
energies

Article

Drivers of CO2-Emissions in Fossil Fuel Abundant
Settings: (Pooled) Mean Group and Nonparametric
Panel Analyses

Elkhan Richard Sadik-Zada 1,2,3,4,5,* and Wilhelm Loewenstein 1,6

1 Institute of Development Research and Development Policy, Ruhr-University, 44801 Bochum, Germany;
wilhelm.loewenstein@rub.de

2 Centre for Environment, Resources and Energy (CURE), Faculty of Management and Economics,
Ruhr-University, 44801 Bochum, Germany

3 Center for Economic Development and Social Change (CET), 80128 Napoli, Italy
4 Energy Transitions at Cambridge (Visiting), University of Cambridge, Cambridge CB3 9DD, UK
5 Centre for Studies on European Economy (AIM), Azerbaijan State University of Economics (UNEC),

Baku AZ1001, Azerbaijan
6 South African German Center of Development Research, University of the Western Cape, Cape

Town 7535, South Africa
* Correspondence: sadikebd@ruhr-uni-bochum.de or sadikebd@rub.de

Received: 24 May 2020; Accepted: 16 July 2020; Published: 1 August 2020
����������
�������

Abstract: The present inquiry addresses the income-environment relationship in oil-producing
countries and scrutinizes the further drivers of atmospheric pollution in the respective settings.
The existing literature that tests the environmental Kuznets curve hypothesis within the framework of
the black-box approaches provides only a bird’s-eye perspective on the long-run income-environment
relationship. The aspiration behind this study is making the first step toward the disentanglement of
the sources of carbon dioxide emissions, which could be employed in the pollution mitigation policies
of this group of countries. Based on the combination of two strands of literature, the environmental
Kuznets curve conjecture and the resource curse, the paper at hand proposes an augmented theoretical
framework of this inquiry. To approach the research questions empirically, the study employs advanced
panel cointegration techniques. To avoid econometric misspecification, the study also employs for
the first time a nonparametric time-varying coefficient panel data estimator with fixed effects (NPFE)
for the dataset of 37 oil-producing countries in the time interval spanning between 1989 and 2019.
The empirical analysis identifies the level of per capita income, the magnitude of oil rents, the share
of fossil fuel-based electricity generation in the energy mix, and the share of the manufacturing sector
in GDP as essential drivers of carbon dioxide emissions in the oil-rich countries. Tertiarization, on
the contrary, leads to a substantial reduction of emissions. Another striking result of this study
is that level of political rights and civil liberties are negatively associated with per capita carbon
emissions in this group of countries. Furthermore, the study decisively rejects an inverted U-shaped
income-emission relationship and validates the monotonically or exponentially increasing impact of
average income on carbon dioxide emissions.

Keywords: fossil fuels; electricity production; atmospheric pollution; structural change; autocracies;
multicollinearity; confounding variable; pooled mean group; nonparametric fixed effects

1. Introduction

Oil-producing countries account for more than 30 percent of global greenhouse gas (GHG)
emissions [1]. Countries such as Russia, Iran, Saudi Arabia, Mexico, and Indonesia belong to the top
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20 countries with the largest aggregate carbon dioxide (CO2) emissions worldwide [2]. With Saudi
Arabia on the top, Russia, Iran, Mexico, Canada, and Brazil also belong to the list of the 20 countries
with the largest per capita carbon emissions. The rest of the top carbon-emitting countries, both in
cumulative and in per capita terms, are high income and high-middle income economies [3]. According
to Herman Ott, climate scientist and lawyer at ClimateEarth, states abundant in fossil fuels have been
systematically trying to block real action within the framework of the Kyoto Protocol and its successor,
the Paris Agreement, by accusing the respective climate change action of heresy [4,5]. The potential
losses due to the global energy transition due to the consequent reduction of the demand for oil
and gas contribute to the obstruction of the deployment of carbon-saving technologies both within
these countries and partly abroad over the investment activity of the sovereign wealth funds of the
oil-rich countries.

The analysis of the intended nationally determined contributions (INDCs), i.e., the voluntary
climate pledges of the oil-producing countries in the framework of the Paris Agreement, shows that oil
producers differ in their mitigation strategies from the rest of the world. Their INDCs but also the
work of the One Planet Sovereign Wealth Fund Working Group are mostly confined to the increase of
renewables’ share in these countries’ energy mixes. By doing so, these countries first and foremost
strive for the diversification of the national economies by producing photovoltaic systems and wind
turbines. There are no noteworthy pledges of mitigation within the existing manufacturing or energy
sectors over the carbon-saving innovations, reduction of the emissions by end consumers, or the carbon
tax [1].

The literature on the drivers of environmental degradation in fossil-fuel producing and exporting
countries is dominated by the parsimonious polynomial ‘black-box’ specifications that test the empirical
validity of the environmental Kuznets curve conjecture. The ‘black box’ estimations with the average
income as an omnibus variable enable only the assessment of the long-run income-environment
relationship (IER). Such estimations allow no inference about the choice of concrete policies to mitigate
environmental degradation. Besides, the use of the conventional panel regression techniques that ignore
the time series traits of data, and the parametrization of economic specifications, i.e., pre-determinism,
could lead to spurious estimators. To address these problems, this study employs the (pooled) mean
group and nonparametric panel estimators.

Except Ike et al. [6], Esmaeli and Abdoullazadeh [7] and Sadik-Zada and Gatto [8], there is no
study, which addresses the issue of GHGs in oil-producing countries. Nevertheless, all three surveys
only assess the carbon footprint of the oil sector and the empirical validity of the environmental
Kuznets curve (EKC) conjecture. Despite putting forward a sophisticated theoretical framework in
Sadik-Zada and Gatto [8], their study enables only the compartmentalization of the GHG-footprint on
the theoretical level and confines itself to the assessment of the bivariate IER.

In contrast, the paper at hand strives toward disentangling the sources of atmospheric pollution
in the oil-abundant settings with a special focus on oil rent as a share of GDP and on sectoral structure,
whereby the quantity of the carbon dioxide emissions serves as the proxy of the magnitude of
atmospheric pollution. The findings of the study should contribute to the literature on global climate
change mitigation. Choosing carbon dioxide as the dependent variable is in line with the notion of the
global atmosphere as a sink for global GHGs [9]. Carbon dioxide is a long-lived climate pollutant and
has been recognized in academia as the major driver of global climate change through its greenhouse
effects. Sulfur oxides’ or oxides of nitrogen’s environmental repercussions are less severe in terms of
global climate change. Methane, a short-lived climate pollutant, which also emanates inter alia from
petroleum and especially combustion of the natural gas leads only to the temporary increase of the
global temperatures [10,11].

