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Abstract: The integration of advanced measuring technologies in distribution systems allows
distribution system operators to have better observability of dynamic and transient events.
In this work, the applications of distribution grid measurement technologies are explored in detail.
The main contributions of this review are: (a) a comparison of eight advanced measurement
devices for distribution networks, based on their technical characteristics, including reporting
periods, measuring data, precision, and sample rate; (b) a review of the most recent applications
of micro-Phasor Measurement Units, Smart Meters, and Power Quality Monitoring devices used
in distribution systems, considering different novel methods applied for data analysis; and (c) an
input-output table that relates measured quantities from micro-Phasor Measurement Units and Smart
Meters needed for each specific application found in this extensive review. This paper aims to serve
as an important guide for researches and engineers studying smart grids.

Keywords: advanced measuring devices; micro-phasor measurement units; power quality monitors;
smart grid technologies; smart meters

1. Introduction

The integration of advanced measuring technology, such as Smart Meters, micro-Phasor
Measurement Units (µPMUs), and Power Quality Monitors (PQM) in distribution systems, allows
distribution system operators to have better observability of the electrical distribution system.
High-precision measurements, rapid communication, and remote storage of the extracted data are
some of the characteristics of these measuring devices.

The urgent reason to enhance the observability with the deployment of new technology devices is
mainly driven by the increasing integration of distributed energy resources (solar energy, wind energy,
bio-energy) and flexible loads (electric vehicles and air conditioning systems) in distribution grids.
These devices have a significant effect on the operation, stability, and quality of energy distribution
networks. Customers are able to exchange active power with the electric grid in two-way directions,
increasing the complexity and uncertainty of the distribution system operation [1–3].

Recent works have reviewed the general applications of measurement technologies in
distribution systems. In Reference [4,5], the authors described the technology architecture used
in smart grids, including the metering and communication systems for transmission and distribution
systems. In Reference [6,7], the authors presented an overview of measurement technology, including
smart meters, smart sensors, smart power meters, Phasor Measurement Units (PMUs), Phasor
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Data Concentrators (PDCs), and Supervisory Control And Data Acquisition (SCADA) systems,
for monitoring, protection, and control in smart grid networks. However, none of these overviews
mentioned the required data characteristics for each application or the types of measuring devices
used for distribution systems.

Relevant overviews of µPMUs applications for distribution grids were described in Reference [8–11],
which include monitoring, diagnostic, and control applications. In fact, these papers have not reviewed
recent research work related to µPMUs data applications. In recent reviewed papers [12,13], authors
have focused on µPMUs applications, including state awareness, event detection, adaptive protection,
and network reconfiguration. However, these reviews do not include a list of µPMUs applications based
on the input data, methods, and visualization of each application.

Furthermore, several review papers have studied the applications of smart meter data for
distribution networks [14–17]. In Reference [14], the authors reviewed the smart meter data techniques
and methodologies developed for different applications. They also discussed the big data issues,
the transition of energy systems, data privacy, and security. In Reference [15], the authors reviewed
the methods and techniques for using smart meter data, such as forecasting, clustering, classification,
and optimization. However, these works do not mention the data inputs necessary to implement each of
these methods.

Some research papers have studied power quality applications. Reference [18] analyzed the
harmonic impact of the integration of renewable sources into the distribution network. Some other
recent applications are for optimal location of PQM in distribution systems, due to the limitation
of measuring devices [19]. The development of optimal placement techniques and energy data are
discussed in Reference [20–24]. To the best knowledge of the authors, this is the first time that a work
integrates an overview of the applications of PQM for distribution systems. In this review the main
contributions are:

• A comparison of eight advanced measurement devices for distribution networks, based on their
technical characteristics, including reporting periods, observability, measure quantities, precision,
and sample rate.

• A review of the most recent applications of micro-Phasor Measurement Units, Smart Meters,
and Power Quality Monitoring devices used in distribution systems, considering different novel
methods applied for data analysis.

• An input-output table that relates the measured quantities from µPMUs and smart meters needed
for each specific application found in this review. To our knowledge, this is the first time that a
review integrates the input data according to each application.

The organization of this paper is as follows. In Section 2, a comparison among different types
of advanced measurement devices used in distribution systems is addressed. In Section 3, a general
architecture of communication systems is presented based on different types of networks. Section 4
reviews and classifies recent applications of advanced measurement technologies based on an extended
literature review. Finally, Section 5 emphasizes the main conclusions from the work.

2. Advanced Measurement Devices for Active Distribution Networks

2.1. Monitoring Active Distribution Networks

The integration of renewable energy sources, energy storage devices and charging stations
for electric vehicles are some of the emerging technologies in active distribution networks.
Active distribution networks are mainly characterized by bi-directional power flows, meaning that
consumers can generate energy locally and inject it into the distribution network (also known
as prosumers). Active components can provide flexibility to the network, which is useful for improving
network stability (voltage, transient, and dynamic), improving power quality and optimally planning
network expansion. This is an economically viable alternative for energy operators because it means
investment savings to reinforce the network.



Energies 2020, 13, 3730 3 of 34

However, high penetration of distributed generation in active distribution networks can cause
considerable impacts on the operation of transmission networks. In order to simulate the uncertainty of
distributed generation it is essential to use precise models based on data-driven solutions to determine
the future behaviour of the power grid, as well as improving the impacts on transmission networks.
For this reason, it is important to know the different measurement devices used in active distribution
networks today, which allow algorithm developers or researchers to know the types of measurement
devices that can provide the required resolution for each application considering the costs of the devices.
The development of these tools will allow to improve the current monitoring systems (e.g., SCADA)
that operate at distribution and transmission level.

Monitoring devices help active distribution network operators to monitor two-way power flows,
energy consumption, and distributed generation in near real time. This allows Distribution System
Operators (DSO) to monitor, operate and plan active distribution networks remotely with higher
energy efficiency and establish optimal investment planning (such as maintenance operations and new
equipment) for short and long-term scenarios. Monitoring devices also help to identify the areas of the
network that are not performing at acceptable levels of quality. This can provide greater protection
to consumers against over-voltages or congestions in lines, reducing incidents on the power grid.
Modern meters used in active distribution networks actively communicate with a central system,
which can provide information about the location and magnitude of network incidents. Generally,
smart metering devices are integrated into an informatic platform so they can be managed centrally
and remotely by DSOs [25,26].

Future active distribution networks will need to reinforce or integrate advanced metering systems
in order to increase the observability, security and reliability. The integration of µPMUs, PQMs,
and smart meters are a viable solution to enhance wide-area visibility at the medium and low voltage
level as seen in Figure 1. In Reference [27], the authors investigated the roles that human operators
will take in highly automated systems. They conclude that the future role of operators will be as fault
managers. They will be mainly focused on identifying network failures and providing immediate
technical support to maintain network operation limits.
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Figure 1. High observability in an active distribution network.

2.2. Types of Measurement Devices in Distribution Systems

In this section, the technical characteristics and main uses of measurement technologies for
distribution systems are described. In Table 1, a technical comparison of eight advanced measurement
devices used to observe the behavior of the electrical distribution network are presented. The objective
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of this comparison table is to identify which of them are useful for observing events in a stable, dynamic,
and transitory state, considering their technical measurement parameters. The investment cost of
monitoring devices is another important aspect considered in the comparison table; this is especially
important when such instruments have to be employed for wide area distribution monitoring networks
and thus need a high number of measurement instruments to be installed. This costs do not entail
the cost of their installation at distribution level. In general, the measurement devices that present
better performance results according in their accuracy, sample rate, reporting period, and amount of
measured quantities are µPMUs and PQM devices. Therefore, this article aims to review the main
applications of their measured data, including their methods and techniques. Recent developed
methods are based on Machine Learning (ML) and deep learning techniques capable of analyzing
multiple dynamic events in the distribution network.
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Table 1. Comparison table of advanced measurement devices in distribution networks.

Power Sensors
Smart
Meter

µPMU PMUs
Power Quality

Monitors
Substation

Meters
Digital Fault

Recorders
Wireless Power

Line Sensors

Reporting
period:

1 sample
each (2–4) s

1 sample
each 1–60 min

Up to 120 samples
each second

10–60 samples
each second

1 sample
each second

1 sample
each min

Record the event
Up to 120 s

Record the event

System
Observability:

Steady State Load Profiles
Dynamic and

Transient State
Steady and

Dynamic State
Transient events Dynamic State

Transient and
Disturbance Events

Transient and
Disturbance Events

Network
Monitoring:

Medium Voltage Low Voltage
Medium and
Low Voltage

High and
Medium voltage

Medium and
Low Voltage

Medium Voltage Medium Voltage
Medium and
Low Voltage

Measure
Quantities

Voltage (RMS)
Active Power,

Reactive Power

Active Power, PF
Reactive Power

Frequency, Current,
RMS Voltage and

Power Quality data

3 Ph-Voltage phasors
3 Ph-Current phasors

Active Power
Reactive Power
Frequency, PF.

