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Abstract: According to the basic principle of the hydraulic anti-kink system and flow continuity
equation, this paper takes the low-floor tram as the research object and the four vehicles as the
research carrier. Based on the correlation parameters between the vehicle subsystem and the hydraulic
subsystem, a co-simulation platform of a low-floor tram with hydraulic an anti-kink system is built.
The co-simulation results show that the anti-kink system can well maintain the relative yaw angle
consistency between the vehicle body and bogie. The anti-kink system restrains the maximum yaw
angle and excessive lateral displacement of the vehicle body effectively. The consistency between the
experiment results and the simulation results shows the accuracy of the model. The co-simulation
model of the low-floor tram with hydraulic anti-kink system can be used to research the dynamic
performance when it passes through curve line.
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1. Introduction

With the continuous expansion of the city boundary, the traffic problems inside the city are
becoming increasingly serious. As an efficient means of transportation, urban rail transit has been paid
more and more attention by urban decision makers. Among them, the low-floor tram has been widely
used in many cities because of its economic and environmental protection, energy saving, and other
characteristics [1,2]. The low-floor tram is composed of three motor vehicles Mc1, M, Mc2, and a trailer
T. The overall structure of a low-floor tram is shown in Figure 1. Mc1 and T form a unit and M and
Mc2 form another unit. The two units are connected by a single hinge joint, and only two vehicles are
allowed to yaw around the hinge center in the horizontal plane [3]. Because this kind of tram adopts
the structure of one bogie for each vehicle, the yaw angle of the vehicle body relative to the bogie in
the plane is larger when crossing the curve. When the train passes through the curve, the bogie and
articulated device will bear a certain torque, which can cause the relative rotation of the vehicle body
and the lateral force on the wheel flange to increase. The excessive torque may even cause the train
derailment. The installation of a hydraulic anti-kink system can restrain the yaw angle of the vehicle
body relative to the bogie and greatly reduce the lateral force on the wheel flange [4]. Therefore, it is
essential to research the curving performance and running stability of the low-floor tram.
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Figure 1. Overall structure of low-floor tram. 
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system. Their results showed that the force of the hydraulic cylinder controlled by the anti-kink 
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analysis method. Their results provided theoretical basis for the development and design 
optimization of brake system. Li J. et al. [9] established the damping mathematical model which 
affected the lateral damping function of the anti-kink system by analyzing the principle of the anti-
kink system. They analyzed the influence of throttle valve and pressure limiting valve in the buffer 
valve group on the damping characteristics. The simulation curve of damping characteristics was in 
good agreement with the test curve. Wang Y.Q. et al. [10] designed two sets of the hydraulic anti-
kink system, which can satisfy the operation state of anti-kink system in normal mode, fault mode, 
and anti-kink mode. They took the articulated Mc1 and vehicle T as their research objects. The two 
sets of anti-kink system were simulated under normal operation mode by AMESim software, they 
obtained the displacement of vehicle Mc1’s main control cylinder and vehicle T’s main control 
cylinder piston. Ding W.S. et al. [11] based on the establishment of a corresponding mathematical 
model and analyzed the formation principle of combined damping. The influence of the design 
parameters of the buffer valve group on the damping characteristics was further analyzed. Their 
results showed that the combination of throttle valve and pressure limiting valve in the buffer valve 
group forms the damping characteristics of multi segment parabola combination with multi 
inflection points. Liu X. et al. [12] established a lateral dynamic curve negotiation model of suspension 
rail vehicle bogies based on the coupling system of rubber tire and ground. They analyzed the lateral 
and yaw motion dynamics of wheel set structure with rubber tire and ground coupling, the 
displacement and acceleration response of bogie were calculated when vehicle frame and wheelset 
pass through curve section. Based on the theory of vehicle track coupling dynamics, Wang K.Y. et al. 
[13] simulated the performance indexes of wheel rail dynamic lateral interaction between locomotive 
and vehicle when passing through different curve tracks, including passenger and freight trains 
passing through mountain railway with a small radius curve, 160 km/h passenger train and 200 km/h 
freight train passing through curve track with different radius. Zboinski K. et al. [14] researched the 
nonlinear lateral stability of rail vehicles on the curve, and proposed a method to solve the more 
complex rail vehicle model. 

Complex products have the intersection of multi-disciplinary information, and the 
manufacturing cycle of physical prototype is long and the cost is high. With the development of 
computer hardware and the technical progress in the field of single subject simulation, the product 
analysis of virtual prototype of complex products using multidisciplinary joint simulation technology 
plays an increasingly important role in the process of product development. The traditional empirical 
formula and estimation method are difficult to satisfy the design requirements of a low-floor tram 

Figure 1. Overall structure of low-floor tram.

