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Abstract: In the seawater desalination system, the energy recovery system is a crucial part, as it
consumes a lot of energy and plays a guiding role in the recovery efficiency. Therefore, in the energy
recovery system, the recovery rate and energy consumption are the key factors to guide the system
design. In order to make the energy recovery device achieve a high recovery rate under conditions
of low energy consumption, the design and selection of each device in the system are particularly
important. At the current stage, system matching optimization, device design optimization, and
function objective optimization are widely used to improve the energy recovery system. In this paper,
the design principle of the energy recovery integration system is analyzed, methods of reducing
energy consumption and improving recovery efficiency are presented. The study provides guidance
for the design and selection of energy recovery devices under different operating conditions.

Keywords: energy recovery device; recovery rate; specific energy consumption; turbine;
pressure exchanger

1. Introduction

The ocean is a vital strategic resource for all countries of the world. Under the current situation of
increasing global water shortage, saving water alone will not solve the problem of resource scarcity.
People have begun to look for new ways to obtain water resources, and desalination has increasingly
become one of the important ways for people to obtain freshwater [1]. In the 14th century BCE, people
distilled seawater to acquire freshwater [2,3]. With the development of science and technology, people
began to gradually use electrodialysis [4], multistage flash evaporation [5], and reverse osmosis (RO) [6]
to desalinate seawater.

Reverse osmosis seawater desalination technology has developed rapidly in recent years. Because
of its advantages of high efficiency, simple equipment, and convenient maintenance, it has been widely
used in industrial seawater treatment and other more industries. The main parts of the reverse osmosis
desalination system are: the pretreatment part, the membrane assembly part, the high-pressure pump,
the energy recovery unit, and the post-processing portion for stabilization [7].

To some extent, the acceleration of reverse osmosis has solved the problem of a shortage of
freshwater resources. However, the energy consumption of the reverse osmosis desalination project
should not be underestimated. In this kind of technology of desalination, the energy recovery system,
along with the high-pressure pump and high-pressure pipeline system are the core parts of the whole
project, where they spend 40% of their assets on equipment [8]. The consumption of electric energy
accounts for more than 30% of the whole project, and so the cost incurred also accounts for a large
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proportion of the whole project [9]. The final price of each desalination system technology in the early
21st century is shown in Figure 1.
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The existence of an energy recovery system is significant; in the seawater desalination system,
40% of the seawater can permeate through the reverse osmosis membrane to get freshwater [7]. If the
rest of the 60% of the high-pressure concentrated brine that cannot go through the reverse osmosis
membrane is discharged directly through the pressure relief valve, then the pressure energy will
be wasted.

Therefore, how to obtain freshwater resources efficiently while reducing the energy consumption
of the system has become the focus of numerous research.

The energy recovery device of the seawater desalination system can be divided into two categories:
the positive displacement type and centrifugal type [11]. According to the different working parts of
the equipment, the positive displacement type is mainly divided into a piston type (such as DWEERTM)
and a ceramic rotary type (such as PXTM). The centrifugal types are mainly divided into the Pelton
turbine, hydraulic turbocharger, hydraulic pressure booster, and reverse centrifugal pump. The energy
recovery devices mostly adopted the centrifugal type first in the late 20th century, to reduce the energy
consumption of the high-pressure pump and recover the pressure energy at the same time. In the
21st century, positive displacement energy recovery devices began to emerge, with higher efficiency
than before. At present, due to the problems with the positive displacement device, researchers have
made further innovations to the centrifugal device and made various improvements to the positive
displacement device [12].

The positive displacement equation is mainly applied to the recovery of residual pressure energy
in large-scale integrated seawater desalination plants. Although the flow of a single device is limited,
it is commonly used in combination as parallel units [13], so the unit flow rate can be adjustable and
run a wide range with high recovery efficiency. However, some of the positive displacement devices
have problems that the noise is loud, and equipment failures abound. The centrifugal type is mainly
applied to the energy recovery of high pressure concentrated seawater in small seawater desalination
equipment. Its single flow rate is larger, the operation is stable, and the operating condition can be
adjusted. Meanwhile, the design, improvement, and innovation of the centrifugal type is relatively
diverse [14,15].

Specific energy consumption (SEC) is a key performance index in the reverse osmosis process.
It refers to the total energy consumption generated by percolating fluid per unit volume [16]. It is
one of the evaluation criteria for the efficiency of energy recovery devices [17,18]. It plays a decisive
role in the energy consumption of the system and is closely related to the recovery efficiency of the
devices [19,20]. The application of the energy recovery unit has significantly reduced the specific
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energy consumption of penetration [21,22], which has promoted the development of SWRO seawater
desalination [23,24].

