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Abstract: Battery models have gained great importance in recent years, thanks to the increasingly
massive penetration of electric vehicles in the transport market. Accurate battery models are needed
to evaluate battery performances and design an efficient battery management system. Different
modeling approaches are available in literature, each one with its own advantages and disadvantages.
In general, more complex models give accurate results, at the cost of higher computational efforts and
time-consuming and costly laboratory testing for parametrization. For these reasons, for early stage
evaluation and design of battery management systems, models with simple parameter identification
procedures are the most appropriate and feasible solutions. In this article, three different battery
modeling approaches are considered, and their parameters’ identification are described. Two of
the chosen models require no laboratory tests for parametrization, and most of the information are
derived from the manufacturer’s datasheet, while the last battery model requires some laboratory
assessments. The models are then validated at steady state, comparing the simulation results with
the datasheet discharge curves, and in transient operation, comparing the simulation results with
experimental results. The three modeling and parametrization approaches are systematically applied
to the LG 18650HG2 lithium-ion cell, and results are presented, compared and discussed.
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1. Introduction

The strong development of electric vehicles (EVs) moves the research actions on new solutions for
the automotive field. First, batteries and storage systems represent the burning issues of this sector.
Among them, lithium ion batteries represent the main technology that is catching on for different
purposes. These kinds of batteries are used for both stationary and mobile applications because of
their high-energy density and high-power density. Great performances and innovative designs are
asked for by the electric transportation market [1]; for this reason, accurate and reliable models are
needed. Knowing SoC (State of Charge) [2,3], SoH (State of Health) [4], OCV (Open Circuit Voltage) [5],
currents, and voltages is absolutely necessary in order to have well designed and efficient energy
storage systems, because nonlinear physical effects in batteries strongly influence battery lifetime [6].
An accurate battery model allows, in the design phase, to consider several factors such as charging
strategies or extreme operating conditions [7]. The main difficulty in modeling is related to the need
to make models as simple as possible [8]. Actually, in most cases, accurate models need complex
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solutions. In literature, a lot of different modeling methods are available and these can be mainly
classified into three categories: electrochemical, mathematical or electrical [9–11].

Electrochemical models are the more accurate but also more complex. They consider the
chemical reactions happening through the electrodes to estimate the external parameters and are
useful specially to describe thermodynamic and kinetic phenomena occurring in the cell. The first
models were introduced by Fuller, Doyle and Newman [12–14], developing the porous electrode
theory. They provide insight into batteries’ internal dynamics such as electrochemical reactions,
mass transportation, diffusion, concentration distribution, and ion distribution. They can relate the
constructive parameters (material used for electrode, thickness of separator, dimensions of the cell)
to the electrical parameters (voltage, current, capacity) and thermal behavior. An electrochemical
model is made of a system of coupled time-variant spatial partial differential equations. To solve these
models, high computational efforts are needed and, in addition, several parameters that are difficult to
measure or obtain, are needed. In [15], Kandler et al. considered a 1-dimensional model, in which the
x coordinate is used to define the thickness of each component of the cell (current collectors, electrodes,
separator). Many parameters are needed to fully parametrize the model, and most of them require a
deep knowledge of the cell chemistry, production process, etc. The complexity and difficulty of finding
all the necessary parameters make these models suitable only in the battery design phases. In order
to decrease the electrochemical model complexity, Model Order Reduction (MOR) techniques can
be applied. In [16,17], the reduced order model equations and the model parameters identification
for a lithium-iron phosphate battery is presented. The maximum Root Mean Square Error (RMSE)
between the measured voltage and the electrochemical reduced order model output is within 55 mV
for a single cell. In [18], a reduced order model based on a Galerkin projection method is developed for
Lithium-Iron-Phosphate (LFP) and Nickel-Manganese-Cobalt (NMC) batteries, achieving a maximum
RMSE equal to 15.5 mV.

Mathematical models can be further divided into two categories: empirical and stochastic [19].
The first ones are used to describe a specific behaviour of the battery using simple equations.
These models can only be used for specific applications, making errors of the order of 5–20%.
The advantages of the empirical models are the low complexity and the possibility to achieve real-time
parameter identification. The second category of mathematical models, the stochastic models, are based
on the principle of the discrete-time Markov chain. They can achieve higher accuracy with respect
to the empirical model while keeping low complexity and fast simulation. In [20], a mathematical
method based on the least square algorithm is used for the dynamic parameters identification by
modifying the Shepherd battery model. Hybrid method can be also applied, such as that used in [21]
in which both static and dynamic parameters are estimated thanks the an extended Kalman Filtering
Algorithm-based method.

Equivalent circuit battery models are developed by using resistors, capacitors and voltage sources
in various combinations [22–25]. In [26], three equivalent circuital models, the Rint model, the Thevenin
model and the Double Polarization (DP) model, are compared. The DP model gives the best results,
with a maximum RMSE of 10 mV, but requires a more complex procedure for the parameter estimation.

Most of the battery models proposed in the previously cited literature require time-consuming
experimental tests and costly equipment for their parametrization [27]. In the first design phase
of a battery powered application, it is important to quickly evaluate the performances considering
different kinds of batteries, different configurations, etc. [28]. The possibility to easily obtain battery
models parameters from the technical datasheets and to readily implement the model becomes of great
importance [29].

The aim of this article is to compare three different parameter identifications and the modeling
approaches. In particular, the modified Shepherd model, the Rint model and the Thevenin model are
considered. The first two models are parametrized using just the datasheet information. For the
Thevenin model, a pulse discharge test is executed for parametrization. The models are then validated
at steady state, comparing the simulation results with the datasheet discharge curves, and in transient
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operation, comparing the simulation results with experimental results. The test-bench used for the
parametrization and validation of the models is extensively described, considering the accuracy of
each employed instrument. The three modeling and parametrization approaches are systematically
applied to the LG 18650HG2 lithium-ion cell, and the results are presented, compared and discussed.
Section 2 presents the three different battery models. Section 3 describes the test-bench. Section 4 faces
the validation of models, and Section 5 presents the discussion. Finally, conclusions arrive.