Uhl T. et al. [5] researched the structural dynamic characteristics of the low-floor tram by
experimental method, including the strain measurement at the hinge joint and some motion devices
in the vehicle body. They used a non-contact sensor to measure the displacement, yaw angle, and
some mutual characteristics describing vehicle dynamics. Zhang X. et al. [6] established the dynamic
model of a low-floor tram, determined the inner and outer widening amount of low-floor tram when
running on the curve. They analyzed the dynamic performance index of low-floor tram with or
without an anti-kink system. However, their analysis lacked the state quantity calculation of the
hydraulic system, which had certain limitations. According to the flow continuity equation and force
balance equation, Huang Y.P. et al. [7] established the dynamic model of the hydraulic anti-kink system
of the tram and analyzed the dynamic response characteristics of the hydraulic anti-kink system.
Their results showed that the force of the hydraulic cylinder controlled by the anti-kink system is
different, and the force of the hydraulic cylinder near the guide wheel of the front vehicle is the
largest. Zhu W.L et al. [8] established the models of the control subsystem, air brake subsystem, electric
brake subsystem, and brake execution subsystem by using multidisciplinary collaborative analysis
method. Their results provided theoretical basis for the development and design optimization of brake
system. Li J. et al. [9] established the damping mathematical model which affected the lateral damping
function of the anti-kink system by analyzing the principle of the anti-kink system. They analyzed
the influence of throttle valve and pressure limiting valve in the buffer valve group on the damping
characteristics. The simulation curve of damping characteristics was in good agreement with the test
curve. Wang Y.Q. et al. [10] designed two sets of the hydraulic anti-kink system, which can satisfy
the operation state of anti-kink system in normal mode, fault mode, and anti-kink mode. They took
the articulated Mc1 and vehicle T as their research objects. The two sets of anti-kink system were
simulated under normal operation mode by AMESim software, they obtained the displacement of
vehicle Mc1’s main control cylinder and vehicle T’s main control cylinder piston. Ding W.S. et al. [11]
based on the establishment of a corresponding mathematical model and analyzed the formation
principle of combined damping. The influence of the design parameters of the buffer valve group
on the damping characteristics was further analyzed. Their results showed that the combination of
throttle valve and pressure limiting valve in the buffer valve group forms the damping characteristics
of multi segment parabola combination with multi inflection points. Liu X. et al. [12] established a
lateral dynamic curve negotiation model of suspension rail vehicle bogies based on the coupling
system of rubber tire and ground. They analyzed the lateral and yaw motion dynamics of wheel set
structure with rubber tire and ground coupling, the displacement and acceleration response of bogie
were calculated when vehicle frame and wheelset pass through curve section. Based on the theory of
vehicle track coupling dynamics, Wang K.Y. et al. [13] simulated the performance indexes of wheel rail
dynamic lateral interaction between locomotive and vehicle when passing through different curve
tracks, including passenger and freight trains passing through mountain railway with a small radius
curve, 160 km/h passenger train and 200 km/h freight train passing through curve track with different
radius. Zboinski K. et al. [14] researched the nonlinear lateral stability of rail vehicles on the curve, and
proposed a method to solve the more complex rail vehicle model.

Complex products have the intersection of multi-disciplinary information, and the manufacturing
cycle of physical prototype is long and the cost is high. With the development of computer hardware
and the technical progress in the field of single subject simulation, the product analysis of virtual
prototype of complex products using multidisciplinary joint simulation technology plays an increasingly
important role in the process of product development. The traditional empirical formula and estimation
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method are difficult to satisfy the design requirements of a low-floor tram when crossing the curve.
The simulation method of multidisciplinary collaborative simulation is used to design and calculate
such that a comparison is made between experiment and simulation. This is an effective way to realize
the rational optimization design of low-floor tram. This paper took the low-floor tram as the research
object and the four vehicles as the research carrier, based on the multidisciplinary collaborative analysis
method and the correlation parameters among subsystems. The simulation platform of SIMPACK
(A mechanical dynamics software) vehicle dynamic model, AMESim (A complex system modeling
and simulation software) anti-kink system hydraulic model and Simulink model are built to research
the influence of hydraulic anti-kink system on the dynamic performance of the low-floor tram under
curve conditions.