This paper attempts to contribute to the literature on oil abundance and the environment in two
ways. First, it represents a structuralist economic theory of natural resources-based development in
terms of environmental degradation. The second contribution of this inquiry is empirical. This is
the first study, which accounts for experimental evidence on the trade-off between multicollinearity
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and omitted variable bias. Therefore, it enables the identification of the major drivers of the carbon
emissions in oil-producing economies and the reassessment of the EKC hypothesis in the respective
context. The study makes use of the novel panel cointegration techniques, which account for the
mixed-stationarity, panel heterogeneity, and endogeneity issues. Furthermore, to exclude the model
misspecification problem, which is imminent in the parametric specifications, the study also employs
novel nonparametric estimators, which are mostly in line with the panel cointegration estimators.

Turning the “black box” of the economy-environment relationship into a “white box” has practical
repercussions for the policy formulation in the context of the national climate change mitigation policies
in the fossil fuel reliant settings. The contemporary policymaking in the oil-rich settings lacks a reliable
empirical basis for the scenario analysis of different environmental policy choices.

The remainder of the manuscript is organized as follows: The literature review in Section 2
analyzes the existing scholarship and puts forward the theoretical framework. Section 3 delves into
methodological aspects of the inquiry, puts forward a multi-sector model of environmental degradation,
and delineates the theoretical framework. Section 4 is dedicated to data issues. Section 5 presents the
empirical estimation results. Section 6 elaborates on the implications of empirical findings and gives
policy recommendations.

2. A Brief Literature Review

2.1. Income–Environment Relationship—The “Black Box”

The literature on the GHG-footprint of petroleum abundance is dominated by inquiries, which
try to test the empirical validity of the inverted U-shaped income-environment relationship (IER),
also referred to as the environmental Kuznets curve (EKC) conjecture, a paradigm that has been
dominating the discussion on the economy–environment nexus for more than two decades. The EKC
replaced the Impact-Population-Affluence-Technology (IPAT) equation in the mid of the 1990s, which
presented a kind of neo-Malthusian view on environmental degradation.

The IPAT equation implies that the level or the magnitude of environmental degradation (I) can
be explained by population growth (P); affluence (A), i.e., the level of income; and by the level of
technological progress (T). All three drivers, population growth, the level of income, and technological
progress, deemed to be contributors to the level of environmental degradation. For Ehrlich [12] in his
bestseller The Population Bomb and Club of Rome’s Limits to Growth, technology has been considered as
a factor with a negative or neutral impact on environmental amenities [13]. It seems that until 1973,
the year of the first oil shock, the pollution-saving technological progress has not been considered at
all in the realm of environmental economics and general technological progress had exclusively been
taken as a pollution-augmenting phenomenon [9].

The pessimism of the Club of Rome has been first seriously contested by the Intensity of Use
(IoU) hypothesis put forward by Malenbaum [14]. He detected an inverted U-shaped relationship
between metal-intensity and average GDP. The arguments of the IoU hypothesis have been deeply
rooted in the structural paradigm of economic development, whereby increasing material-intensity
of the economy can be attributed to the level of economic development epitomized by the economic
structure, i.e., sectoral composition of the economy [15–19]. In the early 1990s, the inverted U-shaped
relationship was re-detected in the context of environmental degradation by Ehrlich and Holdren [20–22].
Panayotou [23] dubbed this empirical regularity the environmental Kuznets Curve (EKC) (Figure 1).

There are several common theoretical explanations for the existence of the inverted U-shaped
IER. The first explanation is related to the changing structure of the economy [24]. In the process
of transformation from being predominantly traditional to relying on industry and mechanized
agriculture, environmental degradation in a country first increases [25,26] and later gradually falls
during the displacement of carbon-intensive manufacturing by less carbon-intensive knowledge-based
production [27]. Environmental upgrading, triggered by transformation of economic structure from
mining and heavy industry toward the tertiary sector and knowledge economy development is known
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in the EKC-literature as the composition effect. Growing emissions at the early stages of economic
development can be attributed to the development of mining and heavy industry. If the growing
emissions are being induced by the growing level of per capita income then the increasing level of
environmental pollution is the result of the so-called scale effect. According to the structuralist view of
EKC-literature, at the early stages of economic development, the scale effect is the major driver of CO2
emissions as indicated by the upward sloping dashed arrow in Figure 1.

The second explanation, illustrated in Figure 1 by the downward sloping dashed arrow, claims
that with an increasing standard of living people start to value environmental amenities more, which
is expressed by an increased readiness to pay for a cleaner environment. In the mathematical
models of resource use, this is usually reflected by increasing shadow prices of the stock of the
natural environment [28]. This appreciation of the environment comes in its own in the settings with
functioning democratic institutions and civil liberties [29].
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(2013) [29].

The third explanation is tied to the investment in research and development (R&D), which takes
place over-proportionately in high-income countries. The role of R&D investment as continuously
fueling per capita income growth is the central aspect of models that have been embedded in the
endogenous growth framework [30–32]. Rich nations afford more stringent environmental regulations
and larger R&D investments in pollution-saving technologies, which induce more material- and
energy-efficient economic growth [33].

The mentioned drivers of the inverted U-shaped IER are not mutually exclusive but rather
complementary. In our opinion, the first-mentioned driver, the changing structure of the economy,
triggered by the initial accumulation of capital and subsequent investment activities, is the primary
cause of the inverted U-formed IUR. An increasing shadow price of the stock of the natural environment
and an increasing leeway for R&D investments are repercussions of the industrialization-led increase
of average income levels. Hence, in the following, we deem the changes in the valuation of
environmental amenities and the introduction of carbon-saving technological progress as concomitants
of economic modernization, which is epitomized in the changing sectoral composition of the respective
economies [34].

2.2. Inside the “Black Box”

Sadik-Zada and Gatto [8] show that structural transformation could be gravely deformed by
petroleum windfalls and could break the conventional pathways of decarbonization in the oil and
gas exporting countries. The present study augments this theoretical framework by delving into the
relationship between variations in the level of income and the tertiarization of the economy (Figure 2).
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Fossil fuel combustion is responsible for about one-third of the anthropogenic CO2 emissions ([35],
p. 159). The petroleum value chain is the key driver of climate change [6,36]. The largest CO2 emissions
emanate from the oxidation of carbon, over fossil fuel combustion in power plants, oil refineries,
and large industrial facilities. More than one-third of the GHGs in the oil-producing countries can be
attributed to the petroleum value chains [37]. Nevertheless, these chains are not located exclusively in
the oil-producing countries as all countries worldwide have their petroleum complexes. However,
the two most energy- and carbon-intensive stages of the petroleum value chain, i.e., extraction and
refinement stages, are mainly located within the oil-producing countries [38] where they contribute
significantly to global GHG emissions (s. Figure 2, black arrows).