2. Battery Modeling and Parametrization

In this section, the three considered battery models are analyzed, considering the governing
equations. Then, the parametrization procedures are explained in detail and applied to the LG
18650HG2 cell.

2.1. Shepherd Model

One of the best-known mathematical models for constant-current discharge is the Shepherd
model [30,31]:

V = E0 −K
(

Q
Q− it

)
i−R0 · i + A · e(−B·it) (1)

where:

• E0 represents the open circuit voltage of a battery at full capacity (V);
• K is the polarization resistance coefficient (Ω);
• Q is the battery capacity (Ah);
• i is the battery current (A);
• R0 is the internal resistance (Ω);
• it =

∫
idt is the removed charge (Ah);

• A, B are empirical constants (V), (1/Ah).

Several mathematical models take the Shepherd model and try to improve it, adding or modifying
some terms. In [32], a term to consider the polarization voltage is added to the discharge model and
the polarization resistance effect is slightly modified, resulting in the following equation

V = E0 − K
(

Q
Q− it

)
i∗︸       ︷︷       ︸

Polarization resistance term

− K
(

Q
Q− it

)
︸     ︷︷     ︸

Polarization voltage term

it−R0 · i + A · e(−B·it) (2)

where: i∗ is the filtered current.
Furthermore, a different equation is given for the battery charging:

V = E0 −K
(

Q
it− 0.1 ·Q

)
i∗ −K

(
Q

Q− it

)
it−R0 · i + A · e(−B·it). (3)

An important feature of this model is the possibility to easily find all the model parameters without
the need of experimental tests. Starting from a typical discharge curve given in the manufacturer’s
datasheet, four points are identified:

1. fully charged voltage V f ull, first point of the characteristic;

2. end of the exponential zone Qexp, Vexp;
3. end of the nominal zone Qnom, Vnom (when the voltage starts to decrease quickly);
4. maximum capacity Q, last point of the characteristic.

Depending on the cell’s chemistry, the discharge curves can be slightly different and the points
are shifted accordingly, as can be seen in Figure 1a,b.
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Figure 1. Typical discharge curves of: (a) LFP cell; (b) NMC cell. 
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Figure 1. Typical discharge curves of: (a) LFP cell; (b) NMC cell.

In addition, the cell internal resistance R0 is needed, which is generally given in the datasheet.
It should be noted that the discharge curves are obtained with a constant current discharge. Once all
the data has been obtained, Equation (2) can be rewritten for each of the identified points to write a set
of three equations with three unknowns E0, K, A.

At the start of the characteristic V = V f ull, the supplied charge is it = 0, the filtered current is
i∗ = 0, and the cell current is i = I. Equation (2) gives:

V f ull = E0 −R0 · I + A (4)

The parameter B, which represents the time constant of the exponential term, depends on the
shape of the discharge curve. For the discharge curve of Figure 1a, it can be noticed that the exponential
term energy is almost zero and can be approximated to 4/Qexp. For the discharge curve of Figure 1b,
the exponential term is still predominant and the parameter B can be approximated to 2/Qexp. For the
exponential point, the voltage is V = Vexp, the supplied charge is it = Qexp, and the filtered current
is i∗ = 0 because it is assumed that steady state has been reached. With the previous assumption,
Equation (2) gives:

Vexp = E0 −K
Q

Q−Qexp

(
Qexp + I

)
−R0 · I + A · e(−B·Qexp) (5)

For the end of the nominal zone, the voltage is V = Vnom, the supplied charge is it = Qnom and
Equation (2) gives:

Vnom = E0 −K
Q

Q−Qnom
(Qnom + I ) −Ro · I + A · e(−B·Qnom) (6)

Solving the set of Equations (4)–(6) gives the models parameters, which can be expressed as

E0 =
EexpCnom − EnomCexp[(

1− e(−B·Qnom)
)
Cexp − (1− e−3)Cnom

] (7)

where:

• Cexp = Q
Q−Qexp

(
Qexp + I

)
;

• Cnom = Q
Q−Qnom

(Qnom + I);

• Eexp = −Vexp −R0 · I +
(
V f ull + R0 · I

)
· e−BQexp ;

• Enom = −Vnom −R0 · I +
(
V f ull + Ro · I

)
· e−B·Qnom ;
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K = E0

(
1− e−B·Qexp

Cexp

)
+

Eexp

Cexp
(8)

A = V f ull − E0 + R · i (9)

B =

 2
Qexp

, f or LFP cell
4

Qexp
, f or NMC cell

(10)

The parameter estimation procedure described above is now applied to the LG 18650HG2
cell. Figure 2a shows the extracted points from the datasheet discharge curves. Among the four
characteristics, the one at 0.2 C was chosen for the parameter estimation procedure. Figure 2b–d shows
the point identification on the 0.2 C discharge curves. Figure 2a depicts the maximum charge voltage
V f ull and the maximum capacity Q. Figure 2b,c represent respectively the exponential zone and the
nominal zone detection.

Energies 2020, 13, x FOR PEER REVIEW 5 of 26 

 

 𝐵𝐵 =

⎩
⎪
⎨

⎪
⎧ 2
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒

 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

4
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒

, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (10) 

The parameter estimation procedure described above is now applied to the LG 18650HG2 cell. 
Figure 2a shows the extracted points from the datasheet discharge curves. Among the four 
characteristics, the one at 0.2 C was chosen for the parameter estimation procedure. Figure 2b–d 
shows the point identification on the 0.2 C discharge curves. Figure 2a depicts the maximum charge 
voltage 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and the maximum capacity 𝑄𝑄. Figure 2b,c represent respectively the exponential zone 
and the nominal zone detection. 

  
(a) (b) 

  
(c) (d) 

Figure 2. (a) Points extracted from the datasheet discharge curves, at four different C rates (0.2 C, 1 C, 
1.67 C, 6.67 C); Point identification for: (b) fully charged voltage 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and maximum cell capacity 𝑄𝑄; 
(c) Exponential zone voltage 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 and capacity 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 identification; (d) Nominal zone voltage 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 
and capacity 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 identification. 