3 Ph-Voltage phasors
3 Ph-Current phasors

Active Power
Reactive Power
Frequency, PF.

Frequency, Voltage,
Current, THD,

Harmonics, Flicker,
Unbalance

Active and reactive
power flow, complex

current and
complex voltage

Voltage, Currents,
frequency,
P, Q, S, PF,

Harmonics,
Symmetrical
Components

3 Ph-Current phasor,
electric field, P,
Temperature

Sensor
Accuracy

±0.5%
Active Power: ±1%

Reactive power: ±2%
Amplitude: ±0.05%

Angle: ±0.01%
Amplitude: ±1%

Angle: ±1%
±0.2% and ±0.1% ±0.5% ±0.1% ±0.5%

Sample Rate - - Up to 30,720 s/s Up to 2880 s/s Up to 100,000 s/s - Up to 25,600 s/s 12,800 s/s

Cost Level * Medium Low Medium High Low High Medium Low

Reference: [28–30] [31–34] [35] [36,37] [30,38,39] [30,40] [30,41] [42]

* Low Cost (Range $200–$3500 USD), Medium Cost (Range $4000–$15,000 USD), High Cost (Range $22,000–$80,000 USD) [43–46].
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• Power Sensor: The power sensor provide the supervision, back-up management, control,
and regulation of power grids usually for SCADA systems. This sensor is able to measure
the Root Mean Square (RMS) value of the voltage, active, and reactive power measurements,
each 2–4 s. Then, this information is sent to a master station that allows the operator to
monitor and control the grid. In recent years, hybrid SCADA systems based on distribution
phasor measurement units have been proposed to enhance the observability on distribution
networks [47,48]. In Reference [49], the authors proposed a SCADA system based on internet
of things, which had integrated a fog router and a cloud architecture that takes care of outage
managements. This fog router was able to locate faults in a distribution system using voltages
and currents from smart meters and line sensors.

• Smart Meter: Smart meters are electronic devices that measure active and reactive power,
current, voltage RMS, and, in some cases, power quality data, with a measurement accuracy of
±1% or ±0.5%, with an adjustable reporting rate from 1 to 60 min. They are usually installed in
the low voltage side of the distribution system. The main functionalities of smart meters are for
automatic billing and energy management. The two-way communication is the most important
difference that distinguishes advanced smart meters from conventional smart meters [50]. In smart
distribution grids, smart meters provide consumers and energy providers knowledge about the
price information generally every 15 to 30 min. This enables the consumer to know when is the
cheapest time to use energy and also to manage their own consumption. Electric service companies
control smart meters remotely and use this information to forecast their daily production.
In Section 4, recent smart meters data application are analysed, such as Non-Technical Loss
(NTL) detection, customer characterization, and load clustering with recent novel techniques.

• Micro-Phasor Measurement Unit: The µPMU is currently the most advanced measurement device
used in medium and low voltage level for distribution grids. It is able to measure different
quantities, such as 3-phase voltage phasors, 3-phase current phasors, active power, reactive power,
and frequency, with a reporting rate up to 120 samples each second, in a 60 Hz system. This last
feature allows the operator to observe dynamic and transient events on the distribution system
with a sampling rate of over 30 kHz. Furthermore, the high sampling rate allows to have an
angle accuracy of ±0.010o and an amplitude accuracy of ±0.05%. The µPMU has precise time
stamps that are synchronized with the phase angle between multiple locations. In Reference [51],
an experimental microgrid was developed using seven µPMUs located at the Lawrence Berkeley
National Laboratory. This was the first pilot network at distribution-level using µPMUs.

• Phasor Measurement Unit: The PMU is a measurement device that was originally developed
to observe the dynamic operation of transmission power grids. However, the use of PMUs
in active distribution grids, can also be a very helpful tool to estimate the state variables of a
distribution system. This device has the ability to measure 3-phase voltage phasors, 3-phase
current phasors, active power, reactive power, frequency, and power factor, with a reporting
period of 10–60 samples each second. Although the operator is able to observe steady and
dynamic state conditions, it lacks in observing transient events. Most of the commercial PMUs
have a maximum sample rate of 2880 Hz, angle accuracy of ±1o, and amplitude accuracy of ±1%.
The PMUs also have precise time stamps that compare and synchronize the phase angle between
different locations. PMUs are used in Wide-Area Measurement Systems (WAMS) to improve the
monitoring, protection, and control of power networks, some of these applications are discussed
in Reference [52,53].

• Power Quality Monitor: The PQM is an advanced measurement device that collect difference
quantities, such as frequency, RMS voltage, currents, total harmonic distortion, individual
harmonics, and flickers. The PQM have a maximum sample rate of 4 MHz, which is the
best performance of all the presented devices, having a sensor accuracy of ±0.1% and ±0.2%.
This key feature allows to track transient events and harmonic sources in a distribution grid with
high precision. The PQMs devices are being widely deployed in distribution systems due to
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the growing penetration of renewable sources, energy storage systems, and electronic devices
installed in distribution networks. Some recent applications of PQM devices used for power
quality distribution monitoring are presented in Section 4.

• Substation Meters: Substation meters are wireless sensors located on transmission and
distribution substations. Their main function is to measure active power, reactive power, complex
current and complex voltage typically at a frequency rate of 1 Hz (1 measurement each second).
A recent work has developed an online learning algorithm for energy management and energy
balance for a three-phase distribution feeder. This algorithm uses sensor fusion to incorporate
output equations from real measurements, such as active and reactive power flow, complex bus
voltage measurements from distribution substation measurements, and residential smart meter
measurements [40].

• Digital Fault Recorder (DFR): The DFR is an automatic recorder capable of storing transient
fault events from different protection relays distributed at the substation level (Medium Voltage).
Its main functionality is to automatically record and store events in a local database so that the
operator has all the information to perform fault and post-mortem disturbance analysis with
higher resolution and accuracy than power line sensors. The Digital fault recorder have a precise
measurement recorder, sensor accuracy of ±0.1%, and a sampling rate of 512 samples per cycle
(25.6 kHz), ideal for monitoring transients from flexible alternating current transmission systems
and switching operational events [41].

• Wireless Power Line Sensor (PLS): The overhead line sensor is a low investment cost device used
primarily to monitor the status of distribution lines, including line faults, line loads, power quality,
conductor temperature and can also optimize the distribution network topology. Power line
sensors report line status up to every 5 min at a sampling rate of 12.8 kHz and sensor accuracy of
±0.5%. The sensor can be charged with a minimum current flow of 1 ampere, saving the use of
batteries. The main advantages are low maintenance, remote configuration and easy installation
on live networks. The PLS can also send warning messages to distribution system operator when
a fault event occurs [42].

3. Communication of Advanced Measurement Technology in Distribution Systems

High-speed communication on smart grids allows instantaneous monitoring of the network.
This allows to anticipate possible incidents, manage those that occur more rapidly, and improve
the quality of service to customers. Recently, communication infrastructure has been designed
using broadband power line, Wi-Fi, and fiber optics for distribution network management services.
Authors in Reference [54] compared the speed performances of each type of communication.
The experimental results demonstrated that fiber optics is the fastest communication network, capable
of providing a two-way latency of 3 ms. An important factor to consider in communication systems
is infrastructure investment costs. Sometimes slower solutions, such as power line communications,
could be more suitable for an specific application or when a high number of measurement devices
have to be installed in distribution systems. Power Line Communication (PLC) is an example of a
versatile and cost-effective means of communication for smart grid monitoring because it allows the
power line to be used for both power and communication, thus eliminating the need for special cables
to carry control and data signals. In Reference [55], different overhead communication PLC lines were
compared for in several applications for electrical distribution networks. This section briefly describes
the communication infrastructure of µPMUs, smart meters, and PQM devices.

3.1. µPMU Storage and Communication System

The µPMU network requires central data storage, precise synchronization, efficient analytical
tools, and high-speed communications systems to collect and transport the data. Since µPMU data
is sampled at a rate of 100/120 Hz, when these measurements are stored, it collects a considerable
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amount of data over short periods of time. Therefore, an efficient server infrastructure must be able to
support high data volumes and high-speed searches with advanced automated support [56].

The communication of µPMU requires high data rate, which can be obtained with optic fibers or
high data rate wireless networks. These networks also require high infrastructure costs, installation
and service fees. Sometimes a solution is chosen to reinforce the existing communication infrastructure
in order to reduce investment costs. Some other communication systems have been designed.
In Reference [57], authors proposed a data concentrator for synchrophasors based on a new logic
performance scheme to minimize introduced latency, without corrupting or damaging the data
measurements. This work also compared in terms of reliability, determinism and latency with
traditional telecommunication infrastructures against fiber optic links (15 PMUs) and 4G LTE wireless
network (10 PMUs). The experimental results show that the proposed logic is characterized by the
lowest latency.