The petroleum value chain is certainly not the only source of the GHGs that is influenced by
oil abundance. The influx of windfalls resulting from the exports of crude oil is another not less
powerful channel, which is triggered by oil abundance. Such windfalls have strong fiscal linkage
effects on the respective economies [39]. Especially since the inception of the boom phase of the latest
commodity supercycle that started in the late 1990s, oil and gas revenues dominated the economies
of the petroleum-exporting developing and transition countries. This dominance leads to grave
consequences concerning the quality and dynamics of the structural change. The major implications
of the resource curse (s. Figure 2, red arrows), the Dutch disease and the deterioration of the quality
of political institutions, lead to the increasing costs, to the surge of the wage bill in the private sector,
especially manufacturing [40,41]. As a result, internationally traded goods from manufacturing and
agriculture lose their competitiveness on the international markets so that the local manufacturing
and agriculture stagnates or even falls [42,43]. As mechanized agriculture and manufacturing are
responsible for more than 30 percent of the emitted GHGs worldwide [44,45], the stagnation or
contraction of these carbon-intensive sectors could lead even to a net decrease of GHGs [46,47].

Triggered by oil windfalls, the tertiary sector, and especially non-tradable services, are not exposed
to this kind of competitive pressure and grow at a relatively high pace [48]. This contributes to the
acceleration of the tertiarization, which is expressed in the growing share of the tertiary and stagnating
share of the manufacturing sectors [40,41].

A further consequence of fossil fuel abundance is related to the social transfers and subsidization
of cheap oil and fossil-fueled power for intermediary inputs and end consumption. The Fossil Fuel
Subsidies Database of the International Energy Agency (IEA) shows that oil-exporting developing
countries’ fossil fuel subsidies in per capita terms are a tenfold of that of oil-importing developing
countries [49]. With the level of subsidies of 1308 USD per capita, Kuwait has the greatest fossil-fuels
subsidies worldwide, Iran, with 1038 USD per capita comes second, and Saudi Arabia comes third
with a per capita subsidy of 838 USD. In essence, this kind of subsidization is tantamount to a negative
carbon tax. This indicates that oil-rich countries do not follow just lax environmental regulations, but,
in contrast to oil importers, even subsidize atmospheric pollution [48]. This kind of policy supports
energy-intensity and the surge of fossil-fuel combustion-based power and heat generation and fuels
GHG emissions (s. Figure 2). The world electricity production during the last five years has largely
been driven by oil-producing countries, which generated electricity mostly in oil-fueled power plants,
as reported by Enerdata [50].

The above-presented review reveals that there are several channels, through which oil abundance
shapes global atmospheric pollution, which emanates from oil-rich countries. These include the
petroleum value chain’s direct emission effects, the oil-growth nexus, and especially Dutch disease,
the massive subsidization of fossil-fueled thermal power and heat generation, and the pre-mature
de-industrialization theses [51,52]. Figure 2 combines these different perspectives and outlines the
conceptual framework of our analysis, which we will use in the following sections to answer the
following questions:

Q 1: Does the inverted U-shaped IER hold in the case of the oil-producing countries?
Q 2: What is the net carbon-footprint of fossil-fuel abundance on the level of carbon dioxide emissions?
Q 3: What are the essential drivers of carbon dioxide emissions in oil-producing countries?
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Given the significance of oil-producing countries’ role in global atmospheric pollution and the
complexity of the oil sector-GHG nexus, addressing the above-listed questions means dealing with
a topic of considerable relevance for global debates on the mitigating climate change. Answering
these questions requires the identification of the net and disentangled GHG-footprint of oil abundance,
which by far from trivial and necessitates a sophisticated empirical approach. The next subsection is
dedicated to these issues.
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3. Methodology

In this subsection, first, we briefly discuss the collinearity and confounding variables that emanate
from the proposed conceptual framework in the light of the latest experimental findings in this regard.
In Section 3.2, we present the polynomial regression estimation procedure and related problems.
Section 3.3 illustrates a nonparametric panel regression approach.

3.1. Multicollinearity and Confounding Variable Issues in Ecological Analyses

In contrast to ‘black-box’-dominated studies to test the validity of the EKC hypothesis, applied
ecological research usually employs multiple regression approaches [53,54]. The central problem of
multiple ecological regressions is that ecological response variables depend on explanatory variables
that are often multicollinear, i.e., correlated with each other.

This study is confronted with both multicollinearity and confounding variable problems. As shown
in Figure 2, de-industrialization, the level of per-capita income and tertiarization are interrelated. This
is an indication of the existence of multicollinearity at the theoretical level. The variation inflation
factor (VIF) for the set of variables, which is predicated on the theoretical framework indicates a VIF
of 3.66 (s. Appendix A.1). The correlation matrix of coefficients of the xtpmg model, which will be
employed in the following subsection, gives fairly light indications for the existence of multicollinearity
(s. Appendix A.2).

Crude oil production in Figure 2 affects GHGs (dependent variable) both directly over the oil
value chain and indirectly over other dependent variables. Hence, there exists a confounding variable
problem too. Also, it can be assumed, that especially in the case of the less developed countries, the oil
sector emanates strong production and fiscal linkage effects that dominate the whole economy. This is
the essential determinant of all the processes in the respective economies. Literature shows that this
assumption holds for most oil-dependent developing and transition economies.

Literature associates multicollinearity with a higher coefficient of determination; low t-values
of the variables; statistical insignificance of relevant variables; an incorrect sign of the coefficients;
and substantial volatility in parameter estimates [55–57]. VIF is the ratio of variance with many
independent variables by the variance of the regression with just one variable. A VIF of n implies that
the variance of i-th coefficient is n times greater than in the case with no multicollinearity [58].
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In Greene [56], Wooldridge [59], Rogerson [60] and Menard [61], and Petraitis et al. [62], VIFs
of over 20, over 10, over 5, and 2, respectively, have been indicated as the thresholds for strong
multicollinearity. All these thresholds, however, are arbitrary without any theory behind them. Hence,
there is no generally accepted threshold of VIF in the literature [63].

To account for multicollinearity, the researchers often exclude the variables inducing
interdependence of the predictors and leave only essential independent explanatory variables [54,64,65].
In contrast to applied ecological surveys, economics, and business administration studies, elimination
of the variables with large partial correlations with other variables is the most proliferated methodology
in reducing collinearity [64–66].

This procedure reduces multicollinearity but at the same time contributes to the omitted variable
bias and thus, can cause a substantial reduction of the explanatory power of econometric analyses [53,67].
Furthermore, the elimination of one or more predictors alters the theoretical foundations of econometric
specifications [68].