Table 1 summarizes the identified points and the cell internal resistance 𝑅𝑅0  given in the 
manufacturer’s datasheet. To estimate the other parameters, first a value for 𝐵𝐵  must be chosen 
looking at the shape of the discharge curve, as described in Section 2.1. In this case, 𝐵𝐵 = 2/𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 was 
chosen. Using the data from Table 1 and the Equations (7)–(10), the model parameters, summarized 
in Table 2, were obtained. 

Table 1. Identified points for the parameter estimation procedure. 

𝑽𝑽𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇  
[V] 

Q 
[Ah] 

𝑽𝑽𝒆𝒆𝒆𝒆𝒆𝒆 
[V] 

𝑸𝑸𝒆𝒆𝒆𝒆𝒆𝒆 
[Ah] 

𝑽𝑽𝒏𝒏𝒏𝒏𝒏𝒏 
[V] 

𝑸𝑸𝒏𝒏𝒏𝒏𝒏𝒏 
[Ah] 

𝑹𝑹𝟎𝟎 
[𝛀𝛀] 

4.135 2.998 3.301 2.592 3.123 2.761 0.025 

0 1 2 3

Capacity, C [Ah]

2.5

3

3.5

4

4.5

C
el

l t
er

m
in

al
 v

ol
ta

ge
, V

 [V
]

0.2 C

X 0

Y 4.135

X 2.988

Y 2.5

V
full

Q

0 1 2 3

Capacity, C [Ah]

2.5

3

3.5

4

4.5

C
el

l t
er

m
in

al
 v

ol
ta

ge
, V

 [V
]

0.2 C

X 2.592

Y 3.301

V
exp

Q
exp

0 1 2 3

Capacity, C [Ah]

2.5

3

3.5

4

4.5

C
el

l t
er

m
in

al
 v

ol
ta

ge
, V

 [V
]

0.2 C

X 2.592

Y 3.301

V
exp

Q
exp

Figure 2. (a) Points extracted from the datasheet discharge curves, at four different C rates (0.2 C, 1 C,
1.67 C, 6.67 C); Point identification for: (b) fully charged voltage V f ull and maximum cell capacity Q;
(c) Exponential zone voltage Vexp and capacity Qexp identification; (d) Nominal zone voltage Vnom and
capacity Qnom identification.

Table 1 summarizes the identified points and the cell internal resistance R0 given in the
manufacturer’s datasheet. To estimate the other parameters, first a value for B must be chosen
looking at the shape of the discharge curve, as described in Section 2.1. In this case, B = 2/Qexp was
chosen. Using the data from Table 1 and the Equations (7)–(10), the model parameters, summarized in
Table 2, were obtained.
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Table 1. Identified points for the parameter estimation procedure.

Vfull
[V]

Q
[Ah]

Vexp
[V]

Qexp
[Ah]

Vnom
[V]

Qnom
[Ah]

R0
[Ω]

4.135 2.998 3.301 2.592 3.123 2.761 0.025

Table 2. Shepherd model parameters.

E0
[V]

K
[Ω]

A
[V]

B
[Ah]

3.488 0.0085 0.6612 0.7716

2.2. Rint Model

A basic equivalent circuit battery model is shown Figure 3, and it is known as Internal Resistance
Model or Rint model. This model describes the battery behavior using an ideal voltage source E,
whose purpose is to simulate the battery open circuit voltage, and a resistor Ri that takes into account the
battery internal resistance due to the electrodes [33]. The battery terminal voltage can be expressed as:

V = E−Ri · I (11)

Energies 2020, 13, x FOR PEER REVIEW 6 of 26 

 

Table 2. Shepherd model parameters. 

𝑬𝑬𝟎𝟎 
[V] 

K 
[𝛀𝛀] 

A 
[V] 

B 
[Ah] 

3.488 0.0085 0.6612 0.7716 

2.2. Rint Model 

A basic equivalent circuit battery model is shown Figure 3, and it is known as Internal Resistance 
Model or Rint model. This model describes the battery behavior using an ideal voltage source 𝐸𝐸, 
whose purpose is to simulate the battery open circuit voltage, and a resistor 𝑅𝑅𝑖𝑖  that takes into 
account the battery internal resistance due to the electrodes [33]. The battery terminal voltage can be 
expressed as: 

𝑉𝑉 = 𝐸𝐸 − 𝑅𝑅𝑖𝑖 ⋅ 𝐼𝐼 (11) 

 
Figure 3. Schematic representation of the Rint equivalent circuit model. 

In this model, 𝐸𝐸 and 𝑅𝑅𝑖𝑖 are considered constant and the battery capacity is considered infinite. 
It can be used in simulation where the variation of the SoC is negligible. 

Higher accuracy can be achieved by adding the SoC dependence for the open circuit voltage and 
the internal resistance. 

𝑉𝑉(𝑆𝑆𝑆𝑆𝑆𝑆) = 𝐸𝐸(𝑆𝑆𝑆𝑆𝑆𝑆) − 𝑅𝑅𝑖𝑖(𝑆𝑆𝑆𝑆𝑆𝑆) ⋅ 𝐼𝐼 (12) 

To fully parametrize the model, 𝐸𝐸(𝑆𝑆𝑆𝑆𝑆𝑆) and 𝑅𝑅𝑖𝑖(𝑆𝑆𝑆𝑆𝑆𝑆) are needed. One of the advantages of this 
model is the possibility to parametrize it taking only the information from a typical cell 
manufacturer’s datasheet. Moreover, to consider the dependency of the battery capacity with the 
discharge current, the Peukert equation is used. 
Normalization 

The first step to parametrize the model is the extraction of the discharge curves from the 
datasheet. The discharge curves give the cell terminal voltage as a function of the supplied capacity, 
expressed in Ah, for different values of the discharge current. The discharge curves are then 
normalized and interpolated to have datasets with equally spaced grids. To achieve normalization, 
the capacity values are divided by their maximum values: 

𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑄𝑄𝑋𝑋

𝑄𝑄𝑋𝑋,𝑚𝑚𝑚𝑚𝑚𝑚 
 (13) 

where the subscript 𝑋𝑋  is the considered discharge curve C-rate, and 𝑄𝑄𝑋𝑋,𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum 
capacity of the considered discharge curve. In this way, the discharge curves are represented as 
function of the Depth of Discharge (DoD). 
Internal Resistance 

The internal resistance as function of DoD can be derived from the normalized discharge curves, 
considering two different characteristics 

Figure 3. Schematic representation of the Rint equivalent circuit model.

