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Abstract: Optimization-based methods are of interest for developing energy management strategies
due to their high performance for hybrid electric vehicles. However, these methods are often
complicated and may require strong computational efforts, which can prevent them from real-world
applications. This paper proposes a novel real-time optimization-based torque distribution strategy
for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while
ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control
scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the
information of the engine efficiency map like the previous works in literature. The obtained strategy is
simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed
method is evaluated via simulation by comparison to dynamic programming as a benchmark.
Furthermore, the real-time ability of the proposed strategy is experimentally validated by using
power hardware-in-the-loop simulation.

Keywords: energy management strategy (EMS); parallel hybrid electric vehicle (HEV); energetic
macroscopic representation (EMR); hardware-in-the-loop (HIL)

1. Introduction

The world is facing critical issues of environmental pollution and scarcity of fossil fuel resources.
Meanwhile, transportation systems play an important role in environmental care and fossil fuel
consumption [1]. Hybrid electric vehicles (HEVs) are among the current promising solutions for these
problems [2–4]. HEVs can be classified as series, parallel, and series-parallel configurations [5], in which
parallel HEVs have their engines directly connected to the drivetrains. Both internal combustion
engine (ICE) and electrical machines produce torque to propel the vehicle. This torque assistance ability
makes parallel HEVs appropriate for heavy-duty vehicles such as trucks [6–8]. Since the mechanical
power can be shared between the engine and the machine, the parallel configuration does not require
bulky machines as with series HEVs. Moreover, the power coupling in the parallel configuration can
be realized by simple mechanical devices, e.g., a belt. This sort of HEVs do not need complex and large
components like its series-parallel counterpart.

However, parallel HEVs suffer from some disadvantages. Firstly, the electrical drive must ensure
most of the transient phases; hence, high peak currents are imposed to the batteries. That can notably
degrade the batteries [9,10]. To reduce the aging stress on batteries, supercapacitors (SCs) can be added
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to support the transients [11–13]. With a proper power distribution strategy, SCs can significantly
reduce the batteries rms current (see, e.g., [14,15]), which is directly related to their life-time [16,17].

Secondly, in the parallel configuration, the engine is mechanically connected to the drivetrain
subsystem. Thus, the engine speed is strongly related to the vehicle velocity. That causes the difficulty to
operate the ICE within its optimal region. Fuel consumption is therefore a critical issue of parallel HEVs.
An energy management strategy (EMS) is essential to improve the fuel saving by sharing the power
between the engine and the machine. In the case of parallel HEVs, it is the torque distribution strategy.

EMS development methods have been classified into rule-based and optimization-based
approaches [18], in which the latter group has attracted numerous efforts from both academic
fields and industry [19–21]. In [19], an intelligent EMS for a power-split plug-in HEV is developed
using dynamic programming (DP) and an artificial neural network (ANN). DP deduces the optimal
solutions for six standard driving cycles that are used to train the neural networks. Two ANNs are
developed with and without specific trip information. The proposed EMS is validated by simulation.
The lack of experimental results in this paper implies the difficulty to realize the ANNs in a real-time
platform. DP is computed via off-line simulation to generate data for training the ANNs. The off-line
training processes do not affect the real-time implementation but increase the complexity of the method.

In [20], an approximate Pontryagin’s minimum principle (PMP) with the restricted five Hamiltonian
candidates is proposed for energy management of a plug-in parallel HEV. A reduction of calculating
time from six hours to four minutes is reported. However, the method still required the driving cycle
known in advance. Thus, it is considered an off-line method, even though the authors claim the
feasibility of real-time implementation.

In [21], a plug-in HEV is managed using multi-objective stochastic DP with varied weighting
factors to trade-off the batteries’ life-time and fuel consumption. Electrical consumption is also taken
into account by a fixed penalty factor. Due to the essence of random-process simulated disturbances,
stochastic DP strategies are suitable to be applied for fixed-routine vehicle such as trains, buses,
and delivery trucks.

These strategies often offer high performance because they are based on optimization techniques.
Furthermore, they can be developed through organized approaches, i.e., the developer can follow
a systematic procedure to obtain the strategy. Nevertheless, optimization-based methods are often
complicated and computationally expensive. Hence, it is still difficult to use these EMSs for real-world
applications. Sub-optimal strategies are generally deduced.