From the perspective of reducing specific energy consumption, it is a trend to optimize the
system by using optimization functions [25,26]. Each cycle of the system designed by Shayesteh [27]
is composed of the power production department and the desalination water production. In order
to reduce specific energy consumption and improve the recovery rate, the thermodynamic system is
optimized by using the concentration disposal index (CDI) function [28]. The coordination relationship
of various components in the energy recovery unit also has a great impact on the energy consumption
and recovery rate [29,30]. In various energy recovery devices, the operating conditions and application
conditions of various fluid machinery are different, in order to achieve the best efficiency of the system,
the design, and the selection of each device crucial. Zhou et al. [31] made a comprehensive analysis of
operating conditions of pump and recovery device, including motor and bypass regulating valve, so as
to reach the optimal efficiency point of working together of all components, which is of great help to
the selection of components of energy recovery systems under different operating conditions.

For the positive displacement energy recovery system, it is necessary to reduce the equipment
floor space on the basis of high efficiency. For centrifugal types, blade optimization design and the best
efficiency point (BEP) of the system will be the concern point. According to the different structures
of reverse osmosis desalination systems under different operating conditions, the design principle
and selection accordance of each part of the system is analyzed in this paper, to provide a theoretical
and data basis for the design and selection of multiple seawater desalination energy recovery systems.
The guidance of each kind of energy recovery system optimization is also provided.

2. Piston Type Energy Recovery Device

2.1. Description and Design of DWEERTM

The piston type energy recovery device (ERD) has the advantages of high efficiency, large capacity,
and simple processing, and is a better choice for energy recovery in a large seawater reverse osmosis
(SWRO) desalination plant [32]. A piston type ERD (such as DWEERTM) usually consists of three main
components [32,33], two cylinders, a LinX valve, and a check seat (Figure 2).Energies 2020, 13, x FOR PEER REVIEW 4 of 21 
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Figure 2. The DWEERTM work exchanger [13].

The feed flow is divided into two parts, which go into the high-pressure pump and the energy
recovery device, respectively. Figures 3 and 4 give the scene of the recovery system. The size of the
high-pressure pump is usually reduced due to the reduced flow. Booster pumps need to be installed in
the system to compensate for the differential pressure on the diaphragm, and the pressure loss on the



Energies 2020, 13, 4150 4 of 19

pipeline and the energy recovery unit [34]. Generally, the pump is designed for differential pressure
head of approximately 30 to 40 m [13].
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Figure 4. Integration of the work exchanger into a RO desalination system [13].

2.2. Selection and Applications of DWEERTM

The specific energy consumption of the lines using the pressure exchanger equipment as the
energy recovery system was lower than that of the lines using the Pelton turbine [36,37], and the
introduction of DWEERTM reduced the total specification energy consumption by 4.82%. The unit
process is shown in Figure 5. Common DWEERTM selections [13] are shown in Table 1.
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Table 1. DWEERTM sizes.

Property Flow Rate Pressure

DWEERTM1100 1100 USGPM or 250 m3/h 80 barg
DWEERTM2200 2200 USGPM or 500 m3/h 80 barg

At brine flows above the standard product range flow, several DWEERTMs can be grouped in
a DWEERTM system, as shown in Figure 6. As Schneider [13] compared, the center design is more
accepted than the train design, because the energy consumption of the center design was reduced from
2.1 to 2.01 kWh/m3. In center design, it could use three high-pressure pumps. This can run the plant at
33%, 66%, and 100% capacity, with the different quad DWEERTMs switched off.
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2.3. Other Piston Type Energy Recovery Devices

Based on experimental platform research, Wang [39] developed a hydraulic control switch energy
recovery device (FS-ERD), and the experimental results showed that, under the capacity of 30 m3/h
and the pressure of 6.0 MPa, the efficiency of the energy recovery system was 95.9%. Song [40]
experimentally studied the system adaptability of signal control and time control on the basis of
FS-ERD, and developed the reciprocating switch energy recovery device (RS-ERD) with four valve
plates. The experimental results showed that the efficiency of the energy recovery device was 98%
under the condition of 30 m3/h and 6.5 MPa. Zhou et al. [31] mainly introduced the RS-ERD, which
is a type of equal-pressure piston type ERD. It consists of three main parts: a reciprocating-switcher
(RS), two hydraulic cylinders, and a passive check valve nest, as shown in Figure 7. The pressurized
decompression process of low-pressure seawater and high-pressure seawater is controlled by the
cooperation of a passive check seat and reciprocating-switcher (RS).
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A single RS-ERD can run well in a capacity range of 20 m3/h to 45 m3/h, equivalent to the design
66.7% to 150.0% capacity in the stable operation. Compared to the PX products, it is the same as
capacity of two PXs. Compared to the DWEERTM, the control mode of DWEERTM limits the flexibility
of capacity [13].