2. Model of Hydraulic Anti-Kink System

2.1. Structure of Anti-Kink System

The hydraulic anti-kink system is installed between the vehicle body and the bogie. The hydraulic
cylinder, elastic stop, and lateral shock absorber are used to restrain the yaw motion of the vehicle body.
When the vehicle body moves laterally, the oil in the hydraulic pipeline flows in the high-pressure
chamber and low-pressure chamber of the hydraulic cylinder. The hydraulic oil flows through the
throttle valve to play a damping role. When the vehicle yaws its head, the hydraulic oil in the
high-pressure chamber of the two hydraulic cylinders is controlled by the one-way valve, and flows to
the same pipeline. The buffer hydraulic cylinder reduces the oil pressure in the hydraulic pipeline.
When the front end of the vehicle enters the curve, the vehicle body yaws its head. Because of the buffer
hydraulic cylinder, the pressure in the hydraulic pipeline does not rise sharply, but increase slowly. At
this time, the anti- kink system allows the angle between the front and rear vehicle bodies and the
corresponding bogies to have a certain difference, which plays the critical role of anti yaw damping.
When the rear vehicle body enters the curve, the pressure maintained in the buffer cylinder pushes
the rear body to make the head yaw and play the role of auxiliary steering. Therefore, the parameter
setting of buffer hydraulic cylinder is the key of hydraulic anti-kink system. The simplified schematic
diagram of hydraulic anti-kink system is shown in Figure 2.
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2.2. Mathematical Model of Anti-Kink System

The anti-kink system can keep the yaw angle of two vehicle bodies γ1 and γ2 in a unit equal to their
respective bogies. When the two angles are not equal, the anti-kink system produces a reverse torque
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Mγ between the bogie and the vehicle body, forcing the two angles to be consistent. The equation of
torque and yaw angle is satisfied [15]:

Mγ1 = −Mγ2 = Kγ(γ1 − γ2) (1)

Here: Mγ1 is the torque between the front vehicle body and its bogie, Mγ2 is the torque between
rear vehicle and its bogie, and Kγ is the rotation stiffness between vehicle bodies.

When the two ends of the hydraulic cylinder are respectively connected with the vehicle body
and the bogie, the relationship between the yaw angle γ and the displacement Y of the moving parts of
the hydraulic cylinder is expressed as:

Y = Hγ (2)

Here: H is the longitudinal distance from the connection point of the anti-kink system and the
vehicle body to the center of the bogie.

In order to establish the mathematical model of the hydraulic anti-kink system composed of a
control hydraulic cylinder, buffer hydraulic cylinder, and bypass throttle valve, the simplified model of
the control hydraulic cylinder was analyzed. The simplified model of the hydraulic anti-kink system is
shown in Figure 3.
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Assume that the piston sectional area and initial volume of each hydraulic cylinder are A0 and V0.
The sectional area and initial volume of the combined hydraulic cylinder in Figure 3 are 2A0 and 2V0.
Suppose that the control hydraulic cylinder 1 produces a downward displacement Y1 under the
action of F1, and the control hydraulic cylinder 2 has an upward displacement Y2 under the action of
pressure, and the resistance is F2. The flow continuity equation of control hydraulic cylinder 1 can be
expressed as:

2A0
dY1

dt
−QB1 =

2V0 − 2A0Y1

βe

dP1

dt
(3)

QA1 − 2A0
dY1

dt
=

2V0 + 2A0Y1

βe

dP2

dt
(4)

Here: QA1 is the inlet oil flow of chamber A, QB1 is the flow of oil from chamber B, P1 is the
pressure of control hydraulic cylinder chamber B, P2 is the pressure of control hydraulic cylinder
chamber A, and βe is the bulk modulus of hydraulic oil.

The differential equation of the moving parts of hydraulic cylinder 1 is expressed as:

Mk
d2Y1

dt2 = F1 − (P1 − P2)A0 − δ
dY1

dt
(5)
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Here: Mk is the mass of the moving part of the hydraulic cylinder and δ is the motion damping
coefficient of piston cylinder. According to the flow continuity formula, the flow equations of chamber
A and chamber B of the buffer cylinder are expressed as:

AH
dx
dt
−QH2 =

V1 −AHx
βe

dP2

dt
(6)

QH1 −AH
dx
dt

=
V1 + AHx
βe

dP1

dt
(7)

The differential equation of the moving parts of the buffer cylinder is expressed as:

MH
d2x
dt2 + δ

dx
dt

+ 2Ktx = AH(P1 − P2) (8)

Here: MH is the mass of the moving part of the buffer cylinder, V1 is the initial volume of chamber
A and chamber B of buffer hydraulic cylinder, and Kt is the spring stiffness.