Works in Reference [8,58,59] have developed a database storage system to concentrate micro-PMU
data with nanosecond-precision timestamps, from different distribution systems. This database storage
system has an open-source software that can be run from hardware or from the cloud (where data
can be stored). It stores large sets of data, with capacity to read over 19.8 million snapshots per second,
that can be used to analyze big data problems using different processing techniques for real-time
applications. Figure 2 shows the architecture design for a database network.

uPMU

Internet

uPMU

uPMU

uPMU

Distribution System

BTrDB
Cluster

MATLAB

Python

etc ...
Data Analytics

Plotting
Service

Other
Services

web
app Interactive 

visualization Clients

HTTP

Data Center / Cloud

JSON/CSV

Figure 2. Micro-Phasor Measurement Units (µPMU) data system architecture (adapted from Reference [59]).

Furthermore, the Berkeley database offers different services for customers, i.e., it provides
a plotting visualization service for clients, based on a web application. They also facilitate the
remote access of historical and real-time data for the development, analysis, and implementation
of novel processing techniques programmed in MATLAB, Python, and C++. Recently, predictive
platforms have been developed for the analysis of real-time data using machine learning algorithms.
In Reference [60], a platform was developed to process large data sets from µPMUs. This platform
provides the opportunity for engineers and researchers to program lines of code and analyze the data
stored from the web with recent machine learning techniques.

3.2. Smart Meter Communication

The key feature of smart meters is the two-way communication system between smart meters and
consumers, and also from smart meters to utility providers. This interaction has several advantages in
both sides because users are able to manage their own consumption by knowing their near-real time
power consumption and variability of prices. On the other hand, energy providers are able to forecast
future scenarios of consumption or generation, allowing utility operators to optimize their operations
under different planning horizons.

The communication of data can be transmitted via wired or wireless connections. The main
advantages of wired networks are the speed of communication and high security, but these require
a high investment in their infrastructure. On the other hand, wireless communication based on the
use the Internet of Things which has several advantages, i.e., the high-speed of data transmission,
easy remote access, storage in the cloud of data, and low cost of infrastructure. Nevertheless, it can
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present security problems and complexity in the integration of this system over the existing ones.
Recent technologies are being deployed using the concept of internet for energy for distribution
network communication. In Reference [61,62], the authors classified smart meter networks into
Home Area Networks (HAN), Neighborhood Area Networks (NAN), and Wide Area Networks
(WAN). The HAN is a local communication network between different devices around a household
(e.g., appliances, home illumination, Electric Vehicles) and can also be controlled for efficient energy
consumption. The NAN is the communication network between nearby households which are
interconnected to a local data concentrator by a Wi-Fi network, Cellular, or power line communication.
The WAN is the largest type of network, capable of covering long distances for monitoring those
networks across municipal or regional boundaries. WAN are formed by sets of NANs, which are
connected to a global concentrator or directly to a Network Operation Center using optical fiber,
satellite, WiMAX, cellular, or digital subscriber lines. Then, the smart meter data is concentrated
and stored in a big database cluster with all the power consumption and geographic information
of customers. This data is then transmitted to a Network Operation center using fiber optic, cable,
or Wi-Fi. Finally, different services are provided with smart meter data and GIS information, including
energy billing, planning, demand side management, and outage side management. Figure 3 provides
an overview of the advanced metering infrastructure in distribution networks. Some works have
proposed innovative smart metering architecture for smart metering in distribution power networks
based on the use of Power Line Communication (PLC) couplers. Authors in Reference [63] proposed
a communication approach considering PLC signal concentrators, avoiding wireless solutions with
the intrinsic installation and service provider costs. The low cost of this solution guarantees easy
scalability, favoring its vast employment in modern smart cities.
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Figure 3. Smart Meter Architecture Diagram (adapted from Reference [64]).

3.3. Power Quality Monitor Communication

The PQM is composed mainly by: (1) Power Quality (PQ) monitoring devices, (2) Network
devices (for data transmission), (3) Server, (4) Monitoring centers, (5) PQ website, (6) PQ database,
and (7) Users. In Figure 4, the general architecture of a PQ system is shown, and the process is briefly
described below.
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Figure 4. General Architecture of a Power Quality Monitors (PQM) system (adapted from
Reference [65]).

The PQM integrates two blocks, which are, a signal card block and a Field Programmable
Gate Array (FPGA). The signal card block is used to collects the measured signals of currents and
voltages. The FPGA process these signals with a digital processing technique to determine the power
quality indices, such as Total Harmonic Distortion (THD), distortion index, and power crest factor,
among others. Firstly, the data and indices are transmitted instantly from a remote network device to
the monitoring center by a User Datagram Protocol (UDP)/IP communication protocol, which means
that the data packages are transferred by either an IP local Ethernet or using only an internet connection.
Secondly, the data passes through a security network system and then is selected with an automatic
software and stored in a database on the server. Finally, from a website, it is possible to access to
the data collected; this enables administrators and users to connect where the Internet connection is
possible. Power quality data files include real-time measurements and historical records.

4. Distribution Measurement Technologies: Application of Data

In this section, a review of recent applications and techniques used for data processing of µPMUs,
smart meters, and PQM devices is shown, based on a literature review of the last four years. In addition,
few relevant articles were considered due to their high impact of the research over the last few years.
Figure 5 summarizes the overall groups of applications found in this work, considering only three
advanced measurement devices (Micro-PMUs, Smart meters, and PQMs). It is important to mention
that each measurement device work with different resolutions; therefore, the applications are also
oriented to monitoring events with the same time response.
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Figure 5. Applications of Distribution Measurement Technologies.

4.1. µPMU Data Applications

Recent applications of µPMU data are shown in this subsection. Table 2 shows a general summary
of the applications, methods and input data found in more than 25 articles. A total of eight application
groups were obtained, and two large groups can be highlighted, situational awareness and state
estimation. These two groups require a high sampling rate of the measured data in order to visualize
transitory events in the distribution network. Table 3 lists the input data (µPMUs measurements)
required for each specific application. Most of the described methods are based on synchronized
current and voltage phasors (magnitude and phase) to identify, analyze, and monitor possible failures
in the distribution network. A brief description of each of these application groups and methods found
for data analysis is provided below.

• Situational Awareness: Most of applications are driven to aware distribution operator of
transient events due to the high sampling frequency and communication abilities of µPMUs.
In Reference [66], the authors proposed a method based on the compensation theorem to detect
abnormal events in distribution systems. This method generates an equivalent circuit using
the current and voltage phasors captured by µPMUs. Similarly, a cumulative sum (CUSUM)
algorithm was proposed in Reference [67] to detect anomalies having limited micro-PMUs.
Validation results showed the effectiveness of this algorithm to voltage, current, and active power
changes in the distribution system. In Reference [68], the authors proposed the multi-class Support
Vector Machine (SVM) method to detect and classify abnormal events based on large volumes
of data. A total of 1.2 billion real measurements of two micro-PMU installed in a distribution
feeder were analyzed to evaluate their actual performance and were validated with two different
methods, which are K-Nearest Neighbor (k-NN) and Decision Tree (DT). The results showed
that the proposed technique can accurately identify a total of 10,700 events, outperforming the
other two evaluated techniques. In Reference [69], a generalized Graph Laplacian Matrix (GLM)
to visualize different voltage and current events in a real test feeder was proposed. Moreover,
a kernel principle component analysis and a partially Support Vector Machine (pSVM) was
used in Reference [70] for voltage sags detection based on data index and reconstruction error.
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The effectiveness of these methods were tested on a real distribution network with µPMUs.
In Reference [71], the authors proposed a Granger causality technique to analyze the frequency
event propagation from the transmission network to the main feeder of a distribution network
using µPMUs measurements. The authors also proposed a sparse coding method to determine
the spectral frequency of abnormal events. The proposed approach was tested with real-time data
from a public network located in Riverside, California. In Reference [72], the authors proposed a
state estimator to identify faults in distribution lines using micro-PMUs. This estimator determines
the error, using a weighted residual metric. Validation tests have shown that the proposed
estimator correctly detects and locates distribution line failures in presence of bi-directional flows.
In Reference [73], an experimental analysis of lightening strikes was proposed using µPMU data
collected during a day of rainstorms. The main interest of the study was to analyze the transient
response of a 7.5 MW PV farm and its associated substation. Results showed the high resolution of
micro-PMU to capture transients of current and voltage phasors during lightening-induced events.
Reference [74] proposed a parametric sparsity method to detect and locate events from distribution
grids. An optimization algorithm based on particle swarm was proposed in Reference [75] to
coordinate overcurrent relays installed in microgrids and distribution networks. In addition,
a technique to identify uncertainties in real-time was also proposed. Authors in Reference [76]
proposed a method to synthesize steady state models for multiple-sections of active distribution
networks (unbalanced) using real-time PMU data. Additionally, a Kalman filtering technique was
proposed to extract the quasi-steady state components, noise filtration, and outliers from PMUs.
The results from two simulated events demonstrate that the proposed technique can produce an
accurate model for any feeder configuration located between PMUs installed in active distribution
networks. Authors in Reference [77] evaluated the transmission characteristics of a Rogowski
electronic current transformer and an electronic voltage transformer (EVT) in a simulated and real
testing platform. Experiment results showed that the EVT and the traditional power transformer
have similar performance in the transient process of disconnecting switch breaking. Additionally,
the power transformer was not affected by temperature changes, while that in the electronic
voltage transformer the temperature had a great influence impact.