There are two main factors affecting RS-ERD efficiency; one is the leakage rate; the other is the
pressure loss in the fluid. Equation (1) is a general formula for calculating the energy recovery efficiency
of ERD [31]. As shown in Figure 8, when the flow is less than 30 m3/h, leakage is the dominant factor
affecting the efficiency. When the flow exceeds the designed capacity of more than 30 m3/h, the pressure
loss will become the main factor, and the influence will be more obvious than leakage.

η =

∑
Energyout∑
Energyin

=
Qso·Pso + Qbo·Pbo
Qsi·Psi + Qbi·Pbi

(1)

where Psi means the pressure of the feed seawater inlet, MPa. Pso means the pressure of the pressurized
seawater outlet, MPa. Pbi means the pressure of high-pressure brine inlet, MPa. Pbo means the pressure
of the depressurized brine outlet, MPa. Qsi means the flow rate of the feed seawater inlet, m3/h. Qso
means flowrate of the pressurized seawater outlet, m3/h. Qbi means flow rate of high-pressure brine
inlet, m3/h. Qbo means flowrate of the depressurized brine outlet, m3/h.
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As for the piston type isobaric ERD, because of the vibration and other problems, it requires
regular maintenance of the piston and valves [41].
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3. Pressure Exchanger

3.1. Description and Design of Pressure Exchanger

The Pressure Exchanger (PX) is a typical rotary energy recovery device [42,43] that consists of
three main parts: a rotating rotor for pressure exchange, a sleeve, and two end caps [44].

The working process of PX is shown in Figure 9. The liquid transmits pressure through a short
period of direct contact, and the PX rotor is used to transfer the pressure from the high-pressure brine
discharge to the low-pressure seawater feed stream. Transfer occurs in the rotor pipe. The rotor is
mounted in a ceramic sleeve between two ceramic end covers and has a precise clearance to form a
fluid sliding bearing [45,46]; high-pressure and water-filled.
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When the rotor rotates, the high-pressure area and the low-pressure area will form the sealing area
respectively through the pipe. If the high-pressure flow is equal to the low-pressure flow, Equation (2)
is used to calculate the mix proportion of flow [47].

Volumetric mixing =
HPoutsalinity− LPinsalinity
HPinsalinity− LPinsalinity

× 100% (2)

where HP means high-pressure water, LP means low-pressure water.
PX, the direct positive displacement, makes the net transfer efficiency up to 97%, and has the

behefits of a low failure rate, being not easy to corrode, and a low vibration. The relationship between
system capacity (capital and operating costs) and the recovery rate is shown in Figure 10.
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The PX energy device does not require regular maintenance [42], and if the PX rotor stops rotating
for any reason, the water will flow unimpeded through the path of equipment, because there are no
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pistons or obstacles in the flow path through the equipment, and the damage of one of the rotors has
little impact on the SWRO membrane [31,48]. This gives the equipment and maintenance staff time
to buffer.

3.2. Selection and Applications of PXTM Units

PX was produced in 1989 [49,50] and first introduced as a commercial product in 1997 [51].
The processing capacity of a single rotor was increased to 50 m3/h after several generations of design
improvement. The PX unit produces an almost perfect hydraulic disconnect between the high pressure
and low-pressure pipelines [52–54]. The PX rotor rotates 500 to 2000 rotations per minute and is
divided into 12 tubes with two sides. It can withstand pressures ranging from 12,000 to 48,000 per
minute [45]. Multi-PX arrays are usually applied in large scale desalination plants, as Figure 11 displays
the PX-120 array.
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The fourth-generation device was the big rotor PX-200 [55]. The size is larger, with the water
hammer and cavitation phenomenon is more serious, but this can be solved by the gentle transition of
pressure. The efficiency decrease caused by fluid mixing in the PX-220 is approximately 1% at balanced
flow, the same as the operating pressure to increase by approximately 1.3 bar. The efficiency of PX
in the greater rotor is about 95%. The largest PX, PX-220 [45], has a capacity of 220 GPM or 50 m3/h,
which can be integrated and run in parallel to achieve unlimited capacity. For example, a 10,000 m3/d
SWRO plant running at a 45% recovery rate would require about 10 PX-220 units.

