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Abstract: The use of renewable energy sources, and in particular photovoltaics, can effectively reduce
the supply of household energy from the main grid, contributing to a more sustainable community.
In this paper, several energy management strategies were applied to an existing microgrid with
photovoltaic (PV) production and battery storage in view to supply in electricity a building and
an electric vehicle located in Ajaccio, France. The purpose was to determine how the choice of a
management strategy can impact the cost and the energy share in the microgrid, using the actual
electricity tariff in France as well as an over-cost due to the island situation. For some strategies,
a forecasting tool was introduced and its influence on the performances of the microgrid was
discussed. It appears that the performance of the strategy increased with its complexity and the use
of PV forecasting.

Keywords: solar microgrid; energy management system; rule-based control; PV forecasting

1. Introduction

The photovoltaic (PV) market is continuing to increase with, at the end of 2019, a world capacity
in DC of 627 GWp [1]. The PV energy produced is considered between 2.6% and 3% of global electricity
output today at the world level [1]. As for 2019, the PV solar cell production has increased of around
16% compared to 2018, which led to an estimate of 131 GW [2].

The variable and random character of the solar resource (which is added to the uncertainties on
the load side) makes the PV production difficult to manage and requires specific actions to balance
the system. The integration of PV systems into an electrical network intensifies the complexity of the
grid management [3–6], and today, it is recognized that this main drawback could be offset by the
simultaneous development of:

• Energy storage systems;
• Smart electrical grid with an optimization of the energy and power management;
• Forecasting methods for renewable production and user consumption.

On the other hand, using renewable energies, and particularly, PV, can effectively reduce the
residential power supply from the main grid [7] and allows the production of onsite energy vectors using
renewable power, contributing to a more sustainable community [8,9]. However, energy generation
intermittency and load variability can cause unstable power supply and high peak load [10]. Moreover,
the expected massive adoption of Electric Vehicles (EVs) can lead to a considerable increase of the peak
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load of the electricity demand [11], but can also be considered as fundamental parts of a smart grid,
being capable of providing valuable services to power systems [12].

One solution consists in synchronizing the need in electrical consumption with the solar production,
as the consumption of the residential sector is less synchronized with the PV production. Energy Storage
(ES) can also be envisaged in view to make the consumption and production out of phase [13]. It can
be a good opportunity to economize electricity coming from the grid when the electricity price is the
highest (if the electricity tariff varies during the day) or to inject the electricity produced to the grid
when the community has the highest needs with a higher selling price. The decrease of storage prices
can make its utilization attractive. In non-interconnected areas, such as islands [6], from a community
point of view, the self-consumption with storage is already a cheaper alternative than the fuel local
production (the electricity production cost in islands can sometimes reach more than 10-times the
selling price).

Such homes using their own electrical grid integrating PV system, storage, and optimal energy
management are called “home microgrids” [14] or “smart-households” [15]. Thus, it appears that
increasing the photovoltaic energy share in the electrical microgrid has several advantages in terms of
energy reduction and self-production, as well as environmental impact. However, the development of
new strategies of energy management is needed to reach the objective of cost reduction and security of
energy supply.

The following bibliography, a non-exhaustive one, provides an overview on these optimal
managements in microgrids using photovoltaic production, energy storage, and, in some studies,
EV charge/discharge utilization.

Some energy management systems (EMS) schedule the operation of household appliances without
storage [16] or with a battery storage [17] under a real-time electricity pricing depending on the power
demand, which is forecasted and reported to the utility [18]. A schedule of household appliances
in smart homes can be applied depending on price variations as well as consumer usage [19] or
external conditions [20]. More complex management systems use a two-stage algorithm. The first
stage consists in optimally scheduling the battery charging/discharging based on the forecasted solar
power, and the second stage consists of managing the actual battery charging/discharging based on
actual solar power output [14,21]. Erdinc [22] studied a mixed-integer linear programming (MILP)
for a smart household with EVs with bidirectional power charging/discharging and V2H (Vehicle to
Home) operating modes, ESSs, and a small-scale distributed generation (DG). Wu et al. [23,24] studied
a similar system, taking into account different time horizons for the optimization, the battery prices,
types, and control modes of EVs. For a microgrid with PV, battery, and hydrogen storage, the authors
of [25] used an evolutionary algorithm for sizing and a MILP one for scheduling. They applied
advanced energy management strategies, which anticipated decisions with respect to storage and
compared them to classical rule-based approaches. On the same type of microgrid, Deterministic and
Stochastic Model Predictive Control was tested and compared to both Model Predictive Control (MPC)
and to a standard Rule Based Control (RBC). The results indicated that the Stochastic MPC showed a
good improvement in term of energy savings [26].

An MPC control was implemented in a microgrid in Samso (Denmark) in the frame of a H2020
project [27]. Its utilization conduced to an improvement of 1.6% of the self-supply compared to a naïve
control and to an annual energy saving cost reaching 8.2%. A recent review study [28] presented such
predictive control methods as a very promising control scheme with several advantages for microgrid
applications of different control levels: For each DG, ESS, and load (primary control); for the whole
system from a power quality point of view (secondary microgrid control); and for the technical and
economic aspects in the electrical market context (tertiary control). In a comprehensive and critical
review on microgrid energy management strategies, Zia et al. also presented them as a multiobjective
topic dealing with technical, economical, and environmental issues [29].

