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Abstract: Belt conveyor (BC) transportation systems are considered to be the most effective for
handling large volumes of bulk material. With regards to the rules of sustainable development,
the improvement of belt conveyor technology is, in many cases, focused on environmental issues,
which include the idea of energy usage optimization. The key issue in an energy-efficient transportation
system is reducing the value of specific energy consumption (SEC) by increasing conveyor capacity
whilst decreasing belt conveyor motion resistance. The main idea of this paper is to conduct an
analysis of the modernization of existing belt conveyor transportation systems operated in open-pit
lignite mines, in order to achieve relatively small electric energy consumption for a considered
transportation task. The first part of the paper investigates the relationship between a conveyor’s
SEC and material flow rate for various conveyor design parameters. Then, based on multi-parameter
simulations, an analysis of electric energy consumption for a belt conveyor transportation system is
carried out. Finally, an energy-saving, environmentally friendly solution is presented.

Keywords: belt conveyor; energy consumption; sustainable operation

1. Introduction

Belt conveyor (BC) systems, due to their high efficiency, durability, and reliability, are widely
used for bulk material transportation in mines [1]. Moreover, when compared to trucks, conveyors are
considered more environmentally friendly with respect to overall energy usage, as well as to noise and
dust emissions. However, as far as energy issues are concerned, BCs are still significant consumers
of electric energy in mines. According to [2], the energy cost of a BC system constitutes even up to
40% of the operational cost. Taking into account sustainable development rules and energy policies,
the mining industry has been forced to improve the energy management systems and the technologies
of energy-intensive operations. Amongst the processes with high electricity demand, material handling
is identified as one of the main causes of energy inefficiency [3], and it is estimated to constitute at least
20% of the total energy consumption at a mine site [1].

Generally, energy efficiency of belt conveyors is greatly improved with regards to equipment
and operational levels [4]. Starting at the equipment level, theoretical and experimental research into
efficient BC components includes idlers, conveyor belts, and drive systems [5–7]. The main focus is put
on the rotational resistance of idlers, and also their arrangement and design [8]; the rolling resistances
of the belt and of its rubber compounds [9]; energy efficient motors and variable speed drives [2].

With respect to the operational level, a widely known solution for the optimization of energy
consumption of BCs is the implementation of speed control systems [10,11], which allow the material
loading rate of a belt conveyor to be kept at a certain level, or even be improved. It is worth noting the
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fact that the energy models of belt conveyors are the crucial element for solving optimization problems,
as they enable simulations of electric power consumption [12–14].

In the case of belt conveyors, organizational and technical improvements are recommended
for energy-effective and ecologically friendly operation. Nevertheless, energy efficiency of a belt
conveyor is improved on a case-by-case basis by analyzing the actual transportation task. Since
every belt conveyor system in a mine has its limitations and constraints, the authors investigated
improvements in energy efficiency of the conveyor transportation system in specific conditions by
proposing multiple-drive belt conveyors, or by modeling and simulating different operating conditions
(belt speed, filling rate) or conveyor design parameters (e.g., idler parameters, trough angle) [15–17].

The continuous development of transportation systems has served as the basis for analyzing
possibilities to improve their energy efficiency. The article presents a multiparameter analysis of a
specific medium-distance belt conveyor operated in a Polish continuous surface lignite mine and
proposes various modernizations of the entire existing transportation system, in order to achieve both
energy savings and environmental benefits.

2. Materials and Methods

An analysis of possible improvements in the efficiency of a conveyor belt should be based not only
on the reduction of its energy consumption but, above all, on the Specific Energy Consumption (SEC)
index [14]. Its value depends on the parameters and the layout of the actual belt conveyor, as well as
on its specific operational conditions. This index is defined as the amount of energy required to move
1 kg of material a distance of 1 m, and it can be determined from the equation

SEC =
Ne

Qm·L

[
W·s

kg·m

]
(1)

After transforming Equation (1), we obtain

SEC =
RTM∑

m·η

[
N
kg

]
(2)

where

Ne—electric power of the drive delivered to the conveyor, W;

Qm—actual mass capacity, kg
s ;

L—length of the conveyor route, m;
RTM—motion resistances, N;∑

m—total mass of the transported bulk material, kg;
η—drive unit efficiency.