Lindner et al. [67] and Wooldridge [59], nevertheless, contest the critical stance towards
multicollinearity and discourage applied researchers from eliminating interdependent predictors from
econometric specifications. According to Allison [69] and Lindner at al. [67], the omission could lead to
even more detrimental consequences in terms of the efficiency of the estimations than collinearity itself.
In their simulation studies, collinearity of the variables led to the inflation of standard errors and at the
same time contributed to the efficiency of the estimators, if the variables were relevant. Graham [54]
shows that, especially in ecological forecasting, whereby the target is the prediction of the dependent
variable, the correlation between the variables on the right-hand side of the estimation equation does
not diminish the predictive capability of the model.

Gordon [70] proposed a more elegant solution of collinearity by combining two or more highly
correlated variables as one variable. This is a kind of composite index building strategy, which
also corresponds with a myriad of methodological problems related to the unified scaling of the
variables [71].

Furthermore, there is also another issue, namely, the confounding variable problem, if there exists
a variable that influences both dependent and independent variables. Ignoring such a variable could
lead to over- or underestimation of the strength of the independent variables and/or a change of the
sign of an effect [59].

Another econometric issue, which is more important for the forecasting of the IER has been
indicated in Bertinelli and Strobl [72] and later in Azomahou et al. [73]. The studies indicate that
despite some important merits, confinement of the specifications to just one independent variable,
per capita income, alters the speed of convergence, i.e., the adjustment term.

The paper at hand makes the first step toward breaking the dominance of the bivariate black-box
approach and employs both bi- and multivariate regressions to analyze the forces that drive carbon
emissions in the oil-producing countries.

3.2. Parametric Specification

Our empirical strategy for the assessment of Q1 and Q3 is in line with Calvancanti et al. [60] and
is based on the following model specification:

ln COPCit = a j + β1 ln (PCI)it + β2ln(PCI)2
it

+β3Power f rom Fossilsit + β4Teriarizationit

+β5Manu f acturingit + β6(Oil Rent)it + β7(Oil Rent)2
it + uit

(1)

where a j denotes country-specific fixed effects iable, PCIit is the indicator for per capita income, PCI2
jt is

the second control variable, which indicates the squared value of per capita GDP, Power from Fossils is
the share of fossil-based electricity in total electricity production, Tertiarization is the share of services
sector value added in GDP, Manufacturing is the absolute value of the manufacturing value-added,



Energies 2020, 13, 3956 8 of 24

Oil Rent is the share of oil rent in GDP and (Oil Rent)2 is oil rent’s squared value for countries i = 1, J
and time periods t = 1, T, and uit is the error term.

For the assessment of Q2, the net carbon footprint of oil, the study employs the ‘black box’
approach. The corresponding econometric specification reads as follows:

ln COPCit = ai + β1 ln _Oilit + uit (2)

The advantage of the parsimoniousness of the model is that the broad number of country-specific
time-irreversible factors are captured by the country-specific deterministic factor, ai. The same holds
for ui j concerning the unobserved common factors [60].

3.3. Pooled Mean Group Estimators and Dynamic Fixed Effects

The central advantage of the pooled mean group (PMG) approach panel cointegration approach
is that the PMG estimators, in contrast to the conventional fixed and random effect panel estimators,
account for the time series characteristics of the panel data sets. The unique methodology
proposed in Pesaran et al. [74] accounts for panel heterogeneity, endogeneity of variables and
allows mixed-stationary, i.e., the mixture of the I(0) and I(1) processes in the same estimation equation.
In addition, the underlying autoregressive distributive lag model (ARDL) allows for disentangling
the short- and long-term effects, differences in error variances, and the intercepts [75]. The further
advantage of the PMG procedure over other panel estimation methodologies is its robustness to the
outliers and lag orders. The PMG estimator also accounts for the heterogeneity in the short-run
responsiveness, error variances, and the intercepts in the panel datasets [76]. This is the reason for the
increasing popularity of the PMG-estimators for the assessment of the IER since the mid-2000s [77–79].

Until now, the issue of environmental pollution in petroleum-producing countries has not been
addressed within the PMG framework. PMG assumes a heterogeneous short-term and homogenous
long-term response, i.e., cointegrating vector, across the panel. A similar estimator, the mean group
(MG) approach, assumes that both short- and long-term responses across the panel are heterogeneous
and calculates country-specific short- and long-term coefficients. We decide to use a PMG estimator
based on the Hausman test statistics. The study employs dynamic fixed effects (DFE) in cases, whereby
due to computational reasons the employment of (P)MG fails. Like PMG, DFE also restricts the
cointegrating vector to be equal across countries. In addition, DFE restricts the speed of adjustment
term and short-run coefficients to be identical for all panels [80].

3.4. Nonparametric Fixed Effect Panel Analysis

The use of parametric regression models is justified, if the function that describes the relationship
between dependent and independent variables is known. It is well established that parametric
regression models may cause model misspecification [81]. Bradley and Srivastava [82], and Brauner
and Shacham [83], show, nevertheless, that collinearity among the independent variables in the
polynomial regression models may substantially confine the predictive capabilities of these models by
yielding inconsistent estimators [84,85]. Furthermore, parametric analyses, especially in the context of
climate change research, reveal that these models often do not approximate the relationship between the
variables [86]. Hence, in the framework of our analyses, nonparametric trending models, which enable
the data to “speak for themselves” are superior to parametric linear and polynomial models [87,88].
Despite its proliferation for the analysis of the cross-sectional and time series analysis, nonparametric
and semi-parametric data analysis for panel data came to their own only after publication of Li et
al. [84]. The paper at hand employs the nonparametric time-varying coefficient panel data model with
fixed effects suggested there.

To obtain the nonparametric time-varying coefficients based on the panel data analysis with fixed
effects we utilized the Stata module xtnptimevar. These estimators assess the effects of the independent
variables on the dependent variables in a nonlinear fashion in the context of the panel data without
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imposing a specific functional form. In other words, they want the data to reveal the functional form by
letting the data speak for itself. The command xtnptimevar exactly does that. It offers two estimators:
the local linear dummy variable estimator (the default) and the averaged local linear estimator. Both of
these techniques allow for estimating coefficients that vary over time for panel data models [89].