An operational energy dispatch strategy was applied to a microgrid with PV, battery, and diesel
generator in India in order to maximize the local resources and to reduce the peak demand under
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market energy pricing dynamics [30]. With this strategy, the utilization of the battery increased up to
10%, and the diesel generator part decreased up to 7% with a 10% reduction in levelized cost of energy.

An optimization model based on Demand Response mechanism was presented by the authors
of [31] for microgrid energy scheduling with response loads and CCHP (combined cooling, heating and
power), PV system, and storage. The objective was to use the highest part of clean energy and to
minimize the cost for different electricity price policies.

The consideration of energy market in such models has become an important outcome.
In this context, a novel approach for energy management and trading, the so-called transactive
energy, was presented by the authors of [32] and has been applied in the Monash Microgrid as a
real-world implementation.

An analysis of this short state-of-art on microgrid optimization with PV and storage showed
that the objective function or the optimization criteria is the cost of electricity or the energy saving
cost, which takes into account the price of the electricity sold by the electricity distributor (and its
variation over time, very dependent on countries and energy policy [33]), the capital expense (CAPEX)
and operating expense (OPEX) of the microgrid, and the cost of the electricity in excess sent to the
electrical grid.

In some recent papers, the cost calculation also integrated the battery lifetime influenced by the
operating conditions and thus by the optimal management of energy. Some renewable microgrids
have integrated electric vehicles with charge/discharge connected systems. On the two last points,
some references are presented below.

An important criterion of optimization of the smart management is the battery lifespan,
which depends on the charge/discharge regime and maximum authorized depth of discharge (DoD).
It influences the degradation, the operation cost, and the replacement frequency. A control optimization
method incorporating a convex battery capacity loss model was developed by Cai et al. [34] to
determine the battery ageing cost. The ageing effect of a Li-ion battery (generalizable to other battery
type) was also introduced in the optimization strategy based on the minimization of the DC microgrid
operating cost [35]. It appears that taking into account the battery degradation cost and islanding
responsive demand response incentives influences significantly the operating cost.

The utilization of EVs is increasing, and more and more studies are being conducted on their
integration into smart grids. A review on EV technologies, their connectivity, and impacts on the grid,
as well as the standards required for their efficient and profitable operation in microgrids, was presented
by the authors of [36]. EVs have the potential to provide valuable services to power systems by
consuming power or even acting as energy sources [12,37]. Several papers have analyzed different
aspects of the integration of EVs in the power grid, focusing on services, optimization, and control
aspects [38], computational scheduling methods for the intelligent integration with power systems [39],
and issues related to driving patterns and charging behavior [40], as well as forecasting methods [41]
to promote the smart managing of the EVs charging operation [42] and its use as mobile storage units
via Vehicle-to-Grid (V2G) technologies [43].

It appears clearly that the optimal management of microgrids incorporating photovoltaic
production and energy storage is a major topic for researchers and engineers today. More or less
complex optimization methods have been used in the literature and continue to be developed.

2. Materials and Methods

2.1. Objectives

The main objective of this paper was to compare different management strategies applied to
an existing R&D photovoltaic microgrid supplying in electricity an accommodation building for
researchers and students. As the system already exists, the purpose of this paper was not to determine
the economical profitability (taking into account CAPEX and OPEX costs) but to determine how the
choice of a management strategy can impact the energy share from PV, main grid, etc., and consequently,
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how it can impact the grid electricity saving and the cost. The introduction in the Energy Management
Strategy (EMS) of a production forecasting was discussed, as well as its influence on the performances.
The electricity tariff and its variation over a day plays a crucial role in such an optimization, and specific
hypothesis based on the French rules were used for the first time. Then, the real cost of electricity
production in the Corsica island, partially connected to the mainland grid and using a high share of
diesel generators, were taken into account to observe the impact on the optimization.

The paper is structured as follows:

• A presentation of the existing microgrid with PV generation and storage in the R&D platform
PAGLIA ORBA in Ajaccio, Corsica (FRANCE) and of the load to supply;

• The electricity tariffs in France and the specific assumptions for the Corsican situation;
• The various EMS strategies with or without a forecasting of production;
• The results and a comparison in term of energy and cost savings;
• The perspectives for future works.

2.2. Presentation of the Microgrid

The Sciences for Environment (SPE) laboratory (University of Corsica, France) operates a solar
microgrid called PAGLIA ORBA at the neighborhood scale. The platform allows the allocation
of Distributed Generation systems (DG), Energy Storage systems (ES), and loads among different
microgrids. A typical three-phase microgrid uses a common AC bus and can operate in connected grid
or islanded modes. In this paper, we focused on one microgrid with the following systems:

• 3 DGs: 3 × 17 kW (AC) of PV;
• 1 ES: 24 × 2 V lead–acid batteries for a total capacity of 70 kWh (DC);
• 2 loads: An accommodation and an electric vehicle.

The PV modules were integrated on a solar shade structure (Figure 1). This structure supported
3 × 56 monocrystalline silicon modules (SUNPOWER E20), and each module had a peak power of 327
Wp. Each group of 56 modules was connected to an inverter (SMA SUNNY TRIPOWER 17000TL-10)
with a maximum efficiency of 98.2% and a maximum AC power of 17 kW.
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The ES was composed of 24 × 2 V lead–acid batteries (OPzV) connected in series and operated by
6 Xtender inverters/chargers (Figure 2). When fully charged, it represented a total capacity of 70 kWh.