In this model, E and Ri are considered constant and the battery capacity is considered infinite.
It can be used in simulation where the variation of the SoC is negligible.

Higher accuracy can be achieved by adding the SoC dependence for the open circuit voltage and
the internal resistance.

V(SoC) = E(SoC) −Ri(SoC) · I (12)

To fully parametrize the model, E(SoC) and Ri(SoC) are needed. One of the advantages of this
model is the possibility to parametrize it taking only the information from a typical cell manufacturer’s
datasheet. Moreover, to consider the dependency of the battery capacity with the discharge current,
the Peukert equation is used.
Normalization

The first step to parametrize the model is the extraction of the discharge curves from the datasheet.
The discharge curves give the cell terminal voltage as a function of the supplied capacity, expressed
in Ah, for different values of the discharge current. The discharge curves are then normalized and
interpolated to have datasets with equally spaced grids. To achieve normalization, the capacity values
are divided by their maximum values:

DoD =
QX

QX,max
(13)
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where the subscript X is the considered discharge curve C-rate, and QX,max is the maximum capacity of
the considered discharge curve. In this way, the discharge curves are represented as function of the
Depth of Discharge (DoD).
Internal Resistance

The internal resistance as function of DoD can be derived from the normalized discharge curves,
considering two different characteristics

E(DoD) = VX(DoD) + Ri, j(DoD) · IX,

E(DoD) = VY(DoD) + Ri, j(DoD) · IY
(14)

If the internal resistance Ri(DoD) does not depend on the discharge current, it can be calculated as

Ri, j(DoD) =
VX(DoD) −VY(DoD)

IY − IX
(15)

Since usually N discharge curves are available in the datasheets, Equation (15) can be applied
to all the curves combination. The internal resistance used in the model is finally calculated as the
average value

Ri(DoD) =

∑J
j=1 Ri, j(DoD)

J
(16)

where J is the number of possible combinations, given by

J =
N!

(N − 2)!2
(17)

Open circuit voltage
The open circuit voltage as a function of DoD can be estimated as

EX(DoD) = VX(DoD) + Ri(DoD) · IX (18)

Applying Equation (18) to all the discharge curves available in the datasheet, the average open
circuit voltage as a function of the DoD is derived as

E(DoD) =
1
N

N∑
X=1

EX(DoD) (19)

Capacity
The cell capacity depends on the discharge current, and to consider this phenomenon, the Peukert

Capacity is considered [34,35]. If the battery supplies a current IX to the load, from the point of
view of the battery capacity, it is as if a current equal to Ik

X was supplied. If the battery is recharged,
the phenomenon is negligible, therefore k = 1. Accordingly, an equivalent battery capacity, defined as
Peukert capacity, can be calculated as

CP = Ik
X · TX (20)

where:

• CP is the Peukert Capacity (Ah);
• k is the Peukert coefficient (-);
• Ix is the discharge current (A);
• TX is the discharge time for discharge current Ix (h).
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To estimate the Peukert coefficient for a given cell, the discharge times at two different discharge
currents are needed. From the manufacturer datasheet, the actual supplied capacity and the discharge
current can be extrapolated, and the discharge time can be calculated as

TX =
QX

IX
, TY =

QX

IY
(21)

And the Peukert coefficient is given by

ki =
(logTY − logTX)

(logIX − logIY)
(22)

From (22), the Peukert coefficient can be derived for any different discharge curves included in the
datasheet. Usually, X is chosen equal to the minimum discharge current while Y is varied to consider
all the discharge profiles. The Peukert coefficient used for the simulation is then given by the average
value as

k =

∑N−1
i=1 ki

N − 1
(23)

The parameter estimation procedure described above is now applied to the LG18650HG2 cell.
Figure 4a shows the datasheet discharge curve, which is given as a function of the supplied capacity.
The curves are then normalized, using Equation (13), and interpolated as shown in Figure 4b.
The internal resistance is estimated for each possible curve combination using Equation (15), obtaining
the solid curves represented in Figure 5a. Finally, using Equation (16), the average internal resistance,
represented in Figure 5b with the crossed line, is obtained.
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Figure 4. Datasheet discharge curves: (a) extracted point from datasheet; (b) interpolated and
normalized discharge curves.

The open circuit voltage is calculated for each discharge curve using Equation (18), represented in
Figure 5b with the solid lines. The average open circuit voltage, shown in Figure 5b with the crossed
line, is then obtained with Equation (19). Table 3 summarizes the Rint model parameters.

Table 3. Rint model parameters.

DoD 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Peukert
Capacity

E0[V] 4.18 4.08 3.98 3.88 3.78 3.69 3.63 3.57 3.46 3.24 2.5 Cp [Ah] 2.97
R0 [mΩ] 17.3 32.0 31.0 30.7 30.1 30.2 32.0 32.8 30.4 22.4 17.1 k [-] 1.02
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Figure 5. Model parameter identification: (a) internal resistance and (b) open circuit voltage as a
function of the Depth of Discharge.