The nonparametric trending time-varying coefficient panel data model has the following form

Yit = f (t) + XT
itβt + αi + uit (3)

where f (t) are unknown functions. In the case of this inquiry, f (t) are unknown country-specific

trend functions; βt =
(
βt,1, . . . , βt,k

)T
is an unknown vector of time-varying coefficients; ai represents

unknown individual effects; and ui is stationary for each i; T is the time series length and N is the
cross-section size. The proposed model is a fixed-effects model if αi is allowed to be correlated with
{Xit} with a non-specified correlation structure [88,89]. Furthermore, for the sake of identification,

it is assumed that
N∑

i=1
ai = 0 and that the time variable T is scaled by T, such that f (t) = f (τt) and

βt = β(τt), whereby τt = t/T ∈ [0, 1] [87].
Following Su and Ullah [83] and Sun et al. [84] and based on comparisons between the averaged

local linear estimates (ALLE) and local linear dummy variable estimates (LLDVE), Li et al. [90] proposed
the LLDVE as a superior procedure in terms of the rate of convergence for the coefficient function.
Both ALLE and LLDVE remove fixed effects by deducing a smoothed version of the cross-time average
from each panel [90]. LLDVE is based on the following three assumptions. These are:

(1) Xit and αi can be correlated; (2) uit may be cross-sectionally dependent for each i and
independent of Xit; and (3) uit is in line with certain martingale difference conditions concerning
time [85]. The bandwidth selection and bootstrapping of the confidence intervals is efficiently exhibited
for an analogous survey in Silvapulle et al. [91].

The nonparametric estimations presented in this subsection complement the PMG, MG and DFE
estimations by analyzing the aspect that cannot be analyzed in the framework of the parametric research,
i.e., the time-varying impact of variations in income, oil-dependence, power and heat generation, and
of tertiarization on the carbon footprint.

4. Data

The data structure is a balanced panel of 37 oil-producing and exporting countries in the time
interval spanning between 1989 and 2019. The list of countries is provided in Appendix A.3. All
the variables except for the Political Rights Index (PRI) and Civil Liberties Index (CLI) have been
provided by the World Bank, World Development Indicators. PRI and CLI data have been prepared by
the Freedom House. The employed data series and their transformations have been outlined in the
following Table 1.

The study makes use of the elaborations in Törnqvist et al. [92] and the findings in the follow-up
inquiry in Gerdes [93], which show that in the context of the panel regression analysis, working
with the logarithmic share variables yields more efficient estimation results, rather than actual shares
when estimating fixed-effects models. Gerdes [93] shows that the linear estimator inversely weights
variations in shares by its denominator.

In the face of the asymmetry of the linear estimator, the implicit weighting of the share variables
paves the way for the spurious correlation between the share and the dependent variable and systematic
measurement errors [93–95]. Hence, to avoid spurious results caused by the combination of shares
and fixed effects, the study employs logs of the shares of oil rents, tertiary sector, and fossil fuels as
independent variables [96].

Furthermore, because the shares of the manufacturing and tertiary sectors’ shares in total GDP are
complements, to avoid collinearity the study employs the log-share of the tertiary sector in GDP and
the natural logarithm of the absolute value-added of the manufacturing sector as dependent variables.
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Table 1. Description of data.

Variable Description/Transformation Source

LN_CO2_PC
Per capita carbon dioxide emissions. Carbon dioxide emissions are those stemming from the burning
of fossil fuels and the manufacture of cement. They include carbon dioxide produced during
consumption of solid, liquid, and gas fuels and gas flaring.

World Development Indicators 2020

LN_PCI

Natural logarithm of GDP per capita. GDP per capita is gross domestic product divided by midyear
population. GDP is the sum of gross value added by all resident producers in the economy plus any
product taxes and minus any subsidies not included in the value of the products. It is calculated
without making deductions for depreciation of fabricated assets or depletion and degradation of
natural resources. Data are in constant 2010 U.S. dollars.

World Development Indicators 2020

LN_PCI2 Natural logarithm of the squared value of per capita GDP. World Development Indicators 2019

LN_Oil_Sh Share of oil rents in total GDP. Oil rents are the difference between the value of crude oil production at
world prices and total costs of production. World Development Indicators 2019

LN_MVA
Natural logarithm of the Manufacturing Value Added. Manufacturing refers to industries belonging
to ISIC divisions 15–37. Value added is the net output of a sector after adding up all outputs and
subtracting intermediate inputs.

World Development Indicators 2020.

Ln_Tertiarization

Natural logarithm of the share of services as a share of GDP. Services correspond to ISIC divisions
50–99 and they include value added in wholesale and retail trade (including hotels and restaurants),
transport, and government, financial, professional, and personal services such as education, health
care, and real estate services.

World Development Indicators 2020.

LN_POWER_FOSSILS

Natural logarithm of the share of electricity production from fossil fuels in total electricity production.
Sources of electricity refer to the inputs used to generate electricity. Oil refers to crude oil and
petroleum products. Gas refers to natural gas but excludes natural gas liquids. Coal refers to all coal
and brown coal, both primary (including hard coal and lignite-brown coal) and derived fuels
(including patent fuel, coke oven coke, gas coke, coke oven gas, and blast furnace gas). Peat is also
included in this category.

World Development Indicators 2020.

Political Rights Index
The Political Rights index measures the degree of freedom in the electoral process, political pluralism
and participation, and functioning of government. Numerically, Freedom House rates political rights
on a scale of 1 to 7, with 1 representing the most free and 7 representing the least free.

The Freedom House 2020.

Civil Liberties Index
The Civil Liberties Index is a composite index that measures the degree of civil liberties. Numerically,
Freedom House rates civil liberties on a scale of 1 to 7, with 1 representing the most free and 7
representing the least free.

The Freedom House 2020.
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5. Estimation Results

5.1. Parametric PMG Regressions

In this subsection, the study presents the MG, PMG, and the DFE estimators. Before employing
these panel cointegration estimators, the study tested the time series for the existence of the unit-roots
and cross-sectional dependence. The Fisher-type panel unit root tests with zero and one lag indicate
that the series are I(0) and I(1) processes. None of the series is integrated of order two, i.e., I(2) processes.
The unit root test statistics are reported in the Supplementary Materials. This allows for the application
of the mentioned estimators. Pesaran test for weak cross-sectional dependence [97] indicates that in
the case of all econometric models, the null of “errors are weakly cross-sectional dependent” is rejected
at the one percent level, The test statistics are reported Table 2. Hence, it is not required to employ
Common Correlated Effects versions of MG, PMG, and DFE estimators [98].

Furthermore, for the test of the structural breaks the study employed the Clemente–Montañes–
Reyes double additive outlier unit root tests structural break tests for each of the 37 countries. The test
statistics are available as Supplementary Materials. We find that for most of the countries, 1994 and
2006 were the years of the structural change concerning carbon dioxide emissions. Because of the
strong indications of the structural breaks, the study employed the Westerlund panel cointegration
tests, which is compatible with structural breaks. The Westerund test indicates that all the variables are
cointegrated. This non-compulsory test shows additionally that the series are cointegrated. The (P)MG
and DFE estimators also confirm the validity of cointegration between the variables. All the adjustment
terms are statistically significant and negative. The inclusion of the additional independent variables
in the estimations in the PMG estimations leads to the slight increase of the adjustment speed from
−0.252 to −0.316. The MG estimator, the third model in Table 2, with −0.671, is much greater than that
of the other models. This is nevertheless, typical, that the adjustment parameter of the MG models is
higher than that of PMG.