The basic information of PX device selection is exhibited in Table 2 Manipulating PX outside the
capacity range may cause the rotor to rotate unsteadily in the sleeve [52].

Table 2. The PX sizes available [31,45].

PX Model Number Capacity (m3/h) Capacity (gpm)

PX-220 41–50 181–220
PX-180 32–41 141–180
PX-140 23–32 90–140
PX-90 16–20 71–90
PX-70 10–16 46–70
PX-45 6–10 26–45
PX-25 3–6 16–25
PX-15 2–3 10–15
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Ashkelon seawater reverse osmosis plan [53] was the largest single-train SWRO capacity in
2007, whose full capacity of drinking water was 330,000 m3/d. It adopted a pressure center design.
The Hamma (Algeria) desalination plant, designed by General Electric, Water Section, was the second
largest plant at that time, was introduced by Mambrettia et al. [52] The plant adopted the train design
method, utilized one array of 32 PX-220 devices on each of the nine first-pass trains for a total of 288 PX
units, to minimize the high costs of processing the expected 200,000 m3/d of water [54]. The Hamma
plant operates at 1084 m3/h and the efficiency is about 88%; the booster pump operates at 1351 m3/h
and the efficiency is about 89% [52].

4. Pelton Turbine

4.1. Description and Design of Pelton Turbine

Although volumetric devices like DWEERTM and PX do have some interesting potential, centrifugal
devices are the most widely used energy recovery technology by far and cut a figure in desalination
field in uptime, flexibility, mechanical simplicity and robustness [56]. More than 98% of reverse-osmosis
equipment installed worldwide has chosen centrifugal devices [41].

In centrifugal energy recovery devices, the Pelton turbine is a common counterattack turbine,
widely used in seawater desalination energy recovery systems. The efficiency of the Pelton turbine at
570m3/h and 3000 rpm is shown in Figure 12.
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According to the turbomachinery affinity law that the Pelton turbine follows, when rotating speed
accelerates, the power input approximately grows cubically as a function of the speed. And the relation
between efficiency and input power is described in Equation (3) [57]. With the affinity laws applied,
the efficiency curve can be normalized when the operating speed changed [58].

1− η1

1− η2
=

(
N2

N1

)0.07

(3)

where ηmeans efficiency, N means input power.
The turbine part of the energy recovery device is coaxially connected with the high-pressure

pump. The pump and turbine systems can find the same operating point by intelligent design of key
parts of structure or system [14,15], such as the bucket of the turbine and impeller diameter [59–61].
The whole turbine structure and blade structure are shown in Figures 13 and 14.
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The design of the turbine bucket dimension is one of the key points to blades optimization [62,63].
The detailed parameters of condition that regulate the valve calculation for full opening are listed
in Table 3.

Table 3. Regulating valve calculation for the full opening condition [29].

Parameter Value

Input flowrate of RO package, Qp 325 m3/h
Discharge head of high-pressure pump, Hp 540 m

Head of the waste salty flow after filtering, Hi 520 m
Coefficient of pressure drop, Cv 0.95

Speed of the jet flow, Vj 95.9 m/s
Turbine input flowrate, QT 195 m3/h
Specific speed of turbine, ns 17

Jet flow diameter, dj 26 mm
Optimum diameter of the turbine wheel, Dm, opt 303 mm

Width of the turbine bucket, B 3.16dj = 84.7 mm
Depth of the turbine bucket, h 0.275B = 23.3 mm
Total efficiency of the EDR, η 78.5%
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4.2. Selection and Application of Pelton Turbine

Manth et al. [41,64] argued that the key point to minimize the specific energy consumption (SEC)
is to control the plant as a whole system and reduce throttling losses. By choosing a ring section pump,
the energetic efficiency could come to 85% at the considered flow rate with the nominal speed of
3000 rpm. This pump is supplied by Duechting Pulnpen GmbH of Witten, Germany. The two-stages
reverse osmosis desalination process is exhibited in Figure 15.
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Based on the principle of specific energy consumption, the impact of throttling in the system is
analyzed as follows in Table 4 [41,65].

Table 4. Two types of flowrate controlling.

Parameter Title Advantage Disadvantage

Energy
dissipation

method

(a) Throttling
(b) Permeate

throttling

(a) Simple operation.
(b) Low cost of investment.