2.3. Thevenin Model

The Rint model does not consider the transient behavior of the battery. The insertion of a parallel
Resistor-Capacitor (RC) branch, as shown in Figure 6, allows considering the short-term transient due
to the electrolyte polarization. Similarly to Rint model, E and R0 represent respectively the battery open
circuit voltage and the electrode resistance, R1 represents the polarization resistance and C1 represents
the polarization capacitance [33]. To enhance the model accuracy and consider transient phenomenon
with different time constants, other RC branches can be included in series with Thevenin’s model.
However, the parameterization process of the model becomes even more complicated. If the model
is employed to simulate the battery behavior in one operating condition at a given SoC, the model’s
parameters can be counted as constants. Otherwise, if wide SoC operating range has to be simulated,
the parameters can be considered dependent on temperature and SoC. The model is defined by the
next equations: {

V(SoC) = E(SoC) − I ·R0(SoC) − iR1 ·R1(SoC)
I = iR1 + iC1

(24)
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Figure 6. Schematic representation of the Thevenin equivalent circuit model.

To fully parametrize the model, four parameters are needed: E, R0, R1, C1 and they are all SoC
dependent. For this model, the manufacturer’s specifications do not provide enough information
to proceed with the parametrization procedure. Thus, some experimental tests must be performed,
in particular a Pulse Discharge Test (PDT) [36]. The PDT consists in discharging a fully charged cell
with a current pulse of specified amplitude and duration. At the end of the pulse, the cell is left in open
circuit to stay at rest. At the end of the rest period, another current pulse is applied, and the procedure
is repeated until the cell reaches the cut-off voltage.
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The test starts charging the cell to its maximum voltage using the Constant Current/Constant
Voltage procedure. After a rest period, the Pulse Discharge test is performed. The cell voltage is
continuously acquired, and a pre-defined current pulse is applied. The removed charge in Ah can be
calculated as:

∆Q =
tp · Ip

3600
. (25)

Figure 7 illustrates the current pulse and the cell voltage, with all the equations used for the
parameter estimation. At the start of the test, the acquired voltage corresponds to the cell open circuit
voltage at 0% Depth of Discharge, due to the rest period after the full charge. The acquired voltage
at the end of the rest period of the first current pulse, corresponds to the cell open circuit voltage at
∆Q
Qn
· 100% Depth of Discharge, where Qn is the nominal capacity of the cell.
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The immediate voltage reduction after the start of the current pulse is

∆V0 = R0 · Ip (26)

And the internal resistance can be estimated as

R0 = ∆V0/Ip (27)

Then, the cell is left open circuit for as long as it takes for the electrolyte polarization phenomenon
to complete. The voltage rise, from end of the current pulse to the end of the rest period, is:

∆V∞ = (R0 + R1) · Ip (28)

From the Equations (27) and (28), R1 can be computed as:

R1 =
∆V∞

Ip
−R0 (29)
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Finally, the polarization capacitance is estimated considering that, after approximately five time
constants, the cell terminal voltage is equal to 0.99 · E0, thus

∆t∞ � 5R1C1 (30)

And C1 can be estimated as:

C1 =
∆t∞
5R1

(31)

The parameter estimation procedure described above is now applied to the LG 18650HG2 cell.
First, the characteristics of the current pulse are chosen. The pulse starts after 40 s from the beginning
of the test, with an amplitude Ip = 3 A for tp = 360 s. The removed charge is therefore

∆Q =
360 · 3
3600

= 0.3 Ah (32)

Corresponding to approximately 10% of the nominal capacity of the battery.
Figure 8 shows the experimental cell terminal voltage, acquired during the PDT, and used for the

parameter estimation procedure. A MATLAB application was created to programmatically estimate all
the parameters. The application considers each pulse individually and applies Equations (25)–(32) to
calculate E0, R0, R1, C1. The results are reported in Figure 9, in which the red crosses are the estimated
points and the blue solid line is a polynomial function, obtained with a least square approximation
procedure. Table 4 summarizes the Thevenin model parameters.
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Figure 8. Cell terminal voltage and battery current during the experimental PDT.

Table 4. Thevenin model parameters.

DoD 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E0 [V] 4.20 4.08 4.01 3.89 3.80 3.70 3.63 3.55 3.46 3.22 2.5
R0 [mΩ] 25.6 23.9 22.4 22.0 21.9 21.9 22.0 22.1 22.7 26.2 28.7
R1[mΩ] 16.9 20.0 25.2 22.3 22.1 25.0 30.0 25.7 29.9 43.3 56.7
C1 [kF] 2.05 2.00 1.59 1.79 1.81 1.60 1.31 1.55 1.33 0.92 0.51
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Figure 9. Estimated parameters for the LG HG2 cell.

3. Test-Bench Description

With the aim to validate experimentally the described models, a test bench (Figure 10) was
implemented, composed of:

• a LG18650HG2 cell, whose characteristics are reported in Table 5;
• a Fluke PM2812 Programmable Power Supply, whose characteristics are reported in Table 6,

used to charge the cells;
• an Agilent 6060B Single Input Electronic Load, whose characteristics are reported in Table 7,

used on the discharge phase of the cell;
• a NI 9215 16-Bit Data Acquisition Board (placed in a NI cDAQ 9172 chassis), whose characteristics

are reported in Table 8, used to acquire the cell voltage signal;
• a SRD05VDCSl-C 4-Channels Optical Isolated Relay;
• a NI 9401 Digital Module (placed in the NI cDAQ 9172 chassis), used to control the relay.

Table 5. LG 18650HG2 cell Specification.

Nominal Voltage 3.7 V Standard Charge Current 1.5 A

Nominal capacity 3000 mAh Fast charge current 4 A

Continuous discharge current 20 A Max voltage 4.2 V

Initial internal resistance 24–26 mΩ

Table 6. Power Supply Fluke PM2812 Specifications.

Output Voltage Range 0 to 60 V

Output current range 0 to 5 A

Readback current accuracy ± (0.1% + 15 mA)

Current noise 10 mA
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Table 7. Electronic Load Agilent 6060B Specifications.

Input Voltage Range 0 to 60 V

Input current range 0 to 60 A

Maximum power 300 W

Readback current accuracy ± (0.05% + 65 mA)

Current noise 4 mA rms

Table 8. Data Acquisition Board NI 9215 Specifications.