The objective of this paper is to propose a novel real-time optimization-based strategy for torque
distribution of a parallel hybrid truck. A simple but efficient EMS is thus proposed for an easy real-time
implementation while ensuring a low energy consumption. In order to overcome the complexity of
the EMS development, Energetic Macroscopic Representation (EMR) is employed. This graphical
formalism allows control-oriented decompositions of the system model, so that the control scheme can
be systematically deduced [22]. The EMR of the system is a guide for model simplification in order
to develop a simple EMS. Then, linear quadratic regulation (LQR) is applied to deduce a feedback
control law of the batteries state-of-charge (SoC). This closed-loop control serves as a real-time strategy
warranting both fuel saving and batteries charge sustaining. It is noteworthy that this is the first time
LQR is employed as a real-time EMS for HEVs. LQR has been used in [23] to tune a model predictive
controller (MPC), which leads to a complex EMS. In one article [24], the authors applied LQR to deduce
an off-line EMS without proposing a real-time application. This current paper aims to use LQR to
develop a real-time EMS for torque distribution of a parallel hybrid vehicle.

The proposed EMS is of interest due to its explicit simple control law. The obtained strategy is
a single analytical equation containing fundamental system parameters and measurable variables.
Hence, the strategy is easy for real-time implementation and so realistic for real-world applications.
This helps to avoid high computational cost such as in the issue of model predictive control (MPC) [25].
Moreover, the development method is straightforward. It does not require any initial guess, iterative
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simulations, or additional adaptation such as adaptive Pontryagin’s minimum principle (A-PMP,
also called λ-control) like in [15,26].

The effectiveness of the new EMS is examined by comparison to an off-line optimal benchmark
achieved by using DP [27] in term of fuel consumption, as used by many relevant works [15,28,29].
Furthermore, the real-time ability of the proposed strategy is demonstrated via experiment by using
reduced-scale power hardware-in-the-loop (HIL) simulation [30].

Section 2 presents the modeling of the studied system for developing EMS. The proposed strategy
is developed in Section 3. The comparative evaluation via simulation is given in Section 4. Section 5
addresses the experimental validation of the novel EMS.

2. Modeling for Energy Management Strategy Development

2.1. Modeling of the Studied System

The studied system is a parallel hybrid delivery truck (Figure 1). The electrical drive is mechanically
coupled with the ICE via a belt. The engine and the machine propel the truck via a gearbox. The studied
system is modeled by the equations given in Equations (1)–(10) and graphically organized by using
EMR (Figure 2). The batteries are modeled by Equation (1). The open-circuit voltage ubat OC and the
equivalent series resistance (ESR) rbat are the non-linear functions of the SoC. These functions are given
by look-up tables. The electrical drive is modeled by Equation (2). Here, a static model is used by
assuming that its torque TED perfectly follows its reference TED ref [31]. The efficiency ηED is given by
its average values in traction and regenerative modes. ubat = ubat OC(SoCbat) − rbat(SoCbat)ibat

SoCbat = SoCbat init −
1

3600Cbat

∫ t
0 ibatdt

(1)

 TED = TED ref

itrac =
TEDΩED
ubatηED

(2)
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The static model of the ICE is addressed by Equation (3) with the assumed perfect torque control.
The fuel consumption rate

.
mfuel, in g/s, is given by a fuel consumption map of the engine torque

and speed (look-up table). Here, it should be noted that the fuel consumption map is only used
for modeling in order to practically examine the control and strategy. It is not required in the EMS
development step using the novel method proposed in this paper, which will be presented in the next
section. The belt is modeled by Equation (4). The engine speed ΩICE and the drive speed ΩED are fixed
due to the constant value of the belt ratio kbelt. The belt ensures the distribution of the mechanical
power between the engine and the machine. TICE = TICE ref

mfuel =
∫ t

0
.

mfuel(TICE, ΩICE)dt
(3)


Tbelt = TICE + TEDkbeltηbelt

ΩICE = Ωbelt

ΩED = Ωbeltkbelt

(4)

The gearbox (with clutch) is modeled by Equation (5). The clutch engagement is associated with
the gearshift. The gear ratio kgear is shifted discontinuously. The transmission and the wheel are given
by Equation (6) with a global ratio ktran. Equation (7) expresses the mechanical brake model. Here,
the assumption is no response delay of the braking force. The chassis and the braking coupling are
modeled by Equations (8) and (9), respectively. The vehicle mass Mveh includes goods and driver.
The environment, including the air and the road, is modeled by Equation (10) with three resistive
force components, in which g is the gravitational acceleration (m/s2), ρ the air drag coefficient, cxA the
aerodynamic standard (m2), and α the slope angle (rad).{