• Topology Verification: Distribution networks models are often imprecise or outdated.
Topology identification is essential for monitoring and control distribution systems. The µPMUs
devices are able to extract measurements from network nodes in real-time in order to track
topology changes. In Reference [78], the authors proposed a technique to estimate impedances
through a reduced Kron matrix also called “subKron” form. Additionally, a recursive clustering
algorithm was implemented to reconstruct the topology of radial networks from line impedances.
The results of the simulation showed that this technique is robust to measurements with additive
noise that is generally captured by micro-PMUs; however, it has limitations when applied
to large distribution networks. In Reference [74], the authors proposed an adaptive lasso
technique to identify changes in topology caused by permanent failures in distribution systems.
This technique is able to locate faults geographically in real time using PMUs that capture voltage
and current phasors with high accuracy. The results of this work demonstrated the efficiency of
this technique in different case studies. In Reference [79], the authors proposed a method to detect
topology changes in distribution networks based on the Time-Series Signature Verification (TSV)
method. This method considers the relationship that occur when there are changes in network
topology. Validation results showed that the proposed method works satisfactorily with the
partial knowledge of the state of the network. Authors in Reference [80] proposed a data driven
approach based on the projection of a norm tren vector in to a topology library. This method was
able to detect over 32 possible topology scenarios in a distribution grid.
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Table 2. Recent application groups of µPMU Data.

Application
Group Input Data Methods Output Visualization Year

(Reference)
Is It Real

µPMU Data ?
Simulation

Data?

Situational
Awareness

3-Ph voltage and currents
(magnitudes and angles),
frequency, active power,

reactive power.

1. Three stage algorithm
2. Dynamic WSMW
3. Generalized GLM
4. Parametric Sparsity
5. Compensation Theorem
6. CUSUM
7. Thevenin Estimation
8. LWSS
9. Experimental Analysis
10. Kernel PCA and pSVM
11. KF and Model Synthesis
12. Theoretical Analysis

Voltage magnitud change, current
magnitud change, active power

change.

1. 2020 [71]
2. 2019 [68]
3. 2019 [69]
4. 2019 [74]
5. 2018 [66]
6. 2018 [67]
7. 2018 [75]
8. 2017 [72]
9. 2017 [73]
10. 2016 [70]
11. 2016 [76]
12. 2019 [77]

1. Yes
2. Yes
3. Yes
4. No
5. Yes
6. Yes
7. No
8. Yes
9. Yes
10. Yes
11. Yes
12. Yes

1. No
2. No
3. No
4. Yes
5. Yes
6. Yes
7. Yes
8. Yes
9. No
10. No
11. Yes
12. Yes

Topology
Identification

Voltage (magnitude and
phase angle)

1. Recursive Grouping
2. Adaptive Lasso
3. TSV-Top
4. Projection of Norm tren Vector

New switch configuration in the
topology

1. 2020 [78]
2. 2019 [74]
3. 2018 [79]
4. 2015 [80]

1. No
2. No
3. No
4. No

1. Yes
2. Yes
3. Yes
4. Yes

Classification
of Events

3 Ph-Voltage and currents
(magnitudes & angles)

1. Multi-class SVM
2. NN based autocoders (Softmax)
3. PCA and SVM based autocoders

Event location and disruptive
classes

1. 2019 [68]
2. 2018 [81]
3. 2017 [82]

1. Yes
2. No
3. No

1. No
2. Yes
3. Yes

State
Estimation

Voltages, currents, line
admittances, loads.

1. WLS, WLS with NR
2. R-NESE & WTVSE
3. LSE, ARMA and SVM
4. Compensation Theorem
5. Compressive Sensing & WLS
6. DFT and WLS

Estimation of voltage magnitud,
loads, currents and errors from

actual states.

1. 2020 [83]
2. 2020 [84]
3. 2019 [85]
4. 2018 [86]
5. 2017 [87]
6. 2018 [88]

1. No
2. No
3. No
4. Yes
5. No
6. Yes

1. Yes
2. Yes
3. Yes
4. Yes
5. Yes
6. Yes

Optimal
Placement

Voltage phasor, parameters
of the branch.

1. Mixed Integer Semi-definite
Programming Model
2. Integer linear programming
3. Greedy Search

Optimal number and localization
of micro-PMUs at buses

1. 2020 [84]
2. 2019 [89]
3. 2018 [67]

1. No
2. No
3. Yes

1. Yes
2. Yes
3. Yes

Model
Calibration

Frequency, voltage and
current phasors. 1. Non-Linear Estimation Calibrated parameters 1. 2020 [90] 1. No 1. Yes

Operation
Events

Voltage and currents
(magnitudes and angles)

1. Fuzzy C-means
2. Data driven analysis based
on RLC Model

Switching event, operational
parameters (real and reactive power
flow), voltage and current (feeders

and loads)

1. 2017 [91]
2. 2017 [92]

1. Yes
2. Yes

1. No
2. No
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Table 3. Specific applications of Micro-PMU data.

Micro-PMU Data Specific Applications in Distribution Network

3 Ph-I (Phasors): Analysis of Transient Load Behaviors [91]

3 Ph-Currents (Phasor) &
Y (Admitance matrix):

Optimal number and localization of
µPMUs in buses [84,89]

3-Ph-V (Phasors): Estimation of Voltage Magnitude error [84] Identification of swithching actions and
new topology scenarios [74,79,80]

3-Ph-V (Phasors) & Loads: Load and Voltage Estimation Error [85]

3 Ph-V & 3 Ph-I (Phasors): Single and 3 phase current &
voltage event detection [69]

Response of a PV farm (Current
and Voltage) of 3 lightning events [73].

Detection of capacitor
bank switching [92]

3 Ph-V & 3 Ph-I (Phasors): Fault position with accuracy,
sensitivity to noise level [72]

Distinguishing between two disruptive events
and the normal load changing event [82].

Identify event location and
disruptive classes [74,81]

3 Ph-V & 3 Ph-I (Phasors): Event Location and Identification [66] Event detection of voltage sag based
on Data Index and Reconstruction Error [70].

Fault currents to
coordinate relays [75]

3 Ph-V & 3 Ph-I (phasors),
frequency:

Estimation of sub-transient generator
model variables [90].

Cyclic frequency trend and anomaly
signals detection [71]

3 Ph-V & 3 Ph-I (Phasors), Active
and Reactive Power, frequency: Anomaly Detection Architecture [67,68] Optimal D-PMU placement [67] Event Classifier of PQ

events [68]

3 Ph-V & 3 Ph-I (Phasors), loads,
Y (admitance matrix): Tracking State Estimation [86,87]
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• Classification of Events: The classification of disturbing events is responsible for quantifying
abnormal events that occur in the system. Recent approaches of event classification have been
explored. In Reference [68], the authors proposed the multi-class Support Vector Machine (SVM)
method to classify abnormal events based on large volumes of data. A total of 1.2 billion real
measurements of two micro-PMU installed in a distribution feeder were analyzed to evaluate
their actual performance, and were validated with two different methods (K-Nearest Neighbor
(k-NN) and Decision Tree (DT)). The results showed that the proposed technique can accurately
identify a total of 10,700 events, outperforming the other two evaluated techniques. A neural
network approach was proposed in Reference [81], using autoencoders along with soft-max
classifiers to distinguish two disruptive events. The performance of the algorithm was tested
to identify if a capacitor bank switching has a normal load change or if it has a malfunctioned
switching. In Reference [82], authors proposed two different algorithms to classify disruptive
events in distribution networks. The first algorithm was based on a hybrid combination of
Principle Component Analysis (PCA) together with a multi-class SVM, and the second algorithm
was with an auto-encoder along with soft-max classifier. Validation results showed the superiority
of the second algorithm over the first algorithm in term of accuracy. The data for training and
testing was simulated in the IEEE 13-bus distribution system.