Signal Level ± 10 V

Type of ADC 16-Bit Successive Approximation

Channels 4 Differential (simultaneously acquired)

Sample rate 100 kS/s/ch

Accuracy (after calibration) ± (0.02% + 1.5 mV)

Noise (peak-to-peak) 2.2 mV
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All the instrumentation is controlled by a PC connected to the power supply and the electronic
load via GPIB and to the NI chassis via USB.

The cell voltage signal is acquired at a 10 kS/s sampling frequency and then scaled at a 10 S/s
sampling frequency calculating the average value in a 0.1 s time window. All the acquisitions were
carried out after the calibration of the board.

The battery current is not directly measured and its values are taken from the values settled in the
power supply (during the charge phase) or in the electronic load (during the discharge phase).

The battery capacity is estimated using the Coulomb Counting method, as:

Q =
N∑

i=1

I · ∆Ts (33)

where I is the battery current, and ∆Ts is the sampling period.

Measurement Uncertainty Evaluation

In order to assess the accuracy of the parameters estimation for the Thevenin model, the uncertainty
evaluation was performed, strictly following the rules prescribed by [37], for the measurements of the
four parameters E0, R0, R1 and C1.
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The acquired voltage is affected by three main error sources, namely offset error, gain error and
noise. The first step is to evaluate the uncertainty associated with each error source starting from the
data acquisition board specifications:

• considering a recutangular distribution for the offset error;

uo f f set=
1.5
√

3
= 0.87 mV (34)

• considering a rectangular distribution for the gain error and considering the worst case that
corresponds to the maximum measured value (4.2 V);

ugain=
0.02 ∗ 4200

100
√

3
= 0.49 mV (35)

• considering a gaussian distribution for the noise and considering that each measured values is the
mean of 1000 acquired samples.

unoise =
2.2

3
√

1000
= 0.02 mV (36)

Therefore, the voltage standard uncertainty is

uV=

√
u2

o f f set + u2
gain + u2

noise = 1 mV (37)

And the expanded uncertainty with a 99% confidence level (coverage factor k = 2.58) is, therefore,
equal to 2.6 mV.

Actually, for the estimation of R0, R1 and C1, only the differential voltage value ∆V is needed.
In this case, the offset errors do not generate uncertainty, and, therefore:

u∆V=

√
u2

gain + u2
noise = 0.49 mV (38)

And the expanded uncertainty is therefore equal to 1.3 mV.
With regard to the current measurement, starting from the electronic load specifications, three error

sources have to be considered:

• considering a rectangular distribution for the offset error;

uo f f set=
60
√

3
= 35 mA (39)

• considering a rectangular distribution for the gain error and considering the worst case that
corresponds to the maximum measured value (5 A);

ugain=
0.05 ∗ 5000

100
√

3
= 1.4 mA (40)

• the noise error is expressed as rms value.

unoise = 4 mA (41)
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Therefore, the current standard uncertainty is

uI =
√

u2
o f f set + u2

gain + u2
noise = 35 mA (42)

The expanded uncertainty with a 99% confidence level is, therefore, equal to 91 mA.
Regarding the R0 measurement, applying the uncertainty propagation low to Equation (27) and

considering that the current during the parametrization process is set at 3 A, and the worst case,
which corresponds to the maximum observed ∆V (∆V = 0.1 V)

uR0=

√
1
I2 u2

∆V +
∆V2

I4
u2

I = 1.1 µΩ (43)

The expanded uncertainty with a 99% confidence level is, therefore, equal to 2.8 µΩ.
About the R1 measurement, applying the uncertainty propagation low to Equation (29)

uR1 =

√
1
I2 u2

∆V +
∆V2
∞

I4
u2

I + u2
R0

= 2.3 µΩ (44)

And the expanded uncertainty is therefore equal to 6 µΩ.
Regarding the C1 measurement, applying the uncertainty propagation low to Equation (31)

uC1=

√
1

R2
1

u2
∆t +

∆t2

5R4
1

u2
R1

(45)

However, considering the low value of time jitter of the data acquisition board, the uncertainty of
the ∆T measurement can be safely neglected. Therefore:

uC1 =
∆t
√

5R2
1

.uI = 0.96 F (46)

And the expanded uncertainty is therefore equal to 2.5 F.
With regard to the SoC measurement, referring to Equation (33)

uSOC =
∑

(∆TiuI + IIu∆T) (47)

That, neglecting the ∆T uncertainty and considering that the ∆T j are constant (0.1 s) and
considering N steps, becomes

uSOC = N∆TuI (48)

4. Validation of Models

The considered models are first validated by superimposing simulation results to the datasheet
curves for the LG 18650HG2 Li-ion cell in Section 4.1. The models are then validated with respect to
experimental results in different operating conditions in Sections 4.2–4.4. In particular, the constant
current/constant voltage (CC/CV) recharge, the Pulse Discharge Test (PDT) and the Dynamic Discharge
Test (DDT) of the cell are considered. In order to compare the models, the instantaneous error and the
Root Mean Square Error (RMSE) expressed are considered. The instantaneous error is calculated as

Err(ti) =

[
A(ti) − S(ti)

Amax

]
· 100 [%] (49)

where:

• A(ti) is the actual value at the considered instant ti;
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• S(ti) is the simulated value at the considered instant ti;
• Amax is the maximum observed value.

The Root Mean Square Error (RMSE) is calculated as

RMSE =

√∑N
i=1[A(ti) − S(ti)]

2

N
[V] (50)

where:

• Ai is the experimental value at the considered instant ti;
• Si is the simulated vale at the considered instant ti;
• N is the number of samples of the experimental and simulated data.

4.1. Datasheet Discharge Curves

In the following sections, the described models are validated at steady state, comparing the
discharge curves extracted from the manufacturer’s datasheet and the simulation results for the LG
HG2 18,650 cells.

