nearest distance
between two atoms. Moreover, Ak(r∗)’s (k = 1, 2, · · · , 2m) in Equation (6) represents the interaction
terms of the potential. The range of the interaction terms varies from the shortest range (k = 2m) to the
longest range (k = 1).

The cohesive energy of the nanoparticle is calculated in an equilibrium configuration for n atoms.
The equilibrium configuration is obtained by minimizing the total energy of n atoms in the nanoparticle

with respect to r∗
(

dEn
dr∗

∣∣∣∣
r∗=r∗0

= 0
)
, where r∗0 is the equilibrium reduced nearest distance between two

atoms, which is obtained numerically.
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The cohesive energy per atom in the equilibrium configuration is:

Ea =
D

2m

2m∑
k=1

(−1)k(2m− (k− 1))Ak
(
r∗0

)
. (7)

The relative cohesive energy of the nanoparticle is the ratio between the cohesive energy per atom
and the cohesive energy of the corresponding bulk material E0:

Ea

E0
=

P0

2m

2m∑
k=1

(−1)k(2m− (k− 1))Ak
(
r∗0

)
, (8)

where P0 = 2m/[
∑2m

k=1 (−1)k(2m− (k− 1))A′k(r∗0)] and A′k
(
r∗0

)
’s are the corresponding interaction

terms of bulk metals (as n→∞ ). The values of interaction terms A′k
(
r∗0

)
’s for given m vary with the α

parameter, as seen in Figures 2–4. The values of interaction terms A′k
(
r∗0

)
’s grow rapidly to infinity as

the value of α parameter decreases. Nevertheless, as this is not physically acceptable, a valid range
for the α parameter is defined, such that the values of A′k

(
r∗0

)
’s are finite. It was thus found that for

different cubic metallic structures, the valid range for the α parameter is approximately the same
when m = 1 [13]. Therefore, the values of the interaction terms A′k

(
r∗0

)
in Figures 2–4 are only for a

face-centered cubic metallic structure.
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Figure 2. The variation of A′k(r∗0) for a face-centered cubic metal with the α parameter for m = 2, where
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line represents A′2(r∗0), and the orange dotted line represents A′1(r∗0).
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Figure 3. The variation of A′k(r∗0) for a face-centered cubic metal with the α parameter for m = 3,
where the blue solid line represents A′6(r∗0), the black dashed line represents A′5(r∗0), the yellow
dotted line represents A′4(r∗0), the green long-dashed-dotted line represents A′3(r∗0), the orange
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4. Results and Discussion

The relative cohesive energy of metallic nanoparticles in a face-centered cubic structure as a
function of the number of atoms n was calculated by using the generalized Morse potential function
for different values of m and a fixed value of α: α = 2.4 in Figure 5 and α = 2 in Figure 6. Additionally,
the calculated relative cohesive energy of the nanoparticles with a face-centered cubic structure is
comparable to the experimental values of the relative cohesive energy of Mo (−410 kJ/mol for n = 2000
atoms [23] and−598 kJ/mol for bulk [24]) and W nanoparticles (−619 kJ/mol for n = 7000 atoms [23] and
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−824 kJ/mol for bulk [24]). The calculations show the size dependence of the relative cohesive energy
of the metallic nanoparticles. The values of relative cohesive energy were obtained from Figures 5
and 6 for n = 2000 and 7000 atoms and summarized in Table 1. As seen in Table 1, the calculated
values of the relative cohesive energy increased with the parameter m, due to the repulsive interaction
becoming stiffer with m (as seen in Figure 1). The calculated relative cohesive energies agreed with
the experimental values for Mo nanoparticle when (α = 2.4, m = 2) and (α = 2, m = 4). On the other
hand, when (α = 2, m = 3) the calculated relative cohesive energy agreed with the experimental value
for W nanoparticles.
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Table 1. The relative cohesive energy of nanoparticles in a face-centered cubic structure includes
n = 2000 and 7000 atoms for different values of m and α.