The loads powered by this microgrid are presented in Figure 3. The consumption of the
accommodation varied depending on the period and occupation. As it was mainly used to receive
students and guest researchers, we could have important variation from one week to another.
In addition, the EV had a capacity of 22 kWh and was used every day from 9:00 to 16:00 for staff travel.
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In this study, we considered the EV as fully discharged at 16:00. Its charging period was set from 16:00
to 18:00 with a maximum power of 22.0 kW and a mean power of 11.0 kW. The data used in this paper
showed a maximum power of 32.1 kW and a mean power of 6.1 kW.Energies 2020, 13, x FOR PEER REVIEW 5 of 22 
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2.3. Profiles Presentation and Electricity Price Variation

This study focused on two weeks of data from March 16 to 29. The total PV power from the
three inverters (AC) is presented in Figure 4. It shows various types of days with different irradiance
conditions. The load demand is presented in Figure 5. An increase of the number of occupants can be
observed from March 27.
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Figure 4. Total PV power from inverters.
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Figure 5. Demand from the load.

Currently, two electricity tariffs are available in France: One with a constant price over the day,
and one with two prices according to the period—during consumption peak or off-peak. In this
work, for the electricity purchased from the power grid, an electricity tariff “peak/off-peak” type
was considered with a purchase price equal to 122.4 €/MWh during low consumptions hours and
163.1 €/MWh during peak hours, i.e., a difference of 33%.

The principles of purchase obligation for electricity produced by PV are fixed by the law n◦

2000-108 of the 10 February 2000. Some regular calls for tender are launched and some private
agreements are signed on the basis of the methodology written by the Energy Regulatory Commission.
In France, for individual installations, the selling price of PV electricity changes every three months,
and its value depends on the contract signing date. Then, it stays constant during the contractual
period. A constant price of 137.7 €/MWh, sales price for the current date (June 2020) was taken, and this
price was the same over the day. It is further expected that in the near future, the PV energy cost will
vary over time, favoring the production during peak hours and the utilization of a short-time storage.

It is obvious that the selling or purchase electricity tariffs play a crucial role in the optimization
results and in the benefit of solar microgrids. Currently, the electricity tariff in France are not well
adapted to the photovoltaic production and to a smart utilization of microgrids. The development of
smart electricity meters should aim to important changes in variation of electricity cost with the time
(giving advantages for a smart energy management).

In addition, islands are generally not connected to mainland electrical grids and must achieve
their production/consumption electrical balance alone, making energy supply security a challenging
issue [44,45]. One of the most important consequences of this particular situation is an important
utilization of fossil fuel generators for technical reasons (the fossil fuel part can reach 100% for some
islands). It results two main impacts: The high level of greenhouse gas emissions and the high
production cost of electricity. Due to the equalization of electricity tariffs in all the French territories,
this over cost is compensated by all the French consumers in their electricity bill. The French Energy
Regulation Commission gave an average production cost per MWh for 2013 for the French islands equal
to 225 € (from 172 € in Corsica which is partially connected to 259 € in Martinique) for a production
price in mainland France around 51.7 € [46].

To take into account this Corsican situation, it seems important to introduce the cost calculation
for this particular island. From the EDF open data source, the annual average cost of MWh for Corsica
was 200.62 € in 2016, 231.65 € in 2017, and 186.30 € in 2018, with the average cost over the three years
equal to 206.26 €.
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The average selling price for one MWh of electricity was decomposed in three parts. In France,
for an average price of 146 € including VAT [47], this represents:

• Electricity supply with production cost and commercialization: 42.0 + 11.5 = 53.5 €;
• Electricity transmission: 44.0 €;
• Taxes: Various French taxes: 48.5 €.

If we consider that the costs of electricity transmission and taxes are constant per MWh and that
only the production cost changes, the average selling cost in Corsica should be around 298.7 €/MWh
compared with 146 €/MWh in France, i.e., about two-times more.

Thus, this particularity of the electricity production cost in Corsica was taken into account in
the tariff called “corrected” tariff. The utilization of this over-cost should influence the results of
the optimization procedure in limiting the electricity part purchased to the electrical grid. For this
“corrected” tariff, the purchase price is taken equal to 122.4× (298.7/146) = 250.4 €/MWh during
off-peak hours and 163.1× (298.7/146) = 333.7 €/MWh during peak hours.

The purchase and selling tariffs over a day are shown in Figure 6.
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2.4. Energy Management Strategies

Before presenting the different strategies, we introduce some important characteristics of the
microgrid components in Table 1. These parameters remain the same for all simulations presented in
this paper.

Table 1. Components size.