• State Estimation (SE): Distribution system state estimation (DSSE) is the minimum set of variables
that can be used to describe the dynamic behavior of the system, advanced measurement devices
are useful to quantify these variables. In Reference [83], the authors proposed a decentralized
state estimator to improve the operating privacy in active distribution networks and microgrids.
In this work, the iterative procedure based on quadratic programming was demonstrated,
which used micro-PMUs as main inputs. The studies demonstrated a high accuracy of this
proposed approach for different scenarios. In Reference [84], the authors proposed a regularized
estimator to accurately identify the operating state of the system in a short time. This estimator
operated with different measuring devices with different resolutions using data mainly from
SCADA-type systems and micro-PMUs. This fusion of data allowed to provide greater robustness
of the estimator to noise and less error in the estimation of states. The authors of Reference [85]
proposed a weighted least square-based for distribution system state estimation, in which voltages
and loads are chosen as state variables to compensate insufficient real-time measurements in
medium voltage distribution systems. In Reference [86], the authors proposed a method based
on the compensation circuit theory to generate an equivalent circuit. This method was able to
estimate and follow the system states when sudden load changes occurred. This method used real
measurement from µPMUs in a distribution system. In Reference [87], the authors proposed a
simple method to determine the state variables based on power line data and bus voltage phasors
from micro-PMUs installed in a distribution network. The authors showed that the proposed
method can be robust to noise measurements, high levels of distributed generation, and a reduced
number of measurements. Authors in Reference [88] proposed an open testbed to evaluate and
compare PMU estimation algorithms accuracy under experimental conditions, considering the
noise propagation in order to quantify the uncertainty contributions and their impact on the
estimates of the variables.

• Optimal Placement: The optimal placement of µPMUs aims to maximize the observability of
the distribution network while minimizing investment costs. In Reference [84], the authors
propose a D-Weighted Total Variation State Estimation (WTVSE) algorithm to estimate system
states with a reduced time scale (every 15 min), considering the observations of a SCADA system
and micro-PMUs. In addition, a semi-defined scheduling model was proposed to optimally
locate micro-PMUs and thus improve state estimation. The results of the simulation of a 95 bus
distribution network showed that this proposal presents a great accuracy in the estimation of states
under a diversity of scenarios, in addition to its low computational complexity. In Reference [89],
the authors proposed a linear programming model to optimally locate phasor measurement
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units in distribution networks. The aim of this model was to ensure observability during
possible changes in topology by operational actions. The results obtained from a medium
voltage distribution network in southern China showed that the proposed method is efficient
and robust to topology changes. In Reference [67], a greedy search algorithm was proposed for
optimal µPMUs placement. This algorithm uses an optimal location criterion to achieve maximum
observability and therefore increase the monitoring range considering different event scenarios.

• Model Calibration: Dynamic models can be calibrated based on real-time advanced measurements.
This is a new field of application that promises to improve the current models. In Reference [90],
the authors proposed a methodology to enhance the synchronous generator model, based on PMU
measurements. First, the estimation of the variables (frequency, voltage, and current phasors) of the
dynamic state were obtained. Then, the authors calibrated the inertia constant and the reactances of
the model. Finally, the performance results were obtained under different perturbation scenarios.
The authors conclude that the calibration of parameters in real time requires high accuracy of
advanced measurement devices.

• Operation Events: The high resolution of the µPMU data allows to observe the dynamics
(transient) of operational events that generally occur in distribution networks, such as the
reconnection of microgrids, the connection of loads, and/or the connection of capacitor banks.
In Reference [91], the authors proposed a method to analyze the transient behaviors caused by
the addition of flexible loads/generation in distribution feeders. This approach modeled the
load profiles based on the collection of data from various µPMU located at the low voltage level.
The authors demonstrated that it is possible to compromise network reliability if several flexible
regulation resources are located on the same feeder. In Reference [92], the authors analyzed
the switching events of a three-phase capacitor bank to determine the operational parameters
and the flow of reactive energy from a capacitor. The authors conducted an experimental study
based on real measurements from µPMUs that were installed in an electrical distribution network.
The results showed that the magnitude of the transient current of the feeder depends on the initial
condition and the phase angle at the time of capacitor switching.

4.2. Smart Meter Data Applications

The following subsection describe the applications of smart meter data. The objective is to
present the methods developed in recent years, based mainly on machine learning techniques for the
processing, prediction and monitoring of the distribution network. Table 4 shows a summary of the
applications, methods and general input/output data of 37 relevant articles published in recent years.
The classification of smart meters applications were divided into eight groups; however, the most
prominent groups are the forecasting group and the topology identification group. These applications
are mainly used by operators to monitor and control the electrical distribution network. On the other
hand, Table 5 shows a relationship between the required input data, such as consumption, voltage,
and current profiles (captured by Smart Meters), with multiple applications found in the literature.
Most of the applications are based on household consumption profiles for fraud identification,
prediction of energy consumption (short and long term), and topologies identification.
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Table 4. Recent application groups of Smart Meter Data.

Application Groups Input Data Methods Output Visualization Year
(Reference)

Is It Real
SM Data ?

Simulation
Data?

Anomaly Detection Load Profiles (kWh), RMS
Voltage, history data

1. Isolation Forest
2. CCAD-SW, SVR, RF
3. Quasi-linear classifier
4. Lambda system

Anomaly consumption detection,
data integrity assault, identification
of anomalous consumption.

1. 2019 [93]
2. 2017 [94]
3. 2017 [95]
4.2016 [96]

1. No
2. Yes
3. No
4. Yes

1. Yes
2. Yes
3. Yes
4. No

Compression of Data Load Profiles (kWh)

1. Deep Learning via SCSAE
2. SAE
3. SVD
4. K-SVD, K-mean, DWT, PCA, PAA

Storage and transmission of large
sets of power consumption data
measured by smart meters.

1. 2020 [97]
2. 2019 [98]
3. 2017 [99]
4. 2017 [100]

1. Yes
2. Yes
3. Yes
4. Yes

1. No
2. No
3. No
4. No

Customer
Characterization

Load Profiles (kWh),
Sociodemographic atributes

of households

1. GBM, CART, RF, DWD, Discrimination
with Polynomial Kernel
2. Random Forests, SVM, K-nearest
Neighbors and NN
3. Discriminative multi-task relationship
learning model
4. Deep-CNN and SVM

Unemployment prediction of
household occupants, prediction of
home-occupancy status of
households, prediction of multiple
household characteristics.

1. 2020 [101]
2. 2019 [102]
3. 2019 [103]
4. 2018 [104]

1. Yes
2. Yes
3. Yes
4. Yes

1. No
2. No
3. No
4. No

Forecasting Load Profiles (kWh),
Weather

1. Extended k-means, ANN and MLR
2. ML using a Q-learning
3. LSTM Recurrent Neural Network
4. FF-ANN, NARX, DNN, Gradient
Tree Boosting and Random Forests
5. Load Ensemble Method
6. Boosting additive quantile regression
7. Conditional Kernel Density estimation

Short-Term Load Forecast in
Residential Buildings, prediction
interval of electricity cost for
different time-of-use tariffs, forecast
the aggregated load.

1. 2020 [105]
2. 2020 [106]
3. 2019 [107]
4. 2019 [108]
5. 2018 [109]
6. 2018 [110]
7. 2016 [111]
8. 2016 [112]

1. Yes
2. Yes
3. Yes
4. Yes
5. Yes
6. Yes
7. Yes
8. Yes

1. No
2. No
3. No
4. No
5. No
6. No
7. No
8.No

Load Classification Load Profiles (kWh)

1. Statistical Tool
2. Deep auto-encoder and (SOM)
3. Finite Mixture Model of Gaussian
multivariate distributions
4. Constrained k-means algorithm

Energy tariffs at different times
of the day and identification
of time periods during the
season, months, etc.

1. 2020 [113]
2. 2020 [114]
3. 2016 [115]
4. 2016 [116]

1. Yes
2. Yes
3. Yes
4. Yes

1. No
2. No
3. No
4. No

Non Technical
Loss Detection

Load Profiles (kWh),
Geographical information,

line parameters

1. Hybrid Deep Neuronal Networks
2. Deep convolutional-recurrent NN
3. Hybrid DT and SVM classifiers
4. Optimum PF, k-means, GMM,
Birch, affinity propagation and SVM

Detection and location of
electricity thefts, irregular and
regular profiles

1. 2020 [110]
2. 2020 [117]
3. 2016 [118]
4. 2016 [119]

1. Yes
2. No
3. No
4. Yes

1. No
2. Yes
3. Yes
4. No

Sensor Fusion

Load profiles (kWh),
currents, voltages,

admittance matrix, bus
voltage phasor, power

flows.

1. Recurrent neural networks, and sparse
Bayesian learning for state estimation
2. Modified Dynamic Mirror Descendent
3. Mixed integer linear programming

Locating harmonic sources,
separation of measurements in a
distribution feeder, prediction of
outage regions.

1. 2020 [120]
2. 2020 [40]
3. 2019 [121]

1. No
2. Yes
3. No

1. Yes
2. Yes
3. Yes

Topology
Identification

Load profiles (kWh), RMS
voltage (feeder and smart
meter), line parameters,

currents.