Since the SEC index presents an amount of energy, it can be seen to be appropriate for the analysis
of energy efficiency and for modernization projects of belt conveyor systems. A reduction in the
energy consumption of any machine system is valuable in itself. Modern transportation systems
should be both effective and energy efficient. The retrofitting of belt conveyor systems does not
require configuring conveyors with maximum capacity abilities. The motion resistances of BCs
determine the energy consumption of the transportation system. Motion resistance can be divided
into primary resistance, secondary resistance, and lift resistance (occurring on the sloping sections
of a conveyor). Secondary resistance occurs at the drive station, pulleys, feed, and discharge chute,
while primary resistance appears along the whole conveyor route (on each idler set) and determines
the motion resistance for conveyors longer than 80 m. Primary resistance consists of idler rotational
resistance, belt rolling (indentation) resistance, belt bending resistance, flexure resistance of bulk
material, and sliding resistance of the belt on idlers. With increasing mass of transported material per
time unit, the components of primary resistance will also increase, due to their direct dependence on
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the unit load. The Specific Energy Consumption index shows that energy consumption is relatively
less important for a larger mass capacity. Energy-saving solutions should be based on multiparameter
simulations of a specific transport task. Modifications to those design parameters that influence the
main primary resistances can reduce the resistances without reducing the required mass capacity.
In the case of retrofitting belt conveyor systems, the main goal should be decreasing the SEC index by
reducing motion resistances.

This paper presents an analysis of the energy consumption of a belt conveyor system used to
transport 25.9 million metric tons of overburden annually (on average, 6500 t/h) in a Polish continuous
surface lignite mine. A schematic cross-section and a plan view of the continuous surface lignite mine is
presented in Figure 1, while the general scheme of a belt conveyor is shown in Figure 2. The main aim
of this research is to investigate a method for decreasing the energy consumption of the transportation
system, while also paying attention to any environmental benefits that may be achieved.
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Figure 2. Layout of the main conveyor objects [18].

The research is divided into two main parts. Firstly, an analysis of the conveyor’s specific energy
consumption value was carried out, using specialised software for designing belt conveyors. The aim
of the analysis was to investigate the influence of the conveyor’s design parameters, such as belt width
(m), belt speed (m/s), trough angle (◦), and the material flow rate (t/h), on SEC values. SEC values were
calculated for a 1000 m long conveyor with fixed parameters that reflect its real working conditions.
The variable parameters used in the simulation and analyses are presented in Table 1.
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Table 1. Conveyor design parameters.

Belt Width, mm Belt Speed, m/s Trough Angle, ◦ Material Flow Rate, t/h

1600, 1800 4.3, 5.9, 7.5 30, 38, 45 1000–10,000 1

1 For a combination of parameters, such as a belt width of 1600 mm and belt speed of 4.3 m/s, the material flow rate,
due to technical constraints, is lower than 10,000 t/h.

Secondly, an analysis of electric energy consumption (EEC) of both the existing and the improved
conveyor transportation systems was performed with four different distributions of material flow rate
that simulate actual mining conditions.

This part of the work is divided into four steps:

• Step 0—real operating conditions—EEC of five belt conveyors;
• Step 1—the decrease in the number of conveyors from five to three by a change in conveyors’

length—two alternative solutions (different belt width and speed), referred to as 1a and 1b;
• Step 2—the decrease in time of idle operation;
• Step 1 + 2—the combination of Steps 1 and 2

The analyzed transportation system consisted of five belt conveyors (A–E), while the alternative
system consisted of three conveyors (F–H). Their basic parameters are presented in Table 2. Four different
distributions of material flow rate, presented in Table 3, were referred to as variants and were estimated
in accordance with the published data from lignite mines [5,19]. Because conveyors work under
different loads, presented variants showed theoretical capacity distribution (Variant 1), which is
assumed by the dispatcher who controls the actual capacity of the excavator, and the real distribution
(Variants 2–4), which is based on the measurements made in mines. It was assumed that the average
annual effective work time (the time when material is being transported) for the BC system was equal
to 4000 h (83.33% of total working time is the effective work time), while its idle operation actually
accounted for 800 h, which could be reduced to 400 h.

Table 2. Parameters of the belt conveyors in the existing transportation system.

Conveyor Name Conveyor Length, m Belt Width, mm Belt Speed, m/s Trough Angle, ◦

A 802

1800 5.9 45
B 732
C 773
D 1590
E 562

F 1534
a: 1800
b: 1600

4.3
5.9

30
30

G 1335
H 1590

Table 3. Distribution of actual conveyor capacity.