The flow continuity equation of control hydraulic cylinder 2 can be expressed as:

2A0
dY2

dt
−QA2 =

2V0 − 2A0Y2

βe

dP2

dt
(9)

QB2 − 2A0
dY2

dt
=

2V0 + 2A0Y2

βe

dP1

dt
(10)

Here: QA2 is the inlet oil flow of chamber A and QB2 is the flow of oil from chamber B.
The differential equation of the moving parts of hydraulic cylinder 2 is expressed as:

Mk
d2Y2

dt2 = (P1 − P2)A0 − δ
dY2

dt
− F2 (11)

The flow rate of the bypass throttle valve is expressed by the following formula:

Qr = CdA2

√
2
ρ
(P1 − P2) (12)

Here: Qr is the flow through the throttle valve, Cd is the throttle flow coefficient, ρ is the oil density,
and A2 is the orifice area of bypass throttle valve.

The flow continuity equation at node M is:

QB1 = Qr + QH1 + QB2 (13)

The flow continuity equation at node N is:

QA1 = Qr + QH2 + QA2 (14)

2.3. AMESim Model of Anti-Kink System

When the vehicle body yaws its head relative to the bogie, the oil flows through the buffer valve
group into or out of the hydraulic cylinder, which plays the role of shock absorption. According to the
basic principle of hydraulic anti-kink system, the internal hydraulic simulation model is constructed
by AMESim software, as shown in Figure 4.
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The basic simulation parameters of anti-kink system are shown in Table 1.

Table 1. Basic simulation parameters of anti-kink system.

Name Value

Piston diameter of control cylinder (mm) 50
Piston rod diameter of control cylinder (mm) 30

Orifice area of throttle valve (mm2) 1.28
Oil density (kg/m3) 842

Bulk modulus of oil (GPa) 1.46

3. SIMPACK Model of Low-Floor Tram

The low-floor tram is different from the traditional railway vehicles. It uses the independent
rotating wheel as the supporting motion device, and the four wheels are independent individuals.
The front and rear wheels on both sides of the power bogie are coupled together through gears.
The longitudinal coupling is simulated by the gear transmission force element in the whole vehicle
modeling. Referring to Figure 1, the SIMPACK model of low-floor tram is shown in Figure 5.
The position of each ball is the centroid of the corresponding vehicle body.
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The basic simulation parameters of the low-floor tram are shown in Table 2.
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Table 2. Basic simulation parameters of the low-floor tram.

Description Mc1 T M Mc2

Vehicle body mass (kg) 10,221 9233 7793 9983
Unspring mass per wheelset (kg) 720 875 720 720

Bogie mass (Not include unspring mass) (kg) 3430 1540 3420 3430
Roll inertia of bogie (Not include unspring mass) (kg·m3) 2500 790 2500 2500
Pitch inertia of bogie (Not include unspring mass) (kg·m3) 1000 500 1000 1000
Yaw inertia of bogie (Not include unspring mass) (kg·m3) 3050 1200 3050 3050

4. The Co-Simulation of SIMPACK/AMESim/Simulink

In order to better analyze the influence of the anti-kink system on vehicle driving performance
under curve crossing conditions, the vehicle dynamic model based on SIMPACK and the hydraulic
anti-kink system model based on AMESim are established. By defining the interaction interface
between different software simulation models in Simulink environment, the integration of vehicle
dynamics analysis simulation model and the anti-kink system hydraulic simulation model is realized.
The scheme of the vehicle co-simulation platform is established as shown in Figure 6.
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5. Influence of the Anti-Kink System on Vehicle Dynamic Performance

In an urban rail transit system, the most common small curve basically includes S-shaped curve
lines and C-shaped curve lines. Therefore, it is very important to research the performance of the
hydraulic anti-kink system when the curve is too small. An S-shaped curve line and a C-shaped curve
line are shown in Figure 7.
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According to the requirements of code for design of railway lines (GB 50090-2006) and general
technical conditions for low-floor tram vehicles (CJ/T 417-2012), the specific parameters of an S-shaped
curve line and a C-shaped curve line are as follows:

S-shaped curve line and C-shaped curve line: the length of straight line 1 and 3 is 50 m, and the
length of straight line 2 is 10 m, the length of two circular curves is 10 m and the radius is 25 m.

5.1. Evaluation Index of Dynamic Performance

The safety of vehicle operation mainly involves whether the vehicle will derail and overturn.
Generally, derailment coefficient, wheel load reduction rate, wheel–rail lateral force and other indicators
are used to evaluate the safety of vehicle operation. At present, China’s vehicle departments mainly
use derailment coefficient and wheel load reduction rate.