1. Physical-probabilistic-network,
lasso regression
2. Tree-based search methodology
3. PCA and Grap Theory
4. DSTE Algorithm
5. Graphical Modeling
6. Inhouse algorithm based Voltage profile
correlation analysis

Operation mode of distribution
networks and voltage correlations
with different buses. Topology
Estimation

1. 2019 [122]
2. 2019 [123]
3. 2017 [124]
4. 2016 [125]
5. 2016 [126]
6. 2015 [127]

1. No
2. Yes
3. No
4. Yes
5. Yes
6. Yes

1. Yes
2. No
3. Yes
4. No
5. Yes
6. No
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• Anomaly Detection: Anomaly detection techniques are useful to detect abnormal conditions
in smart meters data, such as suspicious consumption, missing data, or unplanned events.
In Reference [93], authors proposed an algorithm based on isolation forest to detect the presence
of anomalies in smart grid using non-labeled data. Authors also used a Principal Component
Analysis (PCA) to compress the volume of data in a distribution system. In Reference [94],
authors implemented a support vector regression with a random forest method using sliding
windows, to identify anomalous consumptions of real-world data. In Reference [95], the authors
developed an anomaly detector system, capable of analyzing smart meter measurements from a
data concentrator in near real-time. The design of this system can detect abnormal conditions
at medium and low voltage levels using a quasi-linear classifier. Reference [96] proposed a
technique with a Lambda architecture to detect anomalies. This technique was based on real-time
consumptions that were analyzed through supervised learning. Additionally, a threshold index
for the detection of suspicious consumption was considered. The evaluation of this algorithm in
real scenarios demonstrated its effectiveness and precision in detecting anomalies.

• Compression of Data: Data compression techniques help to reduce the volume of data collected
from advanced measurement devices; they also help to improve the transmission speeds
from multiple measurement points. In Reference [97], the authors proposed a deep learning
technique with a convolutional dispersion auto-encoder for data compression. This method
keeps more information than Singular Value Decomposition (SVD) and PCA methods, at the
same coding speed, preserving details of the original power, and the calculation times are lower.
In Reference [98], the authors proposed a neural network based on an automatic encoder to
compress household consumption data in a distribution network. This proposed encoder must be
installed on the user’s side to compress the smart meter readings. Compared to some existing
linear compression models, such as PCA, DWT, and SVD, the SAE compressor has lower % errors
according to a study carried out with real data from China and Ireland. Similarly, in Reference [99],
a methodology using the SVD technique for data compression was presented. This methodology
was used in a test system with data from different substations of a UK company. This technique
achieves a significant reduction in the volume of data to be transmitted, with minimal error in
its reconstruction. Reference [100] proposed a SVD sparse coding technique to compress smart
meter data. This dispersion technique extracts the information using linear combinations from
load clusters. The results obtained comparing 4 techniques showed that the proposed technique
obtains the least loss of information.

• Customer Characterization (Socio-demographic): Predictive analysis can also be applied to
determine the characteristics of network consumers, for example, predicting the number of
unemployed people, number of occupants in a building and/or predicting daily household activities.
In Reference [101], authors compared six machine learning models to determine the number of
unemployed people in a household. The overall results showed that the most accurate models
were the multi-layered perception and distance-weighted discrimination aproach. Similarly,
in Reference [104], a neural model was proposed to determine the employment situation of
consumers. This type of information can help governments to reduce unemployment levels and also
help to improve their economy. In Reference [102], the authors implemented a genetic algorithm
to identify the number of occupants in a residential building using smart meter data. Validation
results showed that this algorithm can optimally predict the number of occupants in households.
In Reference [103], an automatic learning model was proposed to identify characteristics of
residential occupants, e.g., people living in the household, average age, and daily activities in
the household, from the daily electricity consumption of the users. The validation of this model
was implemented in a real distribution network in Ireland, in which technical characteristics allow
obtaining this information.

• Forecasting: The optimal generation planning requires that operators have tools to predict
demand growth in a short and medium terms. In recent years, techniques based on machine
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learning have been developed, considering multiple variables in the prediction models, including
electricity consumption, weather conditions, electricity tariff costs, and population growth that
contributes to generate accurate prediction models. In addition, with the growing technological
development, it is possible to concentrate all this data in real time, which allows the parameters
of the models to be systematically updated. In Reference [106], the authors designed a short-term
prediction model based on a Q-learning scheme that used meteorological data and smart meters
as input variables. This scheme was composed of ten deterministic prediction models and
four probabilistic heuristic models which were selected based on their accuracy. The results
presented demonstrate a higher accuracy of Q-learning predictions than traditional approaches.
In Reference [105], an artificial neural network with a multiple regression technique was proposed
to predict load consumption using temperature and solar irradiation variables in the model to
obtain more accurate predictions. The validation of this proposal was demonstrated in a real
data set of smart meters that included photovoltaic generation. In Reference [107], the authors
proposed a recurrent neural network technique to predict consumption in short-term scenarios.
This proposed approach was tested on a public data set on real residential consumption and
compared with other techniques for validation. In Reference [108], the authors proposed a
Nest-Bcktr algorithm for short-term load forecasting. A comparison between other six machine
learning algorithms were made, in terms of RMSE indices and absolute errors. The validation was
programmed in Python using a 2-year data set from smart meters. The results showed that this
proposed algorithm predicts consumption with lower errors. In Reference [109], a load ensemble
method to forecast aggregated loads was proposed. This method produces multiple training and
prediction models with different sub-profiles. In addition, a weighted optimization is used to
combine and determine the best prediction. In Reference [111], an additive regression model was
proposed to forecast the distribution of electricity consumption added to the network. This model
generates different probability scenarios that help operators to plan and operate the network in
the future. In Reference [112], the authors used a method based on kernel density estimation
to forecast future growth of electricity consumption. This method considered predictions of
electricity costs for different tariffs, which means potentially important savings for users.

• Load Classification: Refers to the grouping of electrical consumption including residential,
commercial and industrial loads. In recent years, various grouping techniques have been
proposed with data from smart meters that have provided useful information to distribution
system operators. In Reference [113], electricity consumption and energy tariff variability
were analysed in four different seasons. In this analysis, several statistical tools were applied
to analyze different energy consumption’s using real data from smart meters. The study
showed that users consume more energy when they do not know the variability of energy
costs. The authors recommended that consumers learn about tariff dynamics in order to
minimize energy consumption costs. In Reference [114], the authors proposed a prediction
technique based on a trained auto-encoder that analyzed smart meter data and also grouped
them using a self organizing map. In Reference [115], a finite mixture model based on a variant
Gaussian distribution to identify non-typical behavior in the distribution system was proposed.
This model classified different customer profiles according to their load levels and variability.
In Reference [116], the authors proposed a k-means clustering algorithm for phase identification
of interconnected customers in the network. This algorithm uses as inputs the voltage signals
from smart meters and SCADA measurement system. The test results obtained from a distribution
network in California showed that the algorithm has an overall accuracy above 90%.
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Table 5. Specific Application of Smart Meter Data.

Smart Meter
Input Data

Specific Application in Distribution Network

Household Load
Profiles (kWh):

Identification of anomalous
consumption patterns based

on classifiers [94]

Storage and transmission
of large volumes of power

consumption data [97,98,100]

Consumption profiling
and prediction of

energy consumption [110,114]

Short-Term Load
Forecast in Residential

Buildings [107–109]

Online Anomaly
consumption detection

[96,118]

Household Load
Profiles (kWh):

Identification of time
periods during the day

and seasonality [112,115]

Phase identification based
on clustering [116]

Non-technical losses
identification [119]

Load profiling based on
the energy tariffs across

four climatic conditions [113]

Forecasting uncertainty
in electricity data

[111]

Load Profiles and
geographical data:

Detection of Non-Technical
Losses [110]

Identification of network
topology and load

phase connectivity [124]

Topology Identification
via Graphical Modeling

[126]

Voltage Magnitudes
and Household Load

Profiles (kWh):

Network Topology
identification [127]

Voltage and Current
Magnitudes, load

profiles and admittance
matrix of the network:

Inferring operation modes
of distribution networks [122]

Identifying the connections,
as well as the voltage
correlations between
different buses [122]

Distribution system
Low-Voltage Circuit

Topology Estimation [125]

Approximation the missing
cable information in LV
networks (cable’s cross

section area (XSA) data).
[123]

Load profiles and socio-
demographic attributes

of households:

Unemployment prediction
of single household

occupants [101]

Household Load Forecasting
based on clustering [105]

Predict the home occupancy
status of households

[102]

Predict multiple household
characteristics (e.g., age of
person, household income,
cooking style, etc.) [103,104]
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• Non-technical loss detection: Detection of non-technical losses are basically electricity theft
consumers, faulty meters or billing errors. In Reference [110], a hybrid deep neuronal network to
detect non-technical losses in smart meters was proposed. This algorithm was tested with real
smart meter data from the largest electric utility in Spain. Validation results showed the accuracy
of this aproach to identify anomalies in distribution systems. In Reference [117], the authors
proposed a deep convolutional neural network to detect non technical losses in distribution grids.
This approach detected manipulations of consumer energy readings that falsely overloaded the
power company. The results obtained in this work indicate that the fusion of multiple data,
including smart meters, SCADA systems, and meteorological reports, contributes to the accurate
detection of energy theft consumers. Reference [118] proposed a methodology based on the
hybrid combination of decision tree and support vector machine classifiers to detect fraudulent
consumption. In Reference [119], the authors proposed a classifier based on the optimal-path forest
algorithm to detect anomalies and non-technical losses in distribution networks. This machine
learning technique requires training from regular consumer profiles in order to generate a sample
group base, and, when a new consumer connects with irregular profiles, he is automatically
identified. Validation results showed that this technique is robust and accurate for classifying
different types of consumers.