Parameter Value Description

Ppnom [kW] 53 PV array nominal power (DC)
Pinvmax [kW] 51 Inverter maximum power (AC)
Pgmax

out [kW] 24 Grid maximum power output (AC)
Pgmax

in [kW] 24 Grid maximum power input (AC)
CESS [kWh] 70 Battery useful capacity (DC)
Pbmax

in [kW] 14 Battery maximum power input at 0.2 C (DC)
Pbmax

out [kW] 35 Battery maximum power output at 0.5 C (DC)
ηin [-] 0.9 Battery charge efficiency
ηout [-] 0.9 Battery discharge efficiency

Figure 7 groups the different power flows among the different microgrid components.
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This type of problem is subject to several constraints, presented as equalities and inequalities.
It can be discretized in N time steps, with ∀ t ∈ [1, N] :

SoCmin ≤ SoC(t) ≤ SoCmax (1)

Pp, l(t) + Pb, l(t) + Pg, l(t) + Pm(t) = Pl(t) (2)

Pp, g(t) + Pb, g(t) − Pg, l(t) = Pg(t) (3)

Pp, g(t) + Pp, b(t) + Pp, l(t) + Pd(t) = Pp(t) (4)

At any time, the battery state of charge (SoC) must be between SoCmin and SoCmax (1). The power
supplied to the load by the PV array, the storage, and the grid must meet the power demanded (2).
If not possible, a missing power (Pm) is added, meaning a failure of the system. The power from or to
the grid is defined in (3). The power from the PV array (4) can be split to the load (Pp, l), the storage
(Pp, b), or the grid (Pp, g). It can also be degraded (Pd) when PV exceeds the load, storage, and grid
maximum power.

A second set of inequalities is used as boundaries for the parameters. ∀ t ∈ [1, N] :

0 ≤ Pp, l(t) ≤ Pinvmax (5)

0 ≤ Pp, g(t) ≤ min(Pgmax
out , Pinvmax) (6)

0 ≤ Pp, b(t) ≤ min
(Pbmax

in
ηin

, Pinvmax
)

(7)

0 ≤ Pb, l(t) ≤ Pbmax
out ηout (8)

0 ≤ Pb, g(t) ≤ min(Pbmax
out ηout , Pgmax

out

)
(9)

0 ≤ Pg, l(t) ≤ Pgmax
in (10)

0 ≤ Pd(t) (11)

0 ≤ Pm(t) (12)

A last constraint is that the SoC was set at 50% at the beginning of the simulation and must end at
0% of the battery useful capacity. This ensures all the results of the different strategies to be comparable.
It also has to be noted that charging the battery from the grid is not allowed.
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2.4.1. Linear Programing Optimization

Linear programing (LP) optimization is a mathematical optimization method for maximizing or
minimizing a linear function of several variables. LP optimization respects equalities and inequalities
constraints, as well as boundaries for all the parameters. As the microgrid can buy or sell energy to the
grid, the optimization aims to minimize the cost in the time range. A negative cost thus means a profit
for the system. The selling price (Csell(t)) is constant over the day and the buying price (Cbuy(t)) varies
over the day (see Figure 6). The price paid by the microgrid operator is thus:

Ctot =
N∑

t=1

[
Pg, l(t) Cbuy(t) − (Pp, g(t) + Pb, g(t)) Csell(t)

]
dt (13)

The result of this optimization gives the optimal solution of the problem. Indeed, this cannot
be view as a proper strategy, as it requires a perfect knowledge of all future power flows (loads and
production) for the whole period. This optimization was only used as a reference in order to confront
the actual strategies with the optimal solution.

2.4.2. Rule-Based Control Strategies

The rule-based control (RBC) is a strategy for managing the energy of the system. At each time,
the system makes a decision based on predefined rules. This optimization respects same constraints
and limits as the LP.

For this study, three types of RBC were proposed. All of them prioritize PV to supply the load.
Each RBC begins by checking the difference between PV and load:

∆ = Pp− Pl (14)

Then, the power is distributed depending on the strategy.
The admissible powers from and to the battery are also defined at each time step by the

following equations:

Pbadm
in = min

(
Pbmax

in ,
(1− SoC) CESS

dt ηin

)
(15)

Pbadm
out = max

(
−Pbmax

out ,
−SoC CESS ηout

dt

)
(16)

Here, we briefly describe the three strategies and provide a flowchart for each one:

A. RBC1

This strategy (Figure 8) is the most basic and only maximizes the system self-consumption.
Only two possibilities were considered:

• ∆ ≥ 0: The load is supplied by PV power. After satisfying the load requirement, the surplus
is used to charge the battery up to its SoC maximum level. When the battery is fully charged,
surplus is sold in the grid. If ∆ is zero, PV only supplies the load, while the battery and grid are
not used.

• ∆ < 0 : The PV power does not meet the load. As far as possible, the missing power is supplied
by the battery. When the battery power is not sufficient to supply the load, the grid is used to add
the remaining power.
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B. RBC2

In this RBC, the decision is made by observing energy costs and PV level (Figure 9). It favors the
use of the main grid during off peak hours and the battery during peak hours. Also, it prevents the
battery to be full too quickly by allowing PV selling if it reaches a certain level. This strategy operates
in this way:

• 0 ≤ ∆ < Pgmax
oui : PV supplies the load and surplus is used to charge the battery. When the battery

is fully charged, the surplus is sold in the grid. If ∆ is zero, PV only supplies the load, while the
battery and grid are not used.

• ∆ ≥ Pgmax
oui : After supplying the load, Pgmax

oui is sold in the grid and the surplus is used to charge
the battery.

• ∆ < 0 and t ∈ [22:00–4:00]: The load is only supplied by the grid because at this time, and the
energy cost is low (off-peak hours).