Waste power consumption
and cannot be recycled.

Energy control
method

Variable Frequency
Drives (VFD)

(a) The controllable hydraulic
power range is wide.

(b) The unit energy consumption
is low when the water supply

condition is good.

(a) High cost of investment;
(b) When water supply

condition is poor, unit. energy
consumption is high

(c) The internal conversion
rate of the VFD will affect the

overall efficiency.

The first pump is used to provide the basic energy required for PROP in the system [66,67].
The duty point, which is the best efficiency point (BEP) of the reverse osmosis package, ensures
efficient progress and stable energy input [41]. Sani [29] believes that impeller geometry and operating
synchronicity of the turbine between turbine speed and centrifugal pump speed are important for
improving efficiency and recovering the input power of energy recovery devices. The main parts and
the seawater distribution of RO package introduced by Sani are shown in Figure 16.
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Nowadays, in order to make energy recovery of reverse osmosis desalination process towards
the direction of efficiency, the better match between high-pressure pumps, transmembrane pressures,
and permeable fluids is often found by using equations and genetic algorithms [65,68].

5. Hydraulic Turbocharger and Hydraulic Pressure Booster

5.1. Description of Hydraulic Turbocharger and Hydraulic Pressure Booster

The hydraulic turbocharger (HTC), designed and manufactured by Pump Engineering Inc. [69],
consists of two parts: a turbine and a pump whose blades are mounted on the same shaft. High-pressure
brine enters into the turbine parts by a nozzle, with a bypass to adjust and control the flow and pressure
of brine [70,71]. A hydraulic pressure booster (HPB), produced by FEDCO companies in the United
States [72], is the second generation of energy recovery device on the basis of HTC. In this device,
the saltwater control valve and energy recovery device are combined as a complete part instead of
the bypass regulation. Both of those two kinds of devices work under the condition of a large flow
rate [73]. The residual pressure energy of recovered brine is used to further pressurize seawater to the
demanded pressure, which is equivalent to the role of booster pump in the process [74]. The energy
recovery unit runs in series with a high-pressure pump to decrease system energy consumption by
reducing the outlet pressure of the high-pressure pump.

With the hydraulic turbocharger (HTC), its overall energy transfer efficiency was up to 71%,
applied for a reject flow ratio (i.e., the brine flow rate through the hydraulic turbo-booster/feed flow
rate) of 60% [75].

Compared with other centrifugal energy recovery devices, the miniaturization of motors and
switches, as well as the elimination of brine pressure relief valves, can save additional costs in new
systems designed specifically for energy recovery. Systems such as ROWPU can save about $2000 [76].
The equipment itself has the advantages of low cost, small floor space, and low energy consumption.
By reducing the discharge pressure of the feed pump, the life of the feed pump components such as
packing, valves, crossheads, and crank bearings is extended, resulting in additional cost savings [77,78].

5.2. Design and Selection of Energy Recovery Integration

The Fluid Machinery Team of Zhejiang University keeps the opinion that the efficiency of the
integrated system composed of each recovery part cannot be represented by the efficiency of a single
device, and the speed coordination of the primary pump, secondary pump, and turbine is more
important. The energy recovery device (Figure 17) studied by Tamer et al. [30] is composed of the
direct connection of the turbine, hydraulic turbocharger, and motor, which is called hydraulic energy
management integration (HEMI). The study showed that where the auxiliary pipe size and valve
opening were larger, the turbine inlet pressure was lower. The increase in turbine inlet pressure will
lead to an increase of turbine rotating speed. In the device system set in this condition, the turbine
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efficiency is highest when the speed is 11,000 rpm, and the balance between the pump and turbine will
be realized at about 10,000 rpm.
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In 1992, Silbernagel et al. tested the high-pressure system. The size of the energy recovery device
is shown in the Table 5 [76].

Table 5. Size of the energy recovery device.

Property Index Parameter

Measure (without external tubing) 9.5 inches by 6.5 inches by 4.5 Inches
Weight 18 pounds

According to the test results, in the device displaced in Figure 18, the new rotor was made of a
2205 duplex alloy [79] and contained nitrogen, so the maximum strength of the shaft was achieved;
The chrome oxide coating was used instead of alumina [76]. For the integrated RO package, more
improvement has been made: the thrust bearing that can transmit more power adopted [80]; increase
the shell thickness by increasing the flange; the shaft was placed in tension by rotor thrust to maximizing
wear ring life [8].Energies 2020, 13, x FOR PEER REVIEW 15 of 21 
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In terms of salinity and temperature, the design data can be considered to be representative of the
Arabian gulf sea conditions [41]. The hydraulic assumptions of the case study plant are summarized
in Table 6.