• Sensor Fusion: Sensor fusion is the integration of data from smart meters with other
measurement devices and is intended to improve the observability and accuracy of monitoring
distribution systems. In Reference [120], the authors proposed a state estimator to identify
harmonic sources in an unbalanced distribution system. The state estimator was based on neural
networks and Bayesian learning, and the input signals were captured by smart meters and
micro-PMUs. Validation results showed the high accuracy of the estimator even in presence of
distributed generation. In Reference [40], the authors proposed an algorithm to disaggregate loads
from a distribution feeder into N components. The main objective was to separate network losses
and reactive power injections from capacitors. This algorithm was based on a learning aproach
and used multiple measurement sensors to determine the technical feasibility of separation.
Validation results indicate that data fusion of reactive power measurements in the algorithm can
improve the accuracy in the prediction of the network behavior up to 32%. In Reference [121],
the authors proposed a mixed integer linear programming algorithm to determine fault locations
and prediction of outage regions. This algorithm requires of smart meter data and remote fault
indicators measurements in near real-time in order to support distribution system operation in a
precise time-step.

• Topology Identification: Information on the topology of the distribution network helps the
operator to make optimal decisions when unexpected events occur. Authors in Reference [122]
proposed a physical probabilistic network model to identify the connections using voltage
correlations between different buses. This method was compared with a lasso regression method.
In Reference [123], a tree-based search methodology was proposed to approximate the missing
cable information in low voltage distribution networks. In Reference [124], a method to identify
the connectivity between load phases in distribution networks was proposed. Additionally,
the presence of technical losses and some errors that may arise during measurements (missing
data, synchronization) were considered. This method implemented the principal component
analysis to infer the topology of the use of smart meter measurements. This method proved to
be robust in the presence of distributed generation. In Reference [125], the authors presented an
algorithm for topology estimation based on voltage measurements from smart meters. Validation
results showed that 9 out of 10 of the estimates were correct in secondary circuits of a Georgia
Tech distribution system, even in noisy environments. The authors mentioned that it is extremely
important to have ultra-precise measurement devices for correct estimation of voltage drop based
topology, especially when analyzing short lines feeding small loads. In Reference [126], a graphical
model to identify distribution topologies based on a probabilistic relationship between different
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voltage measurements was proposed. Additionally, the authors proposed an expansion-tree
based algorithm aimed at minimizing the Kullback-Leibler divergence in a distribution system.
In Reference [127], an algorithm to correct connectivity errors of smart meters and meters on
distribution feeders was developed. This algorithm identified the neighboring meters through a
voltage profile correlation analysis.

4.3. Power Quality Monitoring Applications

In this last section, recent applications of PQM devices are shown, considering different methods.
Table 6 shows a general summary of the applications, methods, and PQM input/output data obtained
from 18 articles published in recent years. The PQM applications are divided into six groups, of which
the optimal placement group can be highlighted by the number of publications in recent years. One of
the groups included in this table was the power quality monitoring systems, which is basically the
application of PQM in the distribution network of some countries that have carried out projects to
improve the quality of transported energy.

• Optimal Placement: This large application group describes some recent approaches to determine
the optimal positioning of PQM, with the aim of minimizing network investment costs.
In Reference [128], the authors implemented the TLBO algorithm to optimally locate PQMs
by considering degradation in large distribution networks. The objective of this approach was
to minimize the number of PQMs in order to minimize the costs of assets in the monitoring
system. In Reference [129], the authors proposed the MEAT optimization algorithm to find the
best locations to install advanced PQM in distribution network. This proposed approach had
multiple objectives, such as minimizing monitoring investment costs, minimizing voltage drops,
and maximizing system observability. The authors recommend this approach for those electricity
companies that need to evaluate the investments they will make to optimally improve network
observability. In Reference [130], authors proposed the seeker optimization algorithm to find
the optimal locations of PQM devices in a 14-bus test system. The test system results showed
that with few locations of the PQMs the values of the harmonic state were accurately estimated.
In Reference [131], an optimization algorithm based on Bayesian network models was proposed.
The objective was to minimize the investment costs of PQ monitoring devices and to maximize
the observability of the distribution network. Evaluation results showed that this algorithm
significantly reduced the uncertainty of PQ values on unsupervised feed links. In Reference [132],
the authors proposed a probabilistic method to observe the uncertainty associated with high/low
impedance faults in distribution systems. The objective was to determine the optimal location of
PQM devices to maximize observability in the system. In addition, two indices were proposed
in this work to quantify the robustness of distribution networks with different voltage drops.
The authors in Reference [133] mathematically analyzed the impact of the accuracy of state
estimation (with power meters) by varying the spatial distribution and number of devices installed
in the network. The objective was to minimize the number of devices to be installed and to identify
the optimal location in the distribution networks, ensuring a desired accuracy in the estimation of
voltage and current. The results show that the proposed mathematical framework is a useful tool
for the design of optimal device placement strategies in current monitoring systems.

• Fault Location: Due to the high sampling rate and precision of this device, some authors have
proposed algorithms to track faults in distribution systems. In Reference [134], the authors
proposed a PQ disturbance predictor based on a Multi-Hidden Markov Model (MHMM).
This predictor analyzes large volumes of data, including local weather variables to improve
forecast accuracy, and also incorporates a Hadoop system that reduces calculation times for very
complex systems. The forecast of this model can be adapted to different resolutions (minutes,
hours, days, or up to 3 weeks). In Reference [135], the authors proposed a multivariate data
analysis technique to locate line failures in unbalanced distribution systems.
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Table 6. Application groups of Power Quality Monitoring Data.

Application
Group Input Data Methods Output Visualization Year

(Reference)
Is It Real

PQM Data ?
Simulation

Data?

Optimal Placement

Topology of Distribution
Grid (Line parameters,
Transformers capacity,
Loads and generation).

Historic Measurement of
PQM (sag/swell, THD)

1. TLBO Algorithm
2. Multi-objective Evolutionary
Algorithm with Tables
3. Seeker Optimization
Algorithm based on Pareto
4. Entropy-based and Bayesian
Network Model
5. PMRA Algorithm
6. WLS Method

Optimal placement of
PQM in complex

distribution networks.

1. 2019 [128]
2. 2018 [129]
3. 2018 [130]
4. 2016 [131]
5. 2016 [132]
6. 2018 [133]

1. No
2. No
3. No
4. Yes
5. No
6. No

1. Yes
2. Yes
3. Yes
4. Yes
5. Yes
6. Yes

Fault Location
3-Phase Voltage and
Current Transient,

such as Sags/Swell.

1. Multi-hidden Markov model
2. LAMDA technique.
3. Fault distance estimation

Locate and forecast the
presence of PQ disturbances,
and determine the fault type

on radial DS.

1. 2019 [134]
2. 2007 [135]
3. 2007 [136]

1. Yes
2. Yes
3. Yes

1. No
2. No
3. No

Harmonic Analysis

3-phase Voltage and
Current magnitude of

harmonic distortion, Odd
harmonics, flicker, THD.

1. Fast Fourier Transform
2. Fourier Analysis
3. Fourier Analysis

Describe harmonic behavior
at an individual site, as well
as at many sites across a DS

using different indices of PQ.

1. 2017 [137]
2. 2016 [138]
3. 2016 [139]

1. Yes
2. Yes
3. Yes

1. No
2. No
3. No

Power Quality
Monitoring System

Power quality indices
(Voltage and current

sags/swells, THD, indi-
vidual harmonics, flick-

ers, etc.)

1. Sag reporting techniques.
2. Data acquisition system.
3. Data acquisition system.
4. Load Flow Algorithm

Power Quality Monitoring
Projects for Distribution

Network Service Providers.

1. 2018 [65]
2. 2017 [140]
3. 2017 [141]
4. 2019 [142]

1. No
2. Yes
3. Yes
4. Yes

1. Yes
2. No
3. No
4. No

Data error detection
Voltage and current

phasors, THD, TDD, and
short term flicker.

1. Correlation Analysis
Detection and correction
error in PQ monitoring

data.
1. 2017 [143] 1. Yes 1. No

Load Modeling

RMS voltage and current,
Active and Reactive Power,
during disturbances on the

upstream networks.

1. Load parameter derivation
Derive, test, and verify

the dynamic load model
parameters.

1. 2013 [144] 1. Yes 1. Yes
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This technique was based on PQM devices installed in distribution substations, line parameters
and the topology configuration. The authors concluded that the proposed technique benefits
operators to accelerate the tasks of system restoration (permanent faults). In Reference [136],
the authors designed a power quality software to identify and locate faults in distribution feeders.
This software performs a short circuit analysis based on historic and real measurements of
PQM. The validation results showed that this software has better accuracy for locating faults in
distribution feeders than some commercial software.