• ∆ < 0 and t ∈ [4:00–5:00] and (SoC ≥ 1/2): The battery is discharged at Pbmax
out until its SoC reaches

50% to supply the load and the surplus is sold in the grid. This allows the battery to store more
PV during the day.

• ∆ < 0 and t ∈ [4:00–5:00] and (SoC < 1/2): If the battery SoC is low at the beginning of peak hours,
the case is the same as next bullet.

• ∆ < 0 and t ∈ [5:00–22:00]: PV power does not have the capacity to fully supply the load.
The remaining power is provided in priority by the battery and then by the grid.
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C. RBC3

This strategy is similar to the RBC2 but takes into account a new indicator based on PV forecasting
(Figure 10). This indicator represents the average of the PV production for the next six hours
(mean6h(Pp)). Its use can be observed on the left part of the flowchart (∆ ≥ 0):

• 0 ≤ ∆ < Pgmax
out and (mean6h(Pp) ≥ Pgmax

out : The load is only supplied by PV and the surplus is sold
in the grid.

• 0 ≤ ∆ < Pgmax
out and (mean6h(Pp) < Pgmax

out : The load is only supplied by PV and the surplus is used
to charge the battery. When the battery is fully charged, the surplus is sold in the grid.

• ∆ ≥ Pgmax
oui : After supplying the load, Pgmax

oui is sold in the grid and the surplus is used to charge
the battery.
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As this strategy requires forecasting PV data, we proposed two versions: One with perfect
forecasting which was used as a reference (RBC3r), and one with real forecasting model (RBC3).

The real forecast of PV power was realized using an Auto Regressive Mobile Average (ARMA)
method [48], which was tested and validated on the site. Compared with 10 others statistical and
machine learning tools in a benchmarking work, the ARMA method showed that it is the most reliable
model to predict solar irradiance for Ajaccio [49], with an accuracy in term of nRMSE between 18.35%
and 33.69% for a temporal horizon from h+1 to h+6.

The performance of the ARMA model used in this paper and applied to six hours of averaged
PV power are shown in Figure 11. For the 14 days of data, its nRMSE reached 51.99%. This result
should not be directly compared with the previous ones because the period was short and presented
high variability of the solar irradiance. It is thus interesting to check what improvement a not well
optimized model could bring to the strategy.
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Figure 11. Six hours averaged forecasted PV power with Auto Regressive Mobile Average (ARMA) model.
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3. Results

3.1. LP Optimization and RBC Strategies Results

In this section, we present the main results obtained from the different methods. For LP
optimization, the whole period is presented. For the RBC strategies, graphics only focus on the
first six days of data for better clarity. Tables are proposed at the end of the section to summarize the
main results.

Figure 12 presents the reference LP optimization over 14 days-ahead forecasting. The evolution
of the various powers (from or to the grid, from PV, and from or to the battery) are represented as
a stacked area plot. The load is simply added on this graph and the SoC of the battery is presented
as a subplot. By convention, the PV injected to the grid and the storage are represented as negative.
The notion of PV lost represents the PV power which cannot be used due to microgrid limitation such
as grid power limitation, battery charging power limitation, or full battery SoC. As this mainly impacts
RBC strategies, it will be addressed further.
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Several remarks can be made about Figure 12:

• The battery never reached its minimum capacity during this period;
• A period of three successive days of battery discharge appears;
• The power limitation of 24 kW from and to the grid is reached several times during this period,

showing the importance of the battery to provide or absorb the complementary power;
• The battery SoC behavior has a very similar profile during the days with important PV production

(clear sky days);
• The plateau which appears every day on the SoC curve after 22:00 and until 4:00 comes from

the electricity tariff change due to the transition from off-peak and peak hours. At this moment,
it is more “cost-effective” to use the electricity provided by the electrical grid rather than from
the battery;

• Similarly, when the tariff changes from off-peak to peak hours (at 4:00) the SoC decreases because
the utilization of the battery becomes more interesting.

3.1.1. RBC1

The results from the first six days of data with the RBC1 strategy are presented in Figure 13.
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Figure 13. RBC1 strategy.

As a reminder, RBC1 is representative of a simple PV/battery system aiming to optimize
self-consumption. This is an extremely simplistic strategy which does not take into account the
electricity tariff and does not anticipate battery SoC, and thus leads to a poor result in the context of a
microgrid which has not been sized for this specific application. Unlike the LP optimization, we can
observe that the battery SoC reached its minimum and maximum values regularly. The battery was
used significantly more frequently, with almost one full cycle each day. Due to the lack of optimization,
the battery SoC reached 100% too early during the day. As the grid power limitation of 24 kW prevented
the PV to sell the remaining power, this led to the apparition of PV lost. This phenomenon can always
be observed during clear sky days.

3.1.2. RBC2

The results from the first six days of data with the RBC2 strategy are presented in Figure 14.
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Figure 14. RBC2 strategy.

In this strategy, we observed the effect of peak and off-peak hours with the apparition of a plateau
in the SoC curve before 4:00. This behavior was closer to the LP optimization. However, the lack of
anticipation still led to an important quantity of PV lost during clear sky days. In terms of energy
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management, this strategy did not provide significant improvement, but it allowed an increase of the
benefit, which is discussed later.