Both the parsimonious PMG-Model 1 and multiple regression models, PMG-Model 2, MG-Model
3, PMG-Model 4, DFE-Models 5 and 6 indicate that a greater share of oil rents in GDP in the long-run
corresponds with more carbon emissions. One percent increase of the share of oil rents as a share of
GDP leads to a 0.0287–0.126 percent increase of the per capita CO2 emissions. The estimations find
no statistically significant short-term impact of the varying share of oil rents in GDP on emissions.
PMG-Model 3 indicates that the squared value of oil rents as a share of GDP has no statistically
significant impact on the level of per capita carbon dioxide emissions. The statistical significance in the
PMG-Model 2 vanishes after controlling for per capita income (PCI) in the MG-Model 3. MG-Model
3 and PMG-Model 4 indicate that the average income has a statistically significant positive short-
and long-term effect on per capita CO2 emissions. One percent increase of PCI leads in the long-run
to 0.567–0.666 percent increase of average CO2 emissions. In the short run, one percent increase of
average income leads to 0.340–0.447 percent increase of per capita CO2 emissions. DFE-Models 5 and
6 indicate that tertiarization also has a statistically significant positive short- and long-term impact
on carbon emissions: one percent increase of tertiary sector as a share of GDP leads in the long-run
to 0.125–0.312 percent and in the short-run to 0.193-0.357 percent increase of the per capita CO2

emissions. The tertiary sector, nevertheless, does not have a statistically significant impact on the level
of per capita CO2 emissions. Manufacturing sector output has a statistically significant long-term
effect on per capita CO2 emissions: a one percent increase of manufacturing value-added leads to
a 0.299 percent increase of per capita CO2 emissions. The parsimonious PMG estimations with the
squared value of average income do not validate an inverted U-shaped income-emissions relationship
(see Appendix A.4). One percent increase of average income leads to 0.872 percent increase in the
per capita CO2 emissions. Hence, both multivariate and parsimonious approaches, indicate a strong
validation for the monotonically increasing income-emissions relationship. The EKC conjecture has
been convincingly rejected.
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Table 2. Panel Cointegration Estimators, 1989–2019.

DEPENDENT VAR:
CO2EMISSIONS PER

CAPITA
Model 1 (PMG) Model 2 (PMG) Model 3 (MG) Model 4 (PMG) Model 5 (DFE) Model 6 (DFE) Model 7 (DFE)

VARIABLES Long-Term Short-Term Long-Term Short-Term Long-Term Short-Term Long-Term Short-Term Long-Term Short-Term Long-Term Short-Term Short-Term Long-Term

Adjustment Term (ec) −0.252 *** −0.271 *** −0.671 *** −0.316 *** −0.305 *** −0.393 *** -0.352 ***
(0.0395) (0.0402) (0.0678) (0.0572) (0.0258) (0.0327) (0.0331)

D.lnOil_Sh
0.0283 0.0144 −0.0146 0.0270 0.003 −0.00379 −0.014

(0.0273) (0.0193) (0.0289) (0.0197) (0.0132) (0.0153) (0.0146)

lnOil_Sh
0.126 *** 0.0634 *** 0.108 ** 0.0287 *** 0.0633 ** 0.0537 ** 0.102 ***
(0.0164) (0.0184) (0.0523) (0.00995) (0.0277) (0.0233) (0.023)

L2.lnOil2
0.0437 *** 0.00843
(0.00901) (0.0240)

L2D.lnOil2
−0.0180 ** −0.0115
(0.00820) (0.00890)

ln_PCI
0.666 ** 0.567 *** 0.274 ***
(0.266) (0.0252) (0.095)

D.ln_PCI
0.340 * 0.447 ** 0.248 *
(0.182) (0.212) (0.1430)

ln_Power_fossils
0.265 *** 0.090 * 0.0692 * 0.028
(0.0450) (0.0498) (0.0408) (0.0401)

D.ln_Power_fossils
−19.46 0.042 * 0.0355 0.051 ***
(18.85) (0.0221) (0.0230) (0.204)

ln_Tertiary 0.312 *** 0.125 * −0.003
(0.0567) (0.074) (0.004)

D.ln_Tertiary 0.193 * 0.357 *** 0.001
(0.1935) (0.1479) (0.0019)

lnMVA
0.299 *** 2.47 ×

10−12 *

(0.0849) (1.49 ×
10−12)

D.lnMVA
−0.0466 1.28 ×

10−12

(0.0863) (1.36 ×
10−12)
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Table 2. Cont.

DEPENDENT VAR:
CO2EMISSIONS PER

CAPITA
Model 1 (PMG) Model 2 (PMG) Model 3 (MG) Model 4 (PMG) Model 5 (DFE) Model 6 (DFE) Model 7 (DFE)

VARIABLES Long-Term Short-Term Long-Term Short-Term Long-Term Short-Term Long-Term Short-Term Long-Term Short-Term Long-Term Short-Term Short-Term Long-Term

Political Rights Index −0.065 ***
(0.0217)

D. Political Rights Index 0.016
(0.117)

Constant
0.191 ** 0.178 ** −3.941 ** −1.665 *** −2.199 *** −3.844 *** 0.588 ***
(0.0965) (0.0899) (1.611) (0.310) (0.4719) (0.663) (0.3149)

Observations 812 745 729 702 - - -

Hausman
χ2

[
p > χ2

] H0: PMG/H1: DFE H0: PMG/H1: DFE H0: PMG/H1: MG H0: PMG/H1: MG H0: MG/H1: DFE - -
0.26 0.10 1.67 0.13 0.00

[0.6124] [0.9497] [0.6435] [0.9878] [1.000]