m
Ea/E0

n = 2000 n = 7000

α = 2.4 α = 2 α = 2.4 α = 2

2 0.427 0.679 0.542 0.774
3 0.648 0.738 0.750 0.818
4 0.691 0.755 0.784 0.832
5 0.711 0.764 0.801 0.839

The potential function that is used to calculate the cohesive energy depends on two parameters,
m and α. Different values of the parameter m gave different forms of the potential functions (as seen in
Figure 1). Consequently, the value of the parameter α will depend on type, structure, and value of m.
The relative cohesive energies were calculated for a fixed value of m and different values of α: Figure 7
(for m = 2), Figure 8 (for m = 3), and Figure 9 (for m = 4). As seen in Figures 7–9, different values of
α and m for the potential function, as summarized in Figure 10, can be used to calculate the relative
cohesive energies that are in agreement with the experimental values of Mo and W nanoparticles.
The calculations show that the nanoparticles can be stable with a small value of m and a large value of
α (due to the softening of the repulsive force in the potential function [13]) or with a large value of m
and small value of α (due to the strong attractive force in the potential function, which is discussed
later in the article).Energies 2020, 13, x FOR PEER REVIEW 8 of 16 
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of ߙ) and Figure 12 (shows the relation between ݊ and ߙ for different values of ݉). Both figures 
show that the nanoparticles can be stabilized with a larger number of atoms having the same cohesive 

Figure 9. The variation of the relative cohesive energy of nanoparticles in a face-centered cubic
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1.95 (blue dashed line), and 1.85 (red dotted line). The experimental values [23,24] are denoted by dark
blue circles.
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Figure 10. The relation between the values of m and α used to calculate the relative cohesive energies in
agreement with the experimental values can be seen: (a) For the Mo nanoparticles (0.686 for n = 2000
atoms [23,24]), as represented by the blue dashed line and triangles, and (b) for the W nanoparticles
(0.751 for n = 7000 atoms [23,24]), as represented by the black solid line and squares for a face-centered
cubic structure. The values for m = 1 were obtained from previous works [13].

From another perspective, it was also found that the nanoparticles can be stable with a different
number of atoms n with the same cohesive energy if the values of m and α of the potential function
are changed, as seen in Figure 11 (shows the relation between n and m for different values of α) and
Figure 12 (shows the relation between n and α for different values of m). Both figures show that the
nanoparticles can be stabilized with a larger number of atoms having the same cohesive energy if
the value of m is increased and the value of α is decreased. This result confirms that the long-range
attractive force in the potential function plays an important role in the stability of the nanoparticles.

Energies 2020, 13, x FOR PEER REVIEW 10 of 16 

 

energy if the value of ݉ is increased and the value of ߙ is decreased. This result confirms that the 
long-range attractive force in the potential function plays an important role in the stability of the 
nanoparticles. 

 
Figure 11. The variation of ݉  with the number of atoms ݊  for nanoparticles, having relative 
cohesive energies of approximately 0.686, and different values of 3.1 :ߙ (black solid line and circles), 
2.1 (blue dashed line and squares), and 2.4 (red dotted line and triangles). 

s  

Figure 12. The variation of ߙ with the number of atoms ݊ for nanoparticles, having relative cohesive 
energies of approximately 0.686, and for different values of ݉: 4 (black solid line and circles), 3 (blue 
dashed line and squares), and 2 (red dotted line and triangles). 

The stability of nanoparticles is a result of the balance between repulsive interactions and 
attractive interactions. It was found that the stability of nanoparticles using the Morse potential 
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Figure 11. The variation of m with the number of atoms n for nanoparticles, having relative
cohesive energies of approximately 0.686, and different values of α : 3.1 (black solid line and circles),
2.1 (blue dashed line and squares), and 2.4 (red dotted line and triangles).
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Figure 12. The variation of α with the number of atoms n for nanoparticles, having relative cohesive
energies of approximately 0.686, and for different values of m: 4 (black solid line and circles),
3 (blue dashed line and squares), and 2 (red dotted line and triangles).