5.1.1. Derailment Coefficient

When the vehicle is running, the wheel derailment may be caused under the most unfavorable
combination of line condition, operation condition, vehicle structural parameters, and loading.
The “derailment coefficient” is used to evaluate the stability of wheel derailment, and the calculation
formula is given by Nadal [16]:

Q
P

=
tgα− µ

1 + µ·tgα
(15)

Here: Q is the lateral force acting on the wheel, P is the vertical force acting on the wheel, µ is the
friction coefficient at the flange, and α is the maximum flange contact angle.

The International Union of Railways (UIC) stipulates that: Q/P ≤ 1.2.

5.1.2. Wheel Unloading Rate

The vertical force and lateral force of the wheel are the main parameters affecting derailment.
Combined with the definition of the derailment coefficient, the main reason for derailment in theory
is that the lateral force is too large. However, in practical application, it is found that sometimes the
lateral force is small, but the derailment phenomenon may occur when the wheel load is reduced.
Therefore, the wheel load reduction rate is used as a supplement to jointly determine the derailment
safety of vehicles.

W =
1
2
(W1 + W2) ∆W =

1
2
(W2 −W1) (16)

Here: W is the average wheel weight of the unloaded side wheel and the loaded side wheel, ∆W
is the load reduction variation of wheel load, W1 is the wheel weight of the unloaded side wheel, and
W2 is the wheel weight of the loaded side wheel.

5.1.3. Wheel–Rail Lateral Force

Excessive wheel–rail lateral force will lead to deformation or even damage of the line, so the
maximum value of lateral force should be controlled. According to GB5599-85, the maximum allowable
value of wheel–rail lateral force during curve passing is shown in formula (17) and formula (18).

When the track spike is pulled out, the stress of the track spike is the limit of elastic limit:

Q ≤ 19 + 0.39Pst (17)

When the track spike is pulled out, the stress of the track spike is the limit of yield limit:

Q ≤ 29 + 0.39Pst (18)

Here: Q is the lateral force acting on the wheel and Pst is the wheel static load.
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The wheel rail lateral force shall not exceed the design load of elastic fastener. The lateral force
limit of Shinkansen in Japan and Europe and America is usually 0.4 times of axle load.

Q ≤ 0.4(Pst1 + Pst2) (19)

Here: Pst1 is the static load of the left wheel and Pst2 is the static load of the right wheel.

5.1.4. Vehicle Running Stability Index

The evaluation indexes of vehicle running stability mainly include vehicle running stability index
and comfort index. These indexes can not only reflect the performance of vehicle system, but also
reflect the physical reaction of passengers to vehicle running quality.

This paper mainly introduces Sperling stability index, and evaluates vehicle running stability
through this index. The formula of stationarity index
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= 2.710
√

Z3 f 5F( f ) = 0.89610

√
a3

f
F( f ) (20)

Here: Z is the amplitude, f is the vibration frequency, a is the vibration acceleration, and F( f ) is
the factor related to vibration frequency. The values of F( f ) are shown in Table 3.

Table 3. Frequency correction factor.

Vertical Vibration Lateral Vibration

0.5–5.9 Hz F( f ) = 0.325 f 2 0.5–5.4 Hz F( f ) = 0.8 f 2

5.9–20 Hz F( f ) = 400/ f 2 5.4–26 Hz F( f ) = 650/ f 2

>20 Hz F( f ) = 1 >26 Hz F( f ) = 1

The stationarity index can only be applied to a single vibration of one frequency and one amplitude.
But in the actual line, the variation of vibration frequency and amplitude with time is relatively complex.
Therefore, before calculating the vehicle stability index, we analyze the frequency spectrum of the
measured vehicle vibration acceleration to obtain the amplitude value of each frequency range, and
then calculate the ride comfort index
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The vehicle stability levels specified in GB5599-85 are shown in Table 4. The running stability of
ordinary passenger cars in China shall not be lower than the secondary standard, that is, the lateral
and vertical stability indexes shall not exceed 2.75.

Table 4. Passenger and Freight train stability level.

Stability Level Evaluation Result
Stability Index

Passenger Train Freight Train

Class A excellent <2.5 <3.5
Class B good 2.5–2.75 3.5–4.0
Class C qualified 2.75–3.0 4.0–4.25

5.2. S-Shaped Curve Line

The change of angle between vehicle body and bogie with time for tram running on S-shaped
curve line with the anti-kink system is shown in Figure 8.