Pesaran CD test statistics 46.7 39.3 58.1 51.7 57.9 44.1 38.08

Notes: (P)MG stands for (Pooled) Mean Group estimates and DFE denote Dynamic Fixed Effects. Standard errors are given in parentheses. CD stands for Pesaran’s Cross-sectional
Dependence test proposed in Pesaran (2004). Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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In DFE-Model 7 the study controls for the role of political freedoms by adding Political Rights
Index of The Freedom House. This is in line with the findings in Panayotou [99], Bhattarai and
Hammig [100] and Dutt [101]. The model shows that increasing level of political freedoms corresponds
with decreasing per capita carbon dioxide emissions. If index increases by one unit then we would
expect the per capita CO2 emissions to decrease by 6.5 percent. This implies that societies with a
greater magnitude of political freedom (less index value) correspond with more, and countries with
less political freedoms correspond with fewer emissions. Testing the effect of civil liberties by using
the Civil Liberties Index of The Freedom House yields analogous results. The results with both
Political Rights Index and Civil Liberties Index exhibit both concerning the coefficient significance and
sign-stability robust (Estimation with Civil Liberties Index as independent variable are reported in
the Supplementary Materials). These results are not in line with the state of the art, which indicates
a positive relationship between better institutions and environmental upgrading. The literature on
the positive nexus between institutional quality and environmental upgrading is mostly confined
to OECD countries [9]. All the countries, with the only exception of Norway, belong to the group
of the developing and transition economies. This could be the reason, why in the context of the
oil-rich developing countries a greater level of democracy does not translate to greater environmental
protection. On the contrary, countries with less democratic freedoms in tendency have less per capita
emissions. Autocracies in the MENA region, Sub-Saharan Africa, and Central Asia are favorable
toward environmental protection and implement large-scaled environmental upgrading projects in
collaboration with the UN-institutions that contribute substantially to the positive image of ruling state
elites. Independent of the motives of the ruling elites in the oil-exporting countries, both national and
multilateral development agencies should make use of the respective governments’ positive stance
towards environmental protection and enhance new joint projects and the projects within commitments
related to Paris Agreement.

5.2. Nonparametric Analysis

As already mentioned, the nonparametric time-varying coefficients panel data analysis with fixed
effects does not impose a priori a specific functional form for the relationship between the variables of
interest. Furthermore, nonparametric estimators assess the changing responsiveness of the dependent
variable (here in all the estimations the natural logarithm of the per capita carbon dioxide emissions) to
the marginal changes of the independent variables [102]. Assessment of the patterns of the changing
responsiveness of the drivers of carbon dioxide emissions is the central objective of this subsection.
We employ the bivariate nonparametric analysis to assess the environmental upgrading conjecture in
37 oil-producing countries. On the contrary, we find that the increasing level of per capita income led
over the years between 1989 and 2014 (the time frame differs from the underlying data set because of the
missing variables that reduce the observation period) to greater per capita carbon dioxide emissions.

The first bivariate nonparametric estimation with the level of per capita income as a predictor
variable is in line with the findings of parametric regressions of the previous subsection. Increasing
the average income by one percent leads to an increase in carbon dioxide emissions by 1.43–1.48
percent (Figure 3A). Whereby over time the absolute value of this positive effect (coefficient) has
been monotonically increasing from 1.43 to 1.48. This kind of over proportional development of the
responsiveness indicates that over time, increasing level of affluence leads to the more sizeable carbon
footprint. This finding is not in line with the EKC conjecture and shows that the issue of atmospheric
pollution in the oil-producing countries are even worse than predicted in most parametric models

The second bivariate nonparametric estimation in Figure 3C illustrates the changes in the share
of oil rents as a percentage of GDP led to 0.55–0.725 percent increase of per capita carbon dioxide
emissions. Also, in this case, over time, an increasing share of oil rent as a share of GDP has been
inexorably exhibiting an increasingly negative impact on atmospheric pollution. Like in the case of
the average income, also within this estimation we observe aggravating environmental effects of oil
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dependence over the latest commodity supercycle. The decrease between 1989 and 1994 was most
probably related to the shrinkage of economic activity in the former Soviet republics [103].

In the third bivariate estimation, we assessed the impact of the share of fossil fuel-based electricity
generation in the energy mix of the respective countries and found that a one percent increase of
fossil fuels in electricity mix led to 0.7–0.95 percent increase in per capita carbon dioxide emissions
(Figure 3D). Between 1989 and 2010 the coefficient had been steadily increasing until the threshold of
0.95. Since 2010 the coefficient has slightly decreased to 0.9. This could be the result of the improved
carbon dioxide removal technologies over the petroleum value chain [104]. Despite the slight reduction
of the coefficient, the electricity sector is still an important driver of carbon emissions in oil-producing
countries. Hence, further implementation of the carbon removal technologies and increasing share of
the renewables in the energy mix could lead to a substantial reduction of emissions.

The manufacturing sector is an important driver of carbon emissions, whereby over the last three
decades the coefficient of the manufacturing sector measures as the share of manufacturing as % of GDP
has been increasing from −0.9 to +1.3 percent (Figure 3B). The negative impact of the manufacturing
on emissions has been observed only between 1989 and 1992 and cannot be explained within this
survey. The development between 1993 and 2015, however, was positive. Also, we observe a kind of
stabilization of the coefficient between 2011 and 2015 at a steadily high level of 1.3. This implies that
policies toward the development of cleaner manufacturing technologies could trigger a substantial
reduction of carbon dioxide emissions. A stepwise abolition of the energy subsidies could be an
efficient step toward more energy-efficient manufacturing.

Tertiarization, on the contrary, leads to the reduction of the per capita carbon emissions (Figure 3F).
Since 2005, an increasing share of the tertiary sector in GDP leads to steadily increasing emission savings.
The carbon footprint of tertiarization between 1990 and 2005 was positive but low. The coefficient in
this time interval was between 0 and 0.2. Since 2005 the coefficient has been negative and sunk to
the level of −0.2. This implies that tertiarization could pave the way for negative-emission growth.
To control the robustness of these results, we tested also the relationship between labor productivity in
the tertiary sector and per capita carbon emissions and found that rising labor productivity corresponds
with a negligible increase of carbon emissions (Figure 3H). These findings validate the structural
composition argument that explains the negative U-shaped IER.

To test the relationship between institutions and carbon footprint, following the previous
subsection, the study employed PRI and CLI. The findings of both estimations indicate that fewer
freedoms correspond with substantial carbon savings. An increase of PRI by one point (≡ less political
freedoms) corresponds to a 6–15 percent decrease in carbon savings (Figure 3G). The latest available
coefficient is approximately 6 percent. An increase of the CLI by one unit (≡ less civil liberties)
corresponds with 5 to 25 percent carbon dioxide reductions. The latest available coefficient is 12 percent.
These results are in line with the parametric estimations. But show more pronounced that institutional
quality and polity indicators could play a decisive role in decarbonizing oil-rich developing and
transition economies.