The stability of nanoparticles is a result of the balance between repulsive interactions and attractive
interactions. It was found that the stability of nanoparticles using the Morse potential function (m = 1)
is due to the soft repulsive force and weak attractive force [13]. This type of potential does not allow
more bonds to form for each atom in the nanoparticle with distant surrounding atoms. Thus, only the
few nearest surrounding atoms contribute to the stability of the nanoparticles. The curves in Figure 13
represent the potential functions with different values of m and α that agree with the experimental
value of the relative cohesive energy for Mo nanoparticles (as seen in Figure 10). As it is clear in
Figure 10, when the parameter m in the generalized Morse potential function increases, the value of
the α parameter becomes lower. Consequently, the repulsive interaction becomes stronger and the
range of the attractive interaction becomes wider. However, the change in the attractive interaction
range is weak when m ≥ 3, due to the convergence in the α values. The enlargement of the attractive
interaction range in the generalized potential function allows the atoms in the nanoparticles to have
more bonds with the distant surrounding atoms. Consequently, the extra bonds play an important role
in the stability of the nanoparticle.
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Figure 13. Generalized Morse potential curves for different values of m and α, where the black solid
line represents m = 1 and α = 3.1 (Morse potential function [13]), the blue dashed line represents m = 2
and α = 2.4, the red dotted line represents m = 3 and α = 2.1, the green dashed-dotted line represents
m = 4 and α = 1.95, and the purple long dashed-dotted-dotted line represents m = 5 and α = 1.85.
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The effect of nanoparticle structure in the cohesive energy was studied for different values of α
and m such that: α = 2.4 and m = 2 in Figure 14, α = 2.1 and m = 3 in Figure 15, and α = 1.95 and
m = 4 in Figure 16. The calculated cohesive energies for a simple cubic structure are more obvious
than body-centered cubic and face-centered cubic structures as predicted in other work [12].Energies 2020, 13, x FOR PEER REVIEW 12 of 16 
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Figure 14. The variation of the relative cohesive energy as function of the number of atoms (where m = 2
and α = 2.4) for different cubic structures of nanoparticles: A body-centered cubic structure (black solid
line), a face-centered cubic structure (blue dashed line), and a simple cubic structure (the red dotted
line). The experimental values [23,24] are denoted by dark blue circles.
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Figure 15. The variation of the relative cohesive energy as function of the number of atoms (where m = 3
and α = 2.1) for different cubic structures of nanoparticles: A body-centered cubic structure (black solid
line), a face-centered cubic structure (blue dashed line), and a simple cubic structure (the red dotted
line). The experimental values [23,24] are denoted by dark blue circles.
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Figure 16. The variation of the relative cohesive energy as function of the number of atoms (where m = 4
and α = 1.95) for different cubic structures of nanoparticles: A body-centered cubic structure (black solid
line), a face-centered cubic structure (blue dashed line), and a simple cubic structure (the red dotted
line). The experimental values [23,24] are denoted by dark blue circles.

Melting point Tm is a size-dependent property of nanoparticles [4,6,9]. Li et al. [25] found that the
cohesive energy is positively proportional to the melting point of the materials (Tm/Tmbulk = Ea/E0).
Therefore, the melting point of nanoparticles as a function of the number of atoms n can be calculated
using Equation (8), as follows:

Tm

Tmbulk
=

P0

2m

2m∑
k=1

(−1)k(2m− (k− 1))Ak
(
r∗0

)
. (9)

The values of Tm/Tmbulk of nanoparticles in a face-centered cubic structure as a function of the
number of atoms n are calculated for a fixed value of m and different values of α: Figure 17 (for m = 2)
and Figure 18 (for m = 3). The calculated values of Tm/Tmbulk are compared by two different sets
of experimental data of melting points of Au (the mass density is ρ = 18.4 g/cm3 [26] and the bulk
melting point is Tmbulk = 1337.3 K [27]) nanoparticles in a face-centered cubic structure. The first set
of the experimental data for melting points of Au measured by using a scanning electron-diffraction
technique for nanoparticles on the amorphous carbon substrate [27]. The second set of the experimental
data for melting points of silica-encapsulated Au nanoparticle measured by using a differential
thermal analysis (DTA) coupled to thermal gravimetric analysis (TGA) techniques [28]. The melting
points of Au nanoparticles in both sets of the experimental data are determined by their diameters D.
The number of atoms n of Au nanoparticles in a face-centered cubic structure with given diameters
can be determined through the relation: n = 0.74(D/d)3 + 1.82(D/d)2 [9,29] (where d