3.1.3. RBC3

The next improvement was the addition of PV power forecasting in the form of mean power
representative of the next six hours. In order to assess the potential of such improvement, we first
present the results obtained with perfect forecasted data, RBC3r (Figure 15).
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Figure 15. RBC3r strategy (reference).

This strategy conserved the benefit of taking into account peak and off-peak hours but also
anticipated the PV power variation. Such information was used to improve the battery management
and reduce the PV lost. It can be observed that the battery SoC reached its maximum later in the day
and for a shorter period. Thanks to the forecast, it was possible to anticipate clear sky days and start
the battery charging slightly later than RBC2 strategy.

The same strategy was applied with real forecasted data from ARMA model (Figure 16).
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Here, the forecast errors slightly degraded the overall performance of the strategy. The effects of
under-forecasting can be observed during the third and sixth days. For these two days, the behavior
was closer to RBC2. On day 4, the difference with RBC3r was due to an over-forecast of the PV power.
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3.2. Main Results Discussion

Table 2 summarizes the results of the simulations in terms of gain and battery use. To point
out the interest of the microgrid, the cost without storage (“w/o ESS”) has been added in this table.
This should not be viewed as a proper strategy. Instead, it prefigures a more complete study, including
CAPEX and OPEX. As the linear programing optimization (LP) is the optimal solution, we chose to
also present the results as differences between each RBC strategy and LP. The relative performance
represents the cost-wise performance of the RBC strategy compared to the LP optimization.

Table 2. Main results: Total gain and battery use.

w/o ESS RBC1 RBC2 RBC3 RBC3r LP

Total gain [€] 120.97 152.01 168.49 182.14 186.56 191.83
Difference from LP [€] −70.86 −39.82 −23.34 −9.69 −5.27 0.00
Relative performance 63.1% 79.2% 87.8% 94.9% 97.3% 100%

Battery cycles NA 13.3 11.5 11.4 11.5 6.7

These results highlight the advantages of improving battery management strategies. With the
most basic strategy, RBC1, the gain reached 79.2% of the LP optimization. By taking into account the
peak and off-peak hours and with a slightly better battery management strategy, it increased to 87.8%.
The addition of forecasting PV power averaged over a six-hour period was an important improvement,
as it allowed the gain to reach 94.9%. We can note that ARMA model was sufficient for this application,
as the use of perfect forecasted data only brought an improvement of 2.4%.

The number of battery cycles varied according to the strategy. It is observed that the optimization
(LP) used fewer cycles than all other strategies, which is explained by the different energy tariffs and the
battery efficiency, making battery use more expensive than using the public grid during off-peak hours.

To study the effect of each strategy on the energy use in the microgrid, Figure 17 presents the
energy balances from the PV side and from the load side.Energies 2020, 13, x FOR PEER REVIEW 17 of 22 
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As all the RBC strategies prioritize the use of PV to supply the load, we found the same value of
PV energy used for the load (blue). By maximizing the self-consumption, RBC1 offered the highest
value (30.7%) of the solar energy fraction used to charge the battery. This fraction was minimal in the
LP optimization, which only used it to minimize the PV lost. Concerning the PV lost, the improvement
of the RBC strategies showed a decrease from one strategy to another. For this period, it is shown that it
was possible to only lose a negligible part of PV (0.4%) with an optimized management. Without energy
storage, this part would reach 15.6% of the total PV power.

On the right part of the Figure 17, we can observe the energy distribution to supply the load.
It shows the importance of using the main grid at the right time to optimize the cost: The optimal
solution (LP) is the one that used the most grid power to supply the load.

Figure 18 groups the PV lost and the battery losses for each case. In this study, the battery losses
were only considered due to the charge and discharge efficiency. Without battery (w/o ESS), the PV
lost was maximal due to the grid power limitation. For each RBC improvement, a decrease of the total
losses was observed. It should be noted that even with the best RBC, we obtained twice the losses than
the LP. Due to the current cost of electricity in France, the impact of these losses remains moderate.
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The main conclusions of this section are:

• An important improvement in terms of saved cost is obtained by switching from RBC2 to RBC3
(87.8% to 94.9%) thanks to the implementation of PV forecasting.

• Comparison between RBC3 and RBC3r shows that the gain obtained with perfect forecasting is
not significant (94.9% to 97.3%) compared to a standard ARMA model and considering that PV
data have been averaged on a 6 h period.

• The share of the PV production which is lost (due to full storage, PV power limitation sent to the
grid or charge power limitation) decreases with each strategy improvement.

3.3. Corrected Tariffs Results

Table 3 presents the results with corrected energy purchase prices, considering the Corsican
Island specificity.

When using correcting tariffs which could reflect the real cost in Corsica, we observed the
importance of the energy storage system. With such high prices, the battery use should be maximized
in order to rely as less as possible on the main grid. LP optimization now uses twice the number of
cycles and converges to the RBC1. However, cost optimization is still a complex task, and we showed
that the proposed RBC strategies were not well optimized with these new tariffs. A better consideration
of these new tariffs should would provide results closer to the mathematical optimization, which can
be done in a future work.
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Table 3. Corrected tariff results: Total gain and battery use.

w/o ESS RBC1 RBC2 RBC3 RBC3r LP

Total gain [€] −56.18 111.41 116.89 130.39 134.96 147.22
Difference from LP [€] −203.40 −35.81 −30.33 −16.83 −12.26 0.00
Relative performance −38.2% 75.7% 79.4% 88.6% 91.7% 100%

Battery cycles NA 13.3 11.5 11.4 11.5 13.3

4. Conclusions

An electrical microgrid using a photovoltaic production and a battery storage supplied an
accommodation building and an electric vehicle. It was connected to the main grid with a limited
power both for sending and receiving electricity. The objectives of this paper were to test and compare
some energy management strategies using rules-based control, including PV forecasting for the last
one. These strategies were confronted to a linear programming optimization with “perfect forecasting.”