Capacity, t/h Variant 1 Variant 2 Variant 3 Variant 4

1000 0.075 0.12 0.0182 0.047
2000 0.075 0.064 0.0590 0.0556
3000 0.075 0.062 0.0681 0.0854
4000 0.1 0.062 0.1316 0.1708
5000 0.1 0.062 0.3843 0.1925
6000 0.1 0.09 0.3238 0.2008
7000 0.25 0.09 0.015 0.1538
8000 0.075 0.15 0.00 0.0769
9000 0.075 0.15 0.00 0.0128

10,000 0.075 0.15 0.00 0.0044
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3. Results

This section presents the results of the theoretical investigations and a case study based on
QNK—in-house software released by Entertech [20]. The name “QNK” is built from annotations
commonly used for the main belt conveyor design parameters: “Q”—actual output, “N”—required
drive power, and “K”—required belt tensile strength. QNK software uses an accurate method for
calculating the components of the main resistances to motion. This is done by analyzing the energy
dissipation processes in a conveyor belt and in the material load stream, and by analyzing the interaction
between the belt and the idlers. These processes depend on a large set of technical, physical, and
operational data of the belt, the transported bulk material, and the design characteristics of the conveyor
and also its specific operating conditions. Consequently, the calculation results reflect a large set of
input data, and QNK software can be seen as a suitable tool for analyzing the impact of selected
parameters on the power requirements of the belt conveyor drive [18,21].

Calculations in the QNK program were made using the unit resistance method. Unlike the basic
method (ISO 5048), the calculations were made for all the groups of resistances according to the
primary resistance factor f (also known as the fictive friction factor) and the concentrated (secondary)
resistance factor C. The unit resistance method required each component of resistance to be determined
individually. The algorithm in the QNK program, developed upon [18], was improved, mainly in
the area of rolling resistance, which is the main component of primary resistance [22]. The new
method takes a different approach to the damping factor. The algorithm was validated by conducting
measurements in real conditions [23]. As a result, advanced and more accurate estimations of the
resistance were possible, enabling more accurate predictions of energy consumption.

3.1. Analysis of the Specific Energy Consumption for Different Conveyor Design Parameters

Results of the analyzed cases are presented in Figure 3 and showed a distinct decreasing tendency
in specific energy consumption, while material flow rate increased. Moreover, the analysis indicated
that lower values of conveyor design parameters yielded lower values of the SEC indicator. However,
changes could be observed in the mentioned relationship above the value of 5000 t/h. As shown in
Figure 4, individual adjustment of the parameters should be considered for conveyors with higher
mass capacity in order to reduce the SEC value.
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speed, and troughing angle).

Furthermore, simulations of specific energy consumption values for different conveyors working
under four different distributions of material stream were conducted. Figures 5 and 6 indicate that
the most efficient solution for real distributions of capacity was to use the conveyor with the lowest
values of the considered design parameters. It is worth noting, however, that achieving a temporary
capacity higher than 8000 t/h was impossible with belt width of 1600 mm and belt speed of 4.3 m/s
(as this would exceed the belt’s maximum capacity).
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3.2. Analysis of the Electric Energy Consumption for the Belt Conveyor Transportation System—Case Study

Based on Section 3.1, it appeared that the most efficient solution for carrying out a given transport
task was to use the conveyor with the lowest values of the considered design parameters. For this
reason, these parameters were adopted in the model for further analysis (Steps 1a, 1b, and 1 + 2).
In order to ensure the maximum required mass capacity in an option with a belt width of 1600 mm,
the chosen speed was 5.9 m/s, and with the belt width of 1800 mm—4.3 m/s. Table 4 presents the
annual electric energy consumption of the proposed conveyor system and the percentage reduction in
electricity consumption in comparison to the existing transportation system. It includes Step 0—real
exploitation conditions, Step 1—reducing the number of conveyors, Step 2—a decrease in time of idle
operation by half, and Step 1 + 2—a combination of Steps 1 and 2.

Table 4. Electric energy consumption and reduction of annual electric energy consumption of the
proposed conveyor transportation system.

Step Configuration of
Belt Conveyors

Parameters of Belt
Conveyors

Electric Energy Consumption, TWh
(Reduction of Electric Energy Consumption)

Variant 1 Variant 2 Variant 3 Variant 4

0 5 1800 mm, 5.9 m/s, 45◦ 0.023 0.024 0.022 0.022

1a
3

1800 mm, 4.3 m/s, 30◦ 0.017
(25.12%)

0.018
(25.64%)

0.016
(23.98%)

0.017
(24.45%)

1b 1600 mm, 5.9 m/s, 30◦ 0.019
(18.97%)

0.019
(18.91%)

0.018
(18.73%)

0.018
(18.66%)

2 5 1800 mm, 5.9 m/s, 45◦ 0.022
(3.33%)

0.023
(3.20%)

0.021
(3.54%)

0.022
(3.43%)

1a + 2
1b + 2

3
1800 mm, 4.3 m/s, 30◦ 0.017

(27.35%)
0.017

(27.78%)
0.016

(26.35%)
0.016

(26.75%)

1600 mm, 5.9 m/s, 30◦ 0.018
(20.78%)

0.019
(20.65%)

0.017
(20.66%)

0.018
(20.53%)

Electric energy consumption of the actual operating conditions (Step 0) was at a similar level
regardless of the conveyor capacity distribution variant. The reductions in electric energy consumption
in Table 4 were calculated based on actual consumption in Step 0. Steps 1a and 1b involved lowering
some design parameters and reducing the number of conveyors from five to three. The reduction
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obtained was thus the most significant (about 20%), while the step with the wider belt and the lower
speed was even more efficient and provided a reduction of over 25%. The decrease halved the idle
operation time (in the configuration of five conveyors) and lowered energy consumption by just over
3%. Combinations of Steps 1a and 1b with Step 2 were the sum of the reductions from the previous
steps and allowed, especially in the case of the combination of Steps 1a + 2, the greatest savings in
energy consumption.