• Harmonic Analysis: These application refers to detect harmonics or abnormal behaviours in
distribution system using advanced PQ devices. The authors in Reference [137] presented multiple
techniques to locate harmonic sources in distribution grids using PQ data. The objective was to
design strategies to mitigate potential problems. Additionally, in this work a harmonic compliance
index was presented, which allows to give a quick indication about violations of the permissible
harmonic limit in a particular site. In addition, a graphical method based on harmonic reports
showed a wide detail of harmonic performance in many sites in a compact form. The authors in
Reference [138] presented several digital processing techniques to detect missing or abnormal data.
The validation tests were implemented in 8 German networks with residential, commercial and
mixed customer loads. The authors concluded that: "The identification of useful information cannot be
manual anymore and requires a comprehensive set of intelligent and automated analysis tools". Authors in
Reference [139], compared the robustness, flexibility, and limitations of a composite bus index
and an aggregate bus index. These two indices were proposed and validated in a test system to
evaluate the PQ of buses installed in distribution networks. The authors concluded that these
indices were closely related and it is important to provide an adequate weighting in order to have
a greater flexibility between them.

• Power Quality Monitoring System: Power Quality Monitoring Systems (PQMS) have been
implemented in several countries to improve the power quality in distribution systems.
In Reference [65], the authors designed a power quality monitoring software based on real-time
data. This software was capable to analyze complex power quality problems using a FPGA-type
hardware that worked as an independent integrated system. The authors concluded that these
modern monitoring system substantially improve the life of the assets that make up the smart
grids. Authors in Reference [140] presented a project report of a power quality monitoring
system which has been in operation in Australia since 2002. The objective of this report was to
provide a general overview of the main problems found during the development of the PQMS.
The authors concluded that monitoring systems with advanced measurement devices capable
of providing PQ indices will rapidly increase in future power grids. Authors in Reference [141]
designed a PQ monitoring system for a new generation of substations located in Shanghai, China.
This system was based on international communication standards that allow remote monitoring
of harmonics at a frequency of 12.8 kHz. This system is capable to analyze complex power quality
problems, as well as the location of harmonic sources in the distribution networks. An improved
hardware/software architecture with a real-time monitoring and control system for the integration
of micro grids into MV distribution networks was presented in Reference [142]. The proposed
system is capable of estimating the power flows of the medium voltage branch by means of load
power measurements and a suitable load flow algorithm. The proposed system was considered
more efficient than SCADA implementation.

• Data error detection: Data error detection is the process where the system automatically detects
and corrects errors in PQ monitoring data. In Reference [143], an automatic detection and
correction of errors system was developed based on data captured by PQ meters installed on
a UK smart grid. The objective of the automatic system was to reduce the number of errors
caused by various factors, such as poor installation of the devices, poor synchronization between
multiple PQMs or by non-captured data (missing data), and maximizing the useful data for future
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network operations. The authors conclude that the number of errors can be reduced considerably
by adopting a correct installation procedure for PQ monitoring devices.

• Load Modeling: To represent the loads of an electrical network, mathematical models are used
to simulate the dynamic or static behavior considering the active and reactive power of the
load with respect to the variation of the voltage and frequency. In Reference [144], the authors
derived the parameters of a dynamic load model of an 11 kV distribution network using a power
quality monitoring system. The measurements used in the load model includes voltages, currents,
active power, and reactive power at a sampling frequency of 1.6 kHz. To validate these results,
the distribution network was simulated in a software using the parameters of the load model
obtained and the load response to a disturbance was compared against a real disturbance in the
distribution system captured by the PQMs. The general conclusion of this work was that 30–40%
of the commercial loads considered in the distribution network are composed of induction motor
loads, and if you want to make an accurate load model at the distribution level it is imperative to
consider them.

5. Conclusions

This work made a comparison of eight advanced measurement devices for distribution networks
based on their technical characteristics, including the sample frequency, reporting periods, measuring
data, costs, precision, and time response. The comparative results showed that micro-phasor
measurement unit and power quality monitor devices have the best performance overall to track
dynamic and transitory events in distribution systems, due to their high-precision measurements,
communication systems and remote storage of the extracted data.

This work also reviewed the most recent applications of µPMU, smart meters, and PQM data,
considering novel methods and techniques. In addition, an input-output table that relates measured
quantities from µPMU and smart meters needed for each specific application was developed in this
review. From the extended literature reviewed in this work, the following conclusions are drawn:

1. The dominant applications of interest for µPMU data is currently leaning towards analyzing
situational awareness events and estimating the state variables of the system in near real-time.
With the extremely high resolution (sampling rate up to 30,720 s/s), amplitude accuracy of 0.05%,
and angle accuracy of 0.01%, it is possible to visualize transitory events in the distribution network.
The sensor accuracy can have a strong influence on the uncertainty of the quantities to be measured
and thus can highly impacting in the algorithms performance.

2. The dominant application of interest of smart meter data is currently driven to forecast future
load consumption in a short term horizon based on artificial intelligence, machine learning,
and deep learning techniques. Topology identification is also of current interest due to the limited
knowledge about the topology of low voltage networks. Some novel methods are related to
correlation techniques and graph theory methods.

3. The most recent applications of PQM devices are related to find the optimal placement of the
PQM based on multiple objectives, focusing on minimizing the cost of monitoring, minimizing
topological ambiguity and maximizing the load monitoring.

The integration of µPMU, PQM, and smart meters is an alternative to improve visibility, precision,
and security in active distribution systems. However, the large amount of data generated with the use
of these devices is a challenge that demands high computational complexity and the development
of efficient algorithms with the ability to process information in real-time. Data connectivity with
different resolutions, parameters, and locations is a challenge that requires further investigation.



Energies 2020, 13, 3730 26 of 34

Author Contributions: A.E.S.-G. and A.S. conceived the scope of the paper; M.S. and M.A.-P. provided technical
support and bibliographic recommendations of the lastest research topics. A.E.S.-G. wrote the paper with support
from A.S., M.A.-P. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been funded under the European Project RESOLVD of the Horizon 2020 Research and
Innovation Program (topic LCE-01-2016-2017), grant agreement number: 773715.

Acknowledgments: M.A.-P. is lecturer of the Serra Húnter program.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
ARMA Auto-Regressive Moving Average
CA California
CART Classification and Regression Trees
CCAD-SW Collective Contextual Anomaly Detection using a Sliding Window
CNN Convolutional Neuronal Network
CUSUM Cumulative Sum
DFT Discrete Fourier Transform
DFR Digital Fault Recorder
DNN Deep Neural Network
DSSE Distribution System State Estimation
DSTE Distribution System Topology Estimation
DT Decision Tree
DWD Distance Weighted Discrimination
DWT Discrete Wavelet Transform
FF-ANN Feed-Forward Artificial Neural Network
FPGA Field Programmable Gate Array
GBM Gradient Boosting Machines
GLM Graph Laplacian Matrix
GMM Gaussian mixture model
HAN Home Area Network
Hz Hertz
k-NN k-Nearest Neighbor
KF Kalman Filter
kV Kilovolts
LAMDA Learning Algorithm for Multivariable Data Analysis
LSTM Long Short Term Memory
LWLS-SE Linear Weighted Least Squares State Estimator
MHMM Multi-Hidden Markov Model
ML Machine Learning
MLR Multiple Linear Regression
MW Megawatt
NAN Neighborhood Area Network
NARX Non-linear AutoRegressive with eXogenous
NN Neuronal Network
NR Normalized Residuals
NTLs Non-Technical Losses
PAA Piece-Wise Aggregate Approximation
PCA Principle Component Analysis
PDCs Phasor Data Concentrators
PF Path Forest
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PLS Power Line Sensor
PMRA Probabilistic Monitor Research Area
PMU Phasor Measurement Unit
PQM Power Quality Monitor
PQMS Power Quality Monitoring System
pSVM Partially Support Vector Machine
PV Photovoltaic
R-NESE Regularized version of the Normal Equations based State Estimation
RF Random Forest
RMS Root Mean Square
SAE Stacked Autoencoder
SCADA Supervisory Control And Data Acquisition
SCSAE Stacked Convolutional Sparse auto-encoder
SM Smart Meter
SOM Self Organizing Map
SVD Singular Value Decomposition
SVM Support Vector Machine
SVR Support Vector Regression
THD Total Harmonic Distortion
TLBO Teaching Learning Based Optimization
TSV Time-Series Signature Verification
UDP User Datagram Protocol
WAMS Wide-Area Measurement Systems
WAN Wide Area Network
WLS Weighted Least Squares
WSMW Window Size with a Moving Window
WT Wavelet Transform
WTVSE Weighted Total Variation State Estimation
µPMU Micro-Phasor Measurement Unit
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