It appears that the performance of the strategy increases with its complexity. The implementation
of PV forecasting using a standard ARMA model allows to increase the saved cost; the utilization of
a “perfect forecasting” does not improve significantly the performance compared to our forecasting
ARMA model and considering that PV data have been averaged on a 6 h period. The share of the PV
production which is lost (due to full storage, PV power limitation sent to the grid or charge power
limitation) decreases with each strategy improvement.

The optimization was implemented considering the real purchase tariff of electricity (and taking
into account a peak and off-peak periods) and the actual selling price of PV electricity. In view
to observe the influence of these costs on the performances of the energy management methods,
special cost hypotheses were also introduced in this study. They considered the over-costs of electricity
production in Corsican Island due to the limited interconnection with the mainland electrical grid.
The use of corrected tariffs shows the importance of the storage system: the number of cycles should
be maximized when the purchase costs are high.

The perspectives of this first approach may be:

• Assessment of the grid power limitation for network service (peak power shaving, guaranteed
power, etc.).

• Development of new energy management strategies such as MILP to take into account more
constraints (load management).

• Implementation and test of selected strategies in real operating conditions on PAGLIA ORBA microgrid.
• Improvements of the cost calculation by including CAPEX and OPEX of the system.

Author Contributions: Conceptualization, G.A.F. and G.P.; software, S.O. and J.L.D.; investigation, S.O.;
resources, J.L.D.; data curation, G.P.; writing—original draft preparation, S.O., G.N. and G.A.F.; supervision, G.N.
All authors have read and agreed to the published version of the manuscript.
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Nomenclature

ARMA Auto Regressive Mobile Average
CAPEX Capital Expense
DG Distributed Generation
DoD Depth of Discharge
ES Energy Storage
EMS Energy Management System
EV Electric Vehicle
LP Linear Programing
MILP Mixed Integer Linear Programing
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MPC Model Predictive Control
nRMSE normalized Root Mean Squared Error
OPEX Operating Expense
PV Photovoltaic
RBC Rule Based Control
SoC State of Charge
V2G Vehicle to Grid
V2H Vehicle to Home
Pp PV power
Pl Load power
Pg Grid power
Pd Degraded PV power
Pm Missing power
Pp, l PV power to load
Pp, b PV power to battery
Pp, g PV power to grid
Pb, l Battery power to load
Pb, g Battery power to grid
Pg, l Grid power to load
Cbuy Energy buying price
Csell Energy selling price
Ppnom PV array nominal power
Pinvmax Inverter maximum power
Pgmax

out Grid maximum power output
Pgmax

in Grid maximum power input
Pbmax

in Battery maximum power input
Pbmax

out Battery maximum power output
Pbadm

in Battery admissible power input
Pbadm

out Battery admissible power output
CESS Battery useful capacity
ηin Battery charge efficiency
ηout Battery discharge efficiency

References

1. IEA PVPS Task 1 Strategic PV Analysis and Outreach. Available online: https://www.comitesolar.cl/wp-cont
ent/uploads/2020/04/IEA_PVPS_Snapshot_2020-2.pdf (accessed on 28 August 2020).

2. Jäger-Waldau, A. Snapshot of Photovoltaics—February 2020. Energies 2020, 13, 930. [CrossRef]
3. Lara-Fanego, V.; Ruiz-Arias, J.A.; Pozo-Vázquez, D.; Santos-Alamillos, F.J.; Tovar-Pescador, J. Evaluation of

the WRF model solar irradiance forecasts in Andalusia (southern Spain). Solar Energy 2012, 86, 2200–2217.
[CrossRef]

4. Espinar, B.; Aznarte, J.-L.; Girard, R.; Moussa, A.M.; Kariniotakis, G. Photovoltaic Forecasting: A State
of the Art; OTTI—Ostbayerisches Technologie-Transfer-Institut: Tarragona, Spain, 2010; pp. 250–255,
ISBN 978-3-941785-15-1.

5. Robert, G.; Philip, H.; Dennis, A.; Tim, G.; Matthew, L.; Jim, S. The Costs and Impacts of Intermittency:
An Assessment of the Evidence on the Costs and Impacts of Intermittent Generation on the British Electricity Network;
UK Energy Research Centre: London, UK, 2006.