Energies 2020, 13, 4335 10 of 19
Energies 2020, 13, x FOR PEER REVIEW 10 of 19 

  

(A) Angle between vehicle body Mc1 and bogie (B) Angle between vehicle body T and bogie 

  

(C) Angle between vehicle body M and bogie (D) Angle between vehicle body Mc2 and bogie 

Figure 8. Angle between vehicle and bogie with hydraulic anti-kink system. 

When the vehicle with the anti-kink system passes through the S-shaped curve, the change trend 
of the angle between the vehicle body and its bogie is different. The maximum angle between the 
vehicle body and the bogie can reach 2.42°, which is located in the Mc1 vehicle. Due to the buffer 
hydraulic cylinder of the working hydraulic anti-kink system, the overall stiffness is relatively small, 
allowing a certain difference in the angle between the front and rear vehicle bodies and the 
corresponding bogies. There will be a certain difference between the angles between the vehicle body 
and the bogie, and there is a delay in the rotation of the front and rear vehicle bodies relative to the 
corresponding bogies. 

Figure 9 shows the change of the maximum derailment coefficient of each wheel group under 
the operating conditions. Before and after the installation of anti-kink system, the derailment 
coefficient of most wheel groups changes slightly, while the derailment coefficient of the two front 
wheel groups changes greatly. When the vehicle passes through the S-shaped curve at a faster speed, 
the most front-end bogie suffers a greater lateral impact. The maximum derailment coefficient 
without anti-kink system reaches 1.45, the maximum derailment coefficient of installing anti-kink 
system wheel set is 0.72. Figure 10 shows the change of wear index. After the anti-kink system is 
installed, the change range of wear index is small, the wear of front wheel set is large, and the wear 
of rear wheel set is small. Figure 11 shows the variation of the maximum wheel unloading rate under 
operating conditions. The maximum wheel unloading rate of the vehicles without the anti-kink 
system reaches 0.57, close to the specified limit, and the maximum wheel unloading rate with the 
anti-kink system is 0.28. Figure 12 shows the variation of the maximum wheel–rail lateral force under 
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When the vehicle with the anti-kink system passes through the S-shaped curve, the change trend of
the angle between the vehicle body and its bogie is different. The maximum angle between the vehicle
body and the bogie can reach 2.42◦, which is located in the Mc1 vehicle. Due to the buffer hydraulic
cylinder of the working hydraulic anti-kink system, the overall stiffness is relatively small, allowing a
certain difference in the angle between the front and rear vehicle bodies and the corresponding bogies.
There will be a certain difference between the angles between the vehicle body and the bogie, and there
is a delay in the rotation of the front and rear vehicle bodies relative to the corresponding bogies.

Figure 9 shows the change of the maximum derailment coefficient of each wheel group under the
operating conditions. Before and after the installation of anti-kink system, the derailment coefficient of
most wheel groups changes slightly, while the derailment coefficient of the two front wheel groups
changes greatly. When the vehicle passes through the S-shaped curve at a faster speed, the most
front-end bogie suffers a greater lateral impact. The maximum derailment coefficient without anti-kink
system reaches 1.45, the maximum derailment coefficient of installing anti-kink system wheel set is 0.72.
Figure 10 shows the change of wear index. After the anti-kink system is installed, the change range of
wear index is small, the wear of front wheel set is large, and the wear of rear wheel set is small. Figure 11
shows the variation of the maximum wheel unloading rate under operating conditions. The maximum
wheel unloading rate of the vehicles without the anti-kink system reaches 0.57, close to the specified
limit, and the maximum wheel unloading rate with the anti-kink system is 0.28. Figure 12 shows the
variation of the maximum wheel–rail lateral force under the operating conditions. The maximum
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wheel–rail lateral force of the vehicles without the anti-kink system reaches 82.8 KN, far exceeding the
maximum value allowed by the standard. The maximum wheel–rail transverse force of the vehicles
with anti-kink system is 38.2 KN, which is lower than the national standard value of 43 KN. Therefore,
the anti-kink system can improve the safety of a single tram passing through the S-shaped curve.

Energies 2020, 13, x FOR PEER REVIEW 11 of 19 

the operating conditions. The maximum wheel–rail lateral force of the vehicles without the anti-kink 
system reaches 82.8 KN, far exceeding the maximum value allowed by the standard. The maximum 
wheel–rail transverse force of the vehicles with anti-kink system is 38.2 KN, which is lower than the 
national standard value of 43 KN. Therefore, the anti-kink system can improve the safety of a single 
tram passing through the S-shaped curve. 

 
Figure 9. Derailment coefficient. 

 
Figure 10. Wear index. 

 
Figure 11. Wheel unloading rate. 

Figure 9. Derailment coefficient.