Table 6. Hydraulic assumptions for model calculations [41].

Operating Conditions Value

Feed flow rate 950 m3/h
Permeate recovery 40%

Motor efficiency 97%
VFD efficiency 0.95

Feed pump type Centrifugal
Brine discharge pressure 0 bar

Array/manifold loss 4 bar

The heart part of the integrated RO package (IROP) or hydraulic energy management integration
(HEMI) is the feed pump and the energy recovery device [81]. The feed pump could select from
Designated the TONKAFLO® SW series. The rated operating speed is 4200 rpm offered by TEFC
motor, which is driven by VFD, the output frequency of the motor is 70 Hz [8]. HPB™ is turbocharged
with high-pressure brine, which drives the single-stage booster pump [82]. The feed pressure lift
generated by HPB™ reduces the required discharge pressure of the feed pump, thereby saving energy
and reducing the size of the feed pump and motor [83].

The IROP assembly excluding the VFD can pump feed at up to 20 m3/h (85 gpm) at 67 bar
(950 psig). The unit is driven by a 37 kW (50 hp) TEFC motor. The IROP standardized by the VFD is
widely used, capable of operating at 50 or 60 Hz electric power with the same efficiency. ERT control
valves and cleaning pump kits integrate components to simplify high-pressure pipes. One package
can handle feed flows from about 50 gpm (12 m3/h) to 200 gpm (45 m3/h) [84]. The system is equipped
with a control function to control the flow rate of the permeable fluid and brine [85,86].

The system components are shown in Figure 19. System parameters [8] of 120 m3/d and 500 m3/d
output plant are listed in Tables 7 and 8 below.Energies 2020, 13, x FOR PEER REVIEW 16 of 21 
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Table 7. A 120 ton/d example [8].

Property Index Parameter

Permeability 120 m3/d
Recovery rate 36%

Average operating pressure 60.0 bar or 58.0 bar
Shaft power 21.6 kW

kWh/ m3permeate 4.7
The total weight 290 kg
The total length 2.9 m

Table 8. A 150 ton/d example [8].

Property Index Parameter

Permeability 500 m3/d
Recovery rate 45%

Average operating pressure 64.0 bar or 62.0 bar
Shaft power (The motor power) 125 hp (93 kW)

kWh/ m3permeate 4.7
The total weight 850 kg
The total length 4.1 m

6. Discussion and Conclusions

The positive displacement type and centrifugal type are two kinds of energy recovery devices.
The classification, current status, and growing trend of different devices are discussed in Table 9.

Table 9. Comparison and conclusion of energy recovery devices.

Positive Displacement Type Centrifugal Type

Classification: Piston type (DWEERTM, RS-ERD),
Pressure Exchanger

Pelton turbine, hydraulic pressure
booster

Current Status:

(a) Applied in large-scale desalination
plants;

(b) Single device stands lower
pressure;

(c) Usually used in parallel units;
(d) Mostly keep more than 90%

efficiency;
(e) Some have noise while working.

(a) Applied in small-scale desalination
plants;

(b) Single device stands higher pressure;
(c) Single line and parallel units both

used;
(d) Single device keeps lower efficiency

with more energy loss;
(e) The operation is stable and adjusted.

Growing Trend:
(a) Reduce the equipment floor space;
(b) Solve the problems of serious noise

and difficult maintenance.

(a) Use function objective optimization
to design blade;

(b) Find the best efficiency of point of all
devices in system.

The positive displacement energy recovery device generally recycles the energy of high-pressure
concentrated seawater through the direct transfer of liquid pressure. Therefore, its operation mechanism
is simple, the device is efficient, and the usage is large in the early 21st century. In recent years, people
have carried out blade design and pipeline improvement optimization for centrifugal energy recovery
devices and found that the synchronism of devices is the key point to the energy recovery system.
According to this point, researchers designed an integrated system with an energy recovery device
as the core and other equipment as the auxiliary, so as to improve the overall system efficiency and
energy consumption formed by the device and pipeline.

Different energy recovery devices are applied to different operating conditions. At present, the
design and development of the energy recovery device of the seawater desalination system is relatively
mature. It is becoming a top trend for people to study whether device selection or design conforms to
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the operating conditions of the system and whether it can simultaneously reach the optimal operating
conditions of all devices in the system.
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