6. Notton, G. Importance of islands in renewable energy production and storage: The situation of the French
islands. Renew. Sustain. Energy Rev. 2015, 47, 260–269. [CrossRef]

7. Destro, N.; Benato, A.; Stoppato, A.; Mirandola, A. Components design and daily operation optimization of
a hybrid system with energy storages. Energy 2016, 117, 569–577. [CrossRef]

8. Cooper, M. Renewable and distributed resources in a post-Paris low carbon future: The key role and political
economy of sustainable electricity. Energy Res. Soc. Sci. 2016, 19, 66–93. [CrossRef]

https://www.comitesolar.cl/wp-content/uploads/2020/04/IEA_PVPS_Snapshot_2020-2.pdf
https://www.comitesolar.cl/wp-content/uploads/2020/04/IEA_PVPS_Snapshot_2020-2.pdf
http://dx.doi.org/10.3390/en13040930
http://dx.doi.org/10.1016/j.solener.2011.02.014
http://dx.doi.org/10.1016/j.rser.2015.03.053
http://dx.doi.org/10.1016/j.energy.2016.05.097
http://dx.doi.org/10.1016/j.erss.2016.05.008


Energies 2020, 13, 4510 19 of 20

9. Yeatts, D.E.; Auden, D.; Cooksey, C.; Chen, C.-F. A systematic review of strategies for overcoming the barriers
to energy-efficient technologies in buildings. Energy Res. Soc. Sci. 2017, 32, 76–85. [CrossRef]

10. Sartori, I.; Napolitano, A.; Voss, K. Net zero energy buildings: A consistent definition framework. Energy Build.
2012, 48, 220–232. [CrossRef]

11. Langbroek, J.H.M.; Franklin, J.P.; Susilo, Y.O. When do you charge your electric vehicle? A stated adaptation
approach. Energy Policy 2017, 108, 565–573. [CrossRef]

12. Cao, C.; Wu, Z.; Chen, B. Electric Vehicle—Grid Integration with Voltage Regulation in Radial Distribution
Networks. Energies 2020, 13, 1802. [CrossRef]

13. Marczinkowski, H.M.; Østergaard, P.A. Residential versus communal combination of photovoltaic and
battery in smart energy systems. Energy 2018, 152, 466–475. [CrossRef]

14. Luo, F.; Ranzi, G.; Wang, S.; Dong, Z.Y. Hierarchical Energy Management System for Home Microgrids.
IEEE Trans. Smart Grid 2019, 10, 5536–5546. [CrossRef]

15. Zheng, M. Smart Households: Economics and Emission Impacts of Distributed Energy Storage for Residential Sector
Demand Response; Columbia University: New York, NY, USA, 2015.

16. Zhao, Z.; Lee, W.C.; Shin, Y.; Song, K. An Optimal Power Scheduling Method for Demand Response in Home
Energy Management System. IEEE Trans. Smart Grid 2013, 4, 1391–1400. [CrossRef]

17. Pedrasa, M.A.A.; Spooner, T.D.; MacGill, I.F. Coordinated Scheduling of Residential Distributed Energy
Resources to Optimize Smart Home Energy Services. IEEE Trans. Smart Grid 2010, 1, 134–143. [CrossRef]

18. Ozturk, Y.; Senthilkumar, D.; Kumar, S.; Lee, G. An Intelligent Home Energy Management System to Improve
Demand Response. IEEE Trans. Smart Grid 2013, 4, 694–701. [CrossRef]

19. Chen, X.; Wei, T.; Hu, S. Uncertainty-Aware Household Appliance Scheduling Considering Dynamic
Electricity Pricing in Smart Home. IEEE Trans. Smart Grid 2013, 4, 932–941. [CrossRef]

20. Missaoui, R.; Joumaa, H.; Ploix, S.; Bacha, S. Managing energy Smart Homes according to energy prices:
Analysis of a Building Energy Management System. Energy Build. 2014, 71, 155–167. [CrossRef]

21. Iwafune, Y.; Ikegami, T.; Fonseca, J.G.d.S.; Oozeki, T.; Ogimoto, K. Cooperative home energy management
using batteries for a photovoltaic system considering the diversity of households. Energy Convers. Manag.
2015, 96, 322–329. [CrossRef]

22. Erdinc, O. Economic impacts of small-scale own generating and storage units, and electric vehicles under
different demand response strategies for smart households. Appl. Energy 2014, 126, 142–150. [CrossRef]

23. Wu, X.; Hu, X.; Moura, S.; Yin, X.; Pickert, V. Stochastic control of smart home energy management with
plug-in electric vehicle battery energy storage and photovoltaic array. J. Power Sources 2016, 333, 203–212.
[CrossRef]

24. Wu, X.; Hu, X.; Teng, Y.; Qian, S.; Cheng, R. Optimal integration of a hybrid solar-battery power source into
smart home nanogrid with plug-in electric vehicle. J. Power Sources 2017, 363, 277–283. [CrossRef]

25. Li, B.; Roche, R.; Miraoui, A. Microgrid sizing with combined evolutionary algorithm and MILP unit
commitment. Appl. Energy 2017, 188, 547–562. [CrossRef]

26. Bruni, G.; Cordiner, S.; Mulone, V.; Sinisi, V.; Spagnolo, F. Energy management in a domestic microgrid by
means of model predictive controllers. Energy 2016, 108, 119–131. [CrossRef]

27. Carli, R.; Dotoli, M.; Jantzen, J.; Kristensen, M.; Ben Othman, S. Energy scheduling of a smart microgrid with
shared photovoltaic panels and storage: The case of the Ballen marina in Samsø. Energy 2020, 198, 117188.
[CrossRef]

28. Villalón, A.; Rivera, M.; Salgueiro, Y.; Muñoz, J.; Dragičević, T.; Blaabjerg, F. Predictive Control for Microgrid
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