Energies 2020, 13, x FOR PEER REVIEW 11 of 19 

the operating conditions. The maximum wheel–rail lateral force of the vehicles without the anti-kink 
system reaches 82.8 KN, far exceeding the maximum value allowed by the standard. The maximum 
wheel–rail transverse force of the vehicles with anti-kink system is 38.2 KN, which is lower than the 
national standard value of 43 KN. Therefore, the anti-kink system can improve the safety of a single 
tram passing through the S-shaped curve. 

 
Figure 9. Derailment coefficient. 

 
Figure 10. Wear index. 

 
Figure 11. Wheel unloading rate. 

Figure 10. Wear index.

Energies 2020, 13, x FOR PEER REVIEW 11 of 19 

the operating conditions. The maximum wheel–rail lateral force of the vehicles without the anti-kink 
system reaches 82.8 KN, far exceeding the maximum value allowed by the standard. The maximum 
wheel–rail transverse force of the vehicles with anti-kink system is 38.2 KN, which is lower than the 
national standard value of 43 KN. Therefore, the anti-kink system can improve the safety of a single 
tram passing through the S-shaped curve. 

 
Figure 9. Derailment coefficient. 

 
Figure 10. Wear index. 

 
Figure 11. Wheel unloading rate. Figure 11. Wheel unloading rate.

Figures 13 and 14 show the change of vehicle body stability index, the maximum lateral stability
index of vehicle body without anti-kink system is 2.28, which is concentrated in M vehicle, the maximum
lateral stability index of vehicle body with anti-kink system is 1.74, which is also concentrated in M
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vehicle. Because the vehicle T has no longitudinal coupling system, and the bogie lateral movement is
larger than the other three vehicles, the yaw angle of T vehicle is larger and the anti-kink system force
is larger. The maximum vertical stability index of vehicle body without the anti-kink system is 1.74,
concentrated in M vehicle, the maximum vertical stability index of vehicle body with the anti-kink
system is 1.26, concentrated in Mc1 vehicle. So the stability of vehicles with anti-kink system are better
than those without anti-kink system. The amplitude and frequency of yaw head of vehicle body have
influence on the stability index when the vehicle passes through an S-shaped curve.
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5.3. C-Shaped Curve Line

The change of angle between vehicle body and bogie with time for tram running on a C-shaped
curve line with the anti-kink system is shown in Figure 15.
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When the vehicle without the anti-kink system passes through the C-shaped curve, the change
trend of the angle between the vehicle body and its bogie is different. The maximum angle between
the vehicle body and the bogie can reach 2.39◦, which is located in the Mc1 vehicle. Due to the
buffer hydraulic cylinder of the working hydraulic anti-kink system, the overall stiffness is relatively
small, allowing a certain difference in the angle between the front and rear vehicle bodies and the
corresponding bogies, there will be a certain difference between the angles between the vehicle body
and the bogie, and there is a delay in the rotation of the front and rear vehicle bodies relative to the
corresponding bogies.

Figure 16 shows the change of the maximum derailment coefficient of each wheel group under the
operating conditions. When the vehicle passes through the C-shaped curve at a faster speed, the most
front-end bogie suffers a greater lateral impact. The maximum derailment coefficient without the
anti-kink system reaches 1.48, the maximum derailment coefficient of installing the anti-kink system
wheel set is 0.82. Figure 17 shows the change of wear index. After the anti-kink system is installed, the
change range of wear index is small, the wear of front wheel set is large, and the wear of rear wheel
set is small. Figure 18 shows the variation of the maximum wheel unloading rate under operating
conditions. The maximum wheel unloading rate of the vehicles without the anti-kink system reaches
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0.58, close to the specified limit, and the maximum wheel unloading rate with the anti-kink system
is 0.29. Figure 19 shows the variation of the maximum wheel–rail lateral force under the operating
conditions. The maximum wheel–rail lateral force of the vehicles without the anti-kink system reaches
85.1 KN, far exceeding the maximum value allowed by the standard. The maximum wheel–rail
transverse force of the vehicles with the anti-kink system is 39.8 KN, which is lower than the national
standard value of 43 KN. Therefore, the anti-kink system can improve the safety of a single tram
passing through the C-shaped curve.
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Figure 19. Wheel–rail lateral force.