4.1.1. Shepherd Model Validation

Figure 11 shows the simulation results for the Shepherd model superimposed on the datasheet
curves for different C-rates. The dotted curves represent the datasheets extracted points; the solid
line represents the simulation results. It can be noted that, for lower C-rates (0.2 C, 1 C, 1.67 C),
the simulated curves fit well to the datasheet curves during almost 85% of the discharge. For higher
C-rate (6.67 C) this model does not give a good approximation of the cell voltage. The parameter
estimation was done for the 0.2 C discharge curve, considering the parameters independent of the
discharge current. In practice, the parameters also depend on the discharge current, and this can cause
the accuracy problem.Energies 2020, 13, x FOR PEER REVIEW 16 of 26 
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Figure 11. Datasheet discharge curves vs. simulation results for the Shepherd model.

Figure 12 shows each discharge curve individually and the related instantaneous error calculated
with Equation (49), and RMSE calculated with Equation (50). For 0.2 C, 1 C, 1.67 C discharge rates
represented respectively in Figure 12a–c, the error is within 0–5% for SoC and within 100–20%. For SoC
below 20%, the accuracy of the model decreases significantly. For 6.67 C discharge rate, represented
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in Figure 12b, the error starts at 4% and ramps up to 12%, hence this model is not suitable for high
discharge rate.
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4.1.2. Rint Model Validation

Figure 13 shows the simulation results for the Rint model superimposed on the datasheet curves
for different C-rates. Similarly, to the Shepherd model, for lower C-rates (0.2 C, 1 C, 1.67 C), the model
has better accuracy, but in this case also for the higher C-rate the model can predict with appropriate
precision the cell terminal voltage.

Figure 14 shows each discharge curve individually and the related error. For the 0.2 C discharge
curve, Figure 14a, the error is below 1% for all the SoC range. For the 1 C discharge curve, Figure 14b,
the error is below 5% for SoC between 100 to 20% but then starts to increase. For the 1.67 C discharge
curve, Figure 14c is always below 2%. Finally, for the 6.67 C discharge curve, Figure 14d, the error is
below 5%.



Energies 2020, 13, 4085 18 of 26

Energies 2020, 13, x FOR PEER REVIEW 17 of 26 

 

Figure 12. Shepherd model datasheet vs. simulation curves and error: (a) 0.2 C discharge; (b) 1 C 
discharge; (c) 1.67 C discharge; (d) 6.67 C discharge. 

4.1.2. Rint Model Validation 

Figure 13 shows the simulation results for the Rint model superimposed on the datasheet curves 
for different C-rates. Similarly, to the Shepherd model, for lower C-rates (0.2 C, 1 C, 1.67 C), the model 
has better accuracy, but in this case also for the higher C-rate the model can predict with appropriate 
precision the cell terminal voltage. 

 
Figure 13. Datasheet discharge curves vs. simulation results for the Rint model. 

Figure 14 shows each discharge curve individually and the related error. For the 0.2 C discharge 
curve, Figure 14a, the error is below 1% for all the SoC range. For the 1 C discharge curve, Figure 14b, 
the error is below 5% for SoC between 100 to 20% but then starts to increase. For the 1.67 C discharge 
curve, Figure 14c is always below 2%. Finally, for the 6.67 C discharge curve, Figure 14d, the error is 
below 5%. 

  
(a) (b) 

0 0.5 1 1.5 2 2.5 3

Capacity, C [Ah]

2.5

3

3.5

4
C

el
l t

er
m

in
al

 v
ol

ta
ge

, V
 [V

]
0.2 C - datasheet

1 C - datasheet

1.67 C - datasheet

6.67 C - datasheet

0.2 C - simulation

1 C - simulation

1.67 C - simulation

6.67 C - simulation

3

4

[V
]

RMSE = 12.9 mV

Datasheet

Simulation

0 1 2 3

Capacity, [Ah]

0

0.5

Er
r (

%
)

3

4

[V
]

RMSE = 43.5 mV

0 1 2 3

Capacity, [Ah]

0

5

Er
r (

%
)

Figure 13. Datasheet discharge curves vs. simulation results for the Rint model.
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Figure 14. Rint model datasheet vs. simulation curves and error: (a) 0.2 C discharge; (b) 1 C discharge;
(c) 1.67 C discharge; (d) 6.67 C discharge.

4.1.3. Thevenin Model Validation

Figure 15 shows the simulation results for the Thevenin model superimposed on the datasheet
curves for different C-rates. Again, the model has better accuracy for lower C-rates.
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Figure 16 shows each discharge curve individually and the related error, calculated again with
Equation (49). For the 0.2 C, 1 C and 1.67 C discharge curves, Figure 16a–c, similar results are obtained
with an error below 2.5% for SoC between 100 to 20%. Finally, for the 6.67 C discharge curve, Figure 16d,
the error continuously increases, thus this model is not suited for higher C-rates.Energies 2020, 13, x FOR PEER REVIEW 19 of 26 
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Figure 16. Thevenin model datasheet vs. simulation curves and error for the Thevenin model: (a) 0.2 C
discharge; (b) 1 C discharge; (c) 1.67 C discharge; (d) 6.67 C discharge.



Energies 2020, 13, 4085 20 of 26

4.2. Battery CC/CV Charge

Figures 17, 18 and 19a show the experimental cell voltage and current (solid blue and orange line
respectively) superimposed to the simulated cell voltage and current (dashed blue and orange line
respectively) obtained with the Shepherd, Rint and Thevenin model respectively. Figures 17, 18 and 19b
show the instantaneous percentage error (solid blue line) and report the RMSE. The best results were
obtained with the Thevenin model with a RMSE equal to 69 mV and an instantaneous error between
± 1% most of the time.
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Figure 17. Shepherd model CC/CV recharge: (a) experimental (solid line) and simulated (dashed line)
voltage and current; (b) Error trend and RMSE.
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Figure 18. Rint model CC/CV recharge: (a) experimental (solid line) and simulated (dashed line)
voltage and current; (b) Error trend and RMSE.

Energies 2020, 13, x FOR PEER REVIEW 20 of 26 

 

Figure 17. Shepherd model CC/CV recharge: (a) experimental (solid line) and simulated (dashed line) 
voltage and current; (b) Error trend and RMSE. 

  
(a) (b) 

Figure 18. Rint model CC/CV recharge: (a) experimental (solid line) and simulated (dashed line) 
voltage and current; (b) Error trend and RMSE. 