(
=
√

2/2a
)

is
the atomic diameter and a is the lattice constant). The calculated values of Tm/Tmbulk agree with the
first set of the experimental data when n ≥ 1000 atoms (D ≥ 3 nm) with little deviation when n < 1000
atoms (D < 3 nm). The first set of the experimental data shows less values of melting points than those
that are predicted by the model. The deviation arises due to the substrate effect on the melting point
of very small Au nanoparticles [30]. In the contrast, the silica shell had a small effect on the melting
point of small Au nanoparticles, where the nanoparticles are considered as individual particles [9,28].
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Therefore, the predicted values of Tm/Tmbulk agree with the experimental data of the second set when
n < 1500 atoms (D < 3.5 nm).Energies 2020, 13, x FOR PEER REVIEW 14 of 16 
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Figure 17. The variation of Tm/Tmbulk of nanoparticles in a face-centered cubic structure as function of
the number of atoms for m = 2 and different values of α: 2.6 (black solid line), 2.8 (blue dashed line),
and 3 (red dotted line). The first set of the experimental data [27] is denoted by purple squares and the
second set of the experimental data [28] is denoted by green circles.
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Figure 18. The variation of Tm/Tmbulk of nanoparticles in a face-centered cubic structure as function of
the number of atoms for m = 3 and different values of α: 2.3 (black solid line), 2.5 (blue dashed line),
and 2.8 (red dotted line). The first set of the experimental data [27] is denoted by purple squares and
the second set of the experimental data [28] is denoted by green circles.
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5. Conclusions

In conclusion, the generalized Morse potential function for different values of m was used to
account for the size dependence of the cohesive energy for different cubic metals: Simple cubic,
body-centered cubic, and face-centered cubic structures. The generalized Morse potential function
with m = 3 was used to predict the experimental values of the cohesive energy of W nanoparticles
when α = 2 and Mo nanoparticles when α = 2.1. If the value of α is approximated to be 2, then the
generalized Morse potential function with m = 3 will have the following form:

UGMij =
D
3

{
e−12(

ri j
r0
−1)
− 2e−10(

ri j
r0
−1)

+ 3e−8(
ri j
r0
−1)
−4e−6(

ri j
r0
−1)

+ 5e−4(
ri j
r0
−1)
− 6e−2(

ri j
r0
−1)

}
. (10)

The above potential function contains the following terms, e−12(
ri j
r0
−1) and e−6(

ri j
r0
−1), that are

equivalent to the Pauli repulsion and attractive dipole potentials, respectively, as in the Lennard–Jones
potential proposed by Lim [21,22]. Consequently, the generalized Morse potential function with
m = 3 can be the suitable potential to calculate the cohesive energy of nanoparticles. The stability of
nanoparticles using a generalized Morse potential function with higher values of m (such as m = 3)
and low values of α (such as α ≈ 2) is due to the enlargement in the attractive interaction range rather
than the softening of the repulsive interaction. The generalized Morse potential function with different
values of m and α were used to calculate the melting point of nanoparticles in a face-centered cubic
structure. The model using the generalized Morse potential function showed ability to predict the
experimental data of melting points of Au nanoparticles with neglecting any surrounding effects,
such as the effect of the substrate on the melting point of small Au nanoparticles.

A Lennard–Jones potential function with an additional two long-range attractive terms was
proposed to calculate the energy bands of diatomic molecules [31,32]. Therefore, adding extra terms
can also be applied to the Lennard–Jones potential function (as the generalized Morse potential function
with m = 3) to predict the experimental values of cohesive energy of W and Mo nanoparticles and the
melting point of Au nanoparticles in face-centered cubic structures.
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