Figures 20 and 21 show the change of vehicle body stability index and the maximum lateral
stability index of vehicle body without the anti-kink system is 2.21, which is concentrated in M
vehicle, the maximum lateral stability index of vehicle body with the anti-kink system is 1.79, which
is concentrated in Mc2 vehicle. The maximum vertical stability index of vehicle body without the
anti-kink system is 1.62, concentrated in M vehicle, the maximum vertical stability index of vehicle
body with the anti-kink system is 1.21 concentrated in Mc2 vehicle. So the stability indexes of vehicles
with the anti-kink system are better than those without the anti-kink system. The amplitude and
frequency of yaw head of vehicle body have influence on the stability index when the vehicle passes
through the C-shaped curve.
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6. Experiment

The displacement between each bogie and its corresponding vehicle body was measured by two
displacement sensors. Which were respectively installed at the edge of the vehicle body and the end
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of the frame to test the lateral displacement of the outermost end of the bogie relative to the vehicle
body. The installation diagram is shown in Figure 22. The simplified dimensioning of displacement
measurement is shown in Figure 23.
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Figure 23. Simplified dimensioning of displacement measurement.

Referring to the Figure 23, the yaw angle between vehicle body and bogie is expressed as:

γbogie =
180(L1 − L2)

πL
(22)

Here: L1 and L2 are the horizontal lateral displacement of bogie frame relative to vehicle body
and L is the distance between two horizontal measuring points.

The following is the angle change of the low-floor tram Mc1 and T relative to their own bogies on
the S-shaped curve line, as shown in Figure 24.
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Due to the limitation of experimental conditions, there is no separate R = 25 m curve radius curve.
Therefore, a continuous curve with R = 25 m curve radius and C curve is selected, that is, after the
vehicle passes through the curve with R = 25 m small curve radius at the speed limit, and then passes
the C curve track at the speed limit. The test results of the R = 25 m curve and the C-shaped curve are
displayed together as shown in Figure 25.
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7. Discussion

Compared with the experimental results (Figure 24) and the simulation results (Figure 8), the curve
changes are consistent, but the peak value of the yaw angle is different. The difference between the
experimental results and the simulation results (S-shaped curve line) is shown in Table 5.

Table 5. Difference between the experimental results and the simulation results, (S-shaped curve line).

Line Condition Data Source Vehicle Max (deg) Min (deg) Error

S-shaped curve line

Simulation Mc1 +2.42 −2.34 13.1%/1.3%
Experiment Mc1 +2.14 −2.31

Simulation T +1.99 −2.20 5.2%/3.5%
Experiment T +2.10 −2.28

Compared with the experimental results (Figure 25) and the simulation results (Figure 15),
the curve changes are consistent, but the peak value of the yaw angle is different. The difference
between the experimental results and the simulation results is shown in Table 6.

Table 6. Difference between the experimental results and the simulation results, (R = 25 m and C-shaped
curve line).

Line Condition Data Source Vehicle Max (deg) Min (deg) Error

R = 25 m

Simulation Mc1 +2.29 −2.33 2.1%/3.6%
Experiment Mc1 +2.34 −2.25

Simulation T +2.25 −1.96 2.6%/5.8%
Experiment T +2.31 −2.08

C-shaped curve line

Simulation Mc1 +2.39 −2.32 16.6%/0.4%
Experiment Mc1 +2.05 −2.33

Simulation T +1.92 −2.24 4.5%/1.8%
Experiment T +2.01 −2.28
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Referring to Tables 5 and 6, when the vehicles pass the S-shaped curve line and the C-shaped
curve line, the maximum yaw angle error of experimental results and simulation results is concentrated
on Mc1 vehicle. Because the working conditions of Mc1 as a motor vehicle are much more complicated
than that of T as a trailer when crossing different curves. The reasons for the difference between
the experimental results and the simulation results (S-shaped curve and C-shaped curve) may be
as follows:

(1) The area of the throttle valve and the size of piston are not very accurate in the hydraulic
anti-kink system.

(2) When passing through a small curve, the wheel rail resistance is very large, and the actual running
speed cannot be as constant as the simulation environment.

(3) In the actual operation process, M, Mc1, and Mc2 vehicles have power, and the drive system has
the ability of traction torque control. However, the simulation process relies on the No. 9 hinge to
simulate the vehicle operation conditions, which is different from the real situation.

After installing the anti-kink system, the front and rear vehicle bodies have internal relations
in parameters. The original secondary suspension parameters and workshop hinge parameters are
not necessarily the best parameters after installing the anti-kink system. The secondary suspension
parameters and the hinge stiffness between the vehicle bodies can be further optimized, such as the
spring stiffness of the buffer hydraulic cylinder or the sectional area of the bypass throttle valve, so as
to make the anti-kink system to achieve better performance.

Although the simulation has some defects, the consistency of the change curve shows the accuracy
of the model.
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