Tgear = Tbeltkgearηgear

Ωbelt = Ωgearkgear
(5)

{
Fwh = Tgearktranηtran

Ωgear = vvehktran
(6)

Fbr = Fbr ref (7)

Ftrac = Fwh + Fbr with Fbr ≤ 0 (8)
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vveh =
1

Mveh

∫ t

0
(Ftrac − Fres)dt (9)

Fres = krollMvehg + 0.5ρcxA(vveh + vwind)
2 + Mvehg sinα (10)

2.2. Local Control of the System

EMR follows the principle of inversion which allows “automatic” deduction of the control
scheme from the model organization. The control is deduced by functionally inverting the model
representation [22]. If the element contains no dynamical delay, i.e., there are only algebraic operators,
it should be directly inverted. The direct inversion is realized by algebraic manipulations. If there is
dynamical delay, i.e., the element contains differential equations reorganized by the integral causality,
it should be indirectly inverted by using a closed-loop controller.

The control of the hybrid traction subsystem with equation given in Equations (11)–(15) is deduced
as follows. The vehicle dynamics (Equation (9)) is indirectly inverted by a closed-loop velocity controller
(Equation (11)) (crossed parallelogram). Here, the IP control structure is employed to cancel the zero of
the closed-loop transfer function. Then, the braking coupling relationship (Equation (8)) is inverted by
Equation (12) (overlapped parallelogram) as a braking force distribution. The ratio kbr is imposed from
a braking strategy. Next, Equations (13) and (14) (parallelograms) are the direct inversion of Equations
(6) and (5) to calculate the Tgear ref and the Tbelt ref, respectively. Finally, the belt model (Equation (4)) is
inverted to deduce the torque distribution (Equation (15)) (overlapped parallelogram). It computes the
electrical drive torque reference TED ref from the ICE torque reference TICE ref imposed by the torque
distribution strategy.

Ftrac ref = Fres meas + kI chas

∫ t

0
(vveh ref − vveh meas)dt− kP chasvveh meas (11)

{
Fwh ref = Ftrac refkbr

Fbr ref = Ftrac ref(1− kbr)
(12)

Tgear ref =
Fwh ref

ktran
(13)

Tbelt ref =
Tgear ref

kgear
(14)

TED ref =
Tbelt ref − TICE ref

kbelt
(15)

2.3. Model Reduction for Energy Management Strategy

To develop EMS, the system model should be reduced. Firstly, the full dynamical model is
complex, which is often a multi-variable high-order model. That can make the EMS development
complicated and hard to be realized. Hierarchical schemes are therefore often of interest to organize
the strategies of complex system, such as [32]. Second, the dynamics at the higher level (strategy)
are slower than the ones at the lower level (control) [33,34]. Addressing all the fast dynamics can
cause huge computation for the EMS, which could be difficult for real-time implementation. Finally,
when the local control is properly developed, the controlled variables can be considered as perfect
response to the references.

This work focuses on developing the torque distribution strategy. In this study, the gearshift
and braking strategies are developed by using look-up tables deduced from DP for ensuring fair
comparisons. Hence, the drivetrain subsystem model can be represented as an equivalent mechanical
source that imposes the belt speed Ωbelt to the system. A reduced EMR (Figure 3) is obtained for the
development of the torque distribution strategy.
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In EMR, the source element (oval) is the terminal of the considered model. By using a source
element to represent the drivetrain subsystem, the considered model for EMS development is reduced
to (1)–(4) (see Figure 3).

The SoC of the batteries is the state variable to be controlled at the strategy level. Thus, the batteries
are depicted as an accumulation element (crossed rectangle), which represents the considered dynamics
of the studied model.

The ICE torque reference TICE ref is imposed by the strategy block; thus, it is the control variable.
The belt torque reference Tbelt ref is imposed by the drivetrain subsystem as the disturbance to
be compensated.

A mathematical model can then be deduced from the reduced EMR of the system. By neglecting
the efficiencies, the reduced mathematical model of the system can be written as follows:

d
dt

SoCbat =
kbeltΩICE

Cbatubat
(TICE ref − Tbelt ref); (16)

where ΩICE and ubat are measurable disturbances; Tbelt ref indirectly determined by the driver request;
kbelt and Cbat the given parameter; SoCbat the state variable; and TICE ref the control variable