Energies 2020, 13, 3956 16 of 24

1 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

(G) 

 

(H) 

Figure 3. Time-Varying Responsiveness of Per Capita CO2 Emissions to changes in average Income,
composition variables, political freedoms and civil liberies.
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6. Concluding Remarks

The major aspiration of the present inquiry is the disentanglement of the determinants of the
carbon emissions in oil-abundant settings. The survey has been starkly inspired by the results presented
in two recent empirical investigations on the greenhouse gas footprint of oil abundance [6,9] and
their incongruence with the intended nationally determined contributions (INDCs), i.e., the voluntary
climate pledges of the oil-producing countries within the framework of the Paris Agreement. The paper
at hand proposed a novel conceptual framework that hypothesizes that oil-led deindustrialization and
accelerated tertiarization could trigger strong impulses for environmental upgrading. The proposed
theoretical framework is in line with the structuralist paradigm of development and environment,
which has been dominating both the literature on economic development and the environmental
Kuznets curve over four decades. In addition, the study accounts for grave repercussions of oil
abundance on the sectoral structure of oil-producing economies.

Following the theoretical framework, the study disentangles the sources of the GHGs in oil-rich
settings, whereby the decomposition of gross carbon dioxide emissions by different sectors of the
economy, i.e., manufacturing, services, and energy sectors, has been the criterion for the aforementioned
compartmentalization. By doing so the study accounts for the sectoral composition theory of the
environmental Kuznets curve and scale effects.

The research on the economy-environment relationship is starkly dominated by highly aggregated
empirical assessments of the environmental Kuznets conjecture. By focusing on per capita income as
an omnibus variable in bivariate specifications, existing studies try to account for multicollinearity and
confounding variable problems. Nevertheless, linear and polynomial black box estimations, which
dominate the literature on the empirical income-environment relationship, are both problematic because
of the high probability of omitted variable bias. Black-box approaches enable only a tendentious bird’s
eye perspective on the long-run income–environment relationship. This is why black-box inferences
are not sufficient for the formulation of concrete emission mitigation policies.

Based on a more refined methodology, the present paper studies the trade-off between collinearity
problems and omitted variable bias on the one hand and the problem of pre-determined econometric
parametrization on the other, which allows for concrete inferences about the major economic sectors’
carbon footprints in oil-exporting countries. The results have a high degree of relevance for applied
national environmental policies and should be taken into consideration in construing international
action on climate change.

The study uses a parametrized pooled mean group, mean group, and dynamic fixed effects
estimators, which account for the time series traits of panel data. Besides, the study applies
nonparameterized fixed effect panel estimators with varying coefficients. Despite being principally
different, both parametric and nonparametric methods give analogous results in terms of the signs
and the significance of control variables. The nonparametric estimators complement the pooled mean
group, mean group, and dynamic fixed effects estimators by specifying the nonlinear trend between the
indicators of individual sectors of the economy, institutional variables, and carbon dioxide emissions.

The study decisively rejects the inverted income-emissions nexus for oil-producing countries and
finds strong indications for a positive income-emission relationship. The nonparametric estimator
shows that an increasing level of per capita income in the respective time interval has not been
associated with a linear but with a rather over-proportionate increase of per capita carbon dioxide
emissions. The same holds for the share of oil rent as a percentage of GDP.

The manufacturing sector and the share of fossil fuel-based electricity in the electricity mix also
contribute strongly to the carbon footprint of the economy. In contrast to average income and the share
of oil rent in GDP, their impact stabilized since the end of the 2000s and the emissions exhibit no more
an over proportionate responsiveness to growing GDP-shares of manufacturing and fossils-based
electricity generation.
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Against the backdrop of the findings related to the significance of fossil fuel-based electricity
generation, the pledges of most oil-producing countries regarding the surge of the renewables in the
energy mix a is a good step in the right direction.

Further, the estimations show that a growing GDP share of the tertiary sector leads to substantial
reductions in carbon dioxide emissions. This vindicates the tertiarization argument behind the
environmental Kuznets curve hypothesis. Against the backdrop of the increasing importance of the
tertiary sector in growth and employment in developing economies and in economies in transition,
the increasing share of a relatively clean services sector gives reason for the hope that economic growth
in oil-producing countries will be less carbon-intensive in the future than it has been in the previous
three decades. Nevertheless, the study did not differentiate between the increasing share of services in
GDP can be attributed to 1. the growth of the tertiary sector, or 2. deindustrialization because of the
natural resource curse. This issue should be addressed in the follow-up studies.

Other than in advanced economies, for which literature suggests that democratization leads
to greater environmental protection measures, we find that the opposite holds for oil-producing
developing economies. In the latter groups of countries, more political rights and civil liberties are not
associated with fewer emissions but fewer rights and less freedom lead to reduced emissions. Studies
on the development of public transport point in that direction indicating that autocratic elites support
environmental upgrading and infrastructure development projects for the sake of improving their
international image [105]. Of course, prior to the operationalization of this empirical finding, further
research on this issue is required. Regardless of the motives for better environmental regulations in
oil-dependent economies, however, the international community and especially the UN-institutions
and international development agencies must take into consideration that oil-reliant autocracies also
have a substantial potential for the implementation of environmental protection measures, which could
contribute to global climate change mitigation [106]. Of course, this finding should by no means be
misinterpreted as an appreciation for the non-democratic political systems that dominate the oil-rich
settings, certainly not, but rather as a plea for more assertiveness in supporting initiatives that enhance
climate change awareness and environmental upgrading within this group of countries.
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Appendix A

Appendix A.1. Variation Inflation Factor Statistics

Variable
Variation Inflation Factor

(VIF)
1/VIF

lnMVA 6.70 0.149278

lnTVA 6.63 0.150771

ln_PCI 2.00 0.500452

ln_Power_fossils 1.64 0.609550

lnOil_Sh 1.35 0.738673

MEAN VIF 3.66
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       lnMVA    -0.1850    0.0948   -0.0054   -0.5796    1.0000                                          
       lnTVA     0.0535   -0.6988   -0.2093    1.0000                                                    
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               ec                                                 SR                                     

Correlation matrix of coefficients of xtpmg model

Appendix A.3. List of Countries in the Estimations

Algeria, Angola, Argentina, Australia, Azerbaijan, Bahrain, Brazil, Brunei, Cameroon, Chad, Congo Rep.,
Ecuador, Egypt, Equatorial Guinea, Gabon, Ghana, Indonesia, Iran, Iraq, Kazakhstan, Kuwait, Libya, Malaysia,
Mexico, Nigeria, Norway, Oman, Pakistan, Qatar, Russia, Saudi Arabia, Syria, Thailand, Trinidad and Tobago,
Turkmenistan, UAE, Venezuela, Vietnam

Appendix A.4. Parsimonious PMG-Model to Assess the EKC Hypothesis

Variables
(1) (2)

Long Run Short Run

Error Correction Term −0.333 ***
(0.0465)

D.ln_PCI 0.366 **
(0.170)

L2D.ln_PCI2 0.0272
(0.0736)

ln_PCI 0.872 ***
(0.137)

L2.ln_PCI2 −0.108
(0.0668)

Constant −1.722 ***
(0.246)

Observations 768 768

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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