Activities aimed at energy efficiency improvements also resulted in environmental benefits.
The potential environmental advantages of the proposed solutions were estimated by calculating
the potential reduction of annual CO2 emissions. The CO2 factor used for the calculations was
765 kg/MWh [24]. Table 5 shows that the modernization (Steps 1a + 2) resulted in a reduction of around
5000 tons of CO2 for the most effective option.

Table 5. Predicted reduction of annual CO2 emissions.

Step Configuration of
Belt Conveyors

Parameters of Belt
Conveyors

Predicted Reduction of Annual CO2 Emissions, t
Variant 1 Variant 2 Variant 3 Variant 4

0 5 1800 mm, 5.9 m/s, 45◦ - - - -
1a

3
1800 mm, 4.3 m/s, 30◦ 4427.74 4704.30 3973.27 4187.04

1b 1600 mm, 5.9 m/s, 30◦ 3343.92 3469.64 3104.55 3196.13
2 5 1800 mm, 5.9 m/s, 45◦ 587.37 587.36 587.37 587.36

1a + 2
3

1800 mm, 4.3 m/s, 30◦ 4821.32 5097.88 4366.85 4580.63
1b + 2 1600 mm, 5.9 m/s, 30◦ 3663.03 3788.75 3423.65 3515.24

4. Discussion

The selection of belt conveyor parameters based on the Specific Energy Consumption index
allowed an adjustment to actual transportation task requirements and, in effect, increased the energy
effectiveness of the transportation system.

An important aspect to be considered is the percentage frequency distribution of mass capacity
in the entire transportation process. As shown in Figures 3 and 4, and in the distribution of the
actual conveyor capacity in Table 3, the share of lower mass capacities (in all variants) predominated.
Moreover, the maximum capacities occurred to a small extent and did not determine the SEC.

The case study showed that various retrofittings of the transportation system were possible.
One of them involved decreasing the number of conveyors from five to three in the transportation
system. It allowed for a reduction of energy consumption due to the reduction of secondary resistance
(a lower number of conveyors meant fewer pulleys, feed points, etc.). It was proved that changes of
design parameters (i.e., selecting lower values of the analyzed parameters) should be as extensive as
possible in order to achieve the required maximum mass capacities. Each of the parameters considered
in the article affected some of the primary resistances. For example, a lower trough angle led to a
decrease in rolling (indentation) resistance for side idlers. Moreover, a decrease in belt speed affected
the decrease in idler rotational resistance. This aspect was especially important for longer conveyors,
where the impact of primary resistance on total motion resistance was significant.

In order to achieve the required maximum mass capacities, a belt of 1800 mm in width, with a
reserve greater than 1600 mm, needed to be adopted in some cases. For a narrower belt, variable
frequency drives and speed control could be used if necessary. These allowed for a reduction
in motion resistances, causing the energy consumption to be lower during regular work. In the
considered transportation system, operated in a surface lignite mine, no significant difference in energy
consumption was observed after reducing the idle operation time. Therefore, performing intensive
stop-and-start operations when the belt remains unloaded for short periods of time (especially during
the winter months) could be seen as unnecessary.

The presented results demonstrated that by selecting optimum design parameters and operating
conditions, it was possible to reduce electric power demand and CO2 emissions. In this field, significant
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results may be obtained by either active speed control (bulk material: coal) or proper selection of
conveyor design parameters (bulk material: copper), which were presented in [10,16].

5. Conclusions

Based on the results of the above analyses, the following conclusions can be drawn:

• The presented modernization of the transport route leads to energy-related and environmental
benefits that allow for more sustainable operation of conveyor belts.

• Improvement was possible because the design solutions were individually selected to match the
operational parameters of the conveyor (implementing a specific transportation task) based not
only on its impact on energy consumption but, above all, on the relationship between motion
resistance and mass capacity efficiency.

• Each modernization leading to a reduction in energy consumption could also be viewed from an
environmental perspective. In the most advantageous variation, the modernization would allow
a decrease in energy consumption by 27.78%, which results in the reduction of carbon dioxide
emissions into the atmosphere by 5097.88 tons per year.
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