  
(a) (b) 

Figure 19. Thevenin model CC/CV recharge: (a) experimental (solid line) and simulated (dashed line) 
voltage and current; (b) Error trend and RMSE. 

4.3. Battery Pulse Discharge 

Figures 20, 21 and 22a show the experimental cell voltage (solid blue line) and the simulated cell 
voltage (dashed orange line) obtained with the Shepherd, Rint and Thevenin model respectively for the 
Pulse Discharge Test. Figures 20, 21 and 22b show the instantaneous percentage error (solid blue line) 
and report the RMSE. Once again, the model that best fits the experimental results is the Thevenin 
model, with a RMSE equal to 15 mV and an instantaneous error between ± 2%. 

0 20 40 60

Time [min]

0

1

2

3

4

5

Vo
lta

ge
 [V

]

0

1

2

3

4

5

C
ur

re
nt

 [A
]

0 10 20 30 40

Time [min]

0

5

10

Er
ro

r [
%

]

RMSE = 142 mV

0 20 40 60

Time [min]

0

1

2

3

4

5

Vo
lta

ge
 [V

]

0

1

2

3

4

5

C
ur

re
nt

 [A
]

0 20 40 60

Time [min]

-2

0

2

4

6

8

Er
ro

r [
%

]

RMSE = 69.1 mV

Figure 19. Thevenin model CC/CV recharge: (a) experimental (solid line) and simulated (dashed line)
voltage and current; (b) Error trend and RMSE.
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4.3. Battery Pulse Discharge

Figures 20, 21 and 22a show the experimental cell voltage (solid blue line) and the simulated cell
voltage (dashed orange line) obtained with the Shepherd, Rint and Thevenin model respectively for the
Pulse Discharge Test. Figures 20, 21 and 22b show the instantaneous percentage error (solid blue line)
and report the RMSE. Once again, the model that best fits the experimental results is the Thevenin
model, with a RMSE equal to 15 mV and an instantaneous error between ± 2%.
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4.4. Battery Dynamic Discharge

Figures 23, 24 and 25a show the experimental cell voltage (solid blue line) and the simulated cell
voltage (dashed orange line) obtained with the Shepherd, Rint and Thevenin model respectively for the
Dynamic Discharge Test. Figures 23, 24 and 25b show the instantaneous percentage error (solid blue
line) and report the RMSE. In this case too, the Thevenin model gives the best results with a RMSE
equal to 44 mV and instantaneous error less than 3%.
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5. Discussion

This article carried out a comparison study of battery modeling and parameter identification
techniques. Three models were considered: the Shepherd, the Rint and the Thevenin battery models.
The Shepherd model belongs to the category of mathematical models. It can simulate the battery
behavior both in static and transient operations thanks to the filtered current term. The parametrization
procedure is quite simple, because all the necessary information can be found in the battery datasheet.
The parametrization was carried out considering the 0.2 C discharge curve characteristic and considering
the parameters current-independent.

The Rint model belongs to the category of equivalent circuit models and it does not consider
the short-term battery dynamics. The parametrization procedure is a bit more complex than the
Shepherd model one, but all the information can still be found in the manufacturer’s datasheet.
The parametrization procedure considers different discharge curves, thus obtaining parameters that
are somehow current dependent.

The Thevenin model belongs to the category of equivalent circuit models and, thanks to the
RC branch, it can simulate the short-term battery dynamics. To parametrize the model, costly and
time-consuming tests are required.

Table 9 summarizes the RMSE, expressed in mV, for all the model and test combinations. The bold
numbers highlight the minimum obtained RMSE. It can be noticed that, considering the datasheet
curves, the models can describe well the behavior of the battery for 0.2, 1 and 1.67 C. For 6.67 C
(20 A), the best results were obtained with the Rint model. The Thevenin model gives the best results
in all the experimental tests in terms of RMSE, but both the Sheperd and Rint models give adequate
simulation results.

Table 9. RMSE [mV] comparison.

Model
Datasheet Experimental Test

0.2 C 1 C 1.67 C 6.67 C CC/CV PDT DDT

Shepherd 24.9 25.8 47.8 298.4 137.6 65.2 49.2

Rint 12.9 43.5 46.5 90.2 141.6 36.2 49.9

Thevenin 18.1 33.0 0.3 208.9 69.1 14.8 43.6

The Sheperd and Rint models can be therefore used in early design phase, for example for a
rough comparison between different types of cells, considering nominal voltage, weight, cost, overall
dimensions, and quickly evaluating the performance of the battery pack. Once the cell type for the
application is defined, the PDT can be performed to obtain the parameters for the Thevenin model,
which gives better results in terms of accuracy. Moreover, the accuracy of the Thevenin model can
be further improved by considering the parameters variable with current, temperature, age etc. by
performing appropriate tests.

6. Conclusions

In this article, three battery equivalent circuit models (Shepherd, Rint, Thevenin) selected from the
literature were presented and the parameters estimation procedures for each model were described.
The parameters estimation procedures were systematically applied to the LG 18650HG2 battery cell.
It should be noted that, for the Shepherd and Rint models, the parametrization can be carried out
using just the information on manufacturer’s datasheets. However, their accuracy is limited by the
veracity and precision of the curves and parameters in the datasheets. On the other hand, the Thevenin
model requires a costly test-bench and time-consuming experimental test for its parametrization.
The advantage, in this case, is the possibility to have a perfect knowledge of measurements and
parameters estimation uncertainties. The comparison of the three models showed that Thevenin model,
whose parameters were obtained from experimental tests, gave the best results as expected. However,
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the Shepherd and Rint models gave adequate simulation results, proving to be suitable for the early
design stages of a battery-powered system. In this work, the temperature, battery current and ageing
effect on the parameters were not considered, as this information would require expensive equipment
and extensive testing. The aim of the work was to identify three easy-to-implement battery models,
suitable for the early stages simulation and design of a battery-powered system. In the optimization
phase of such systems, more accurate models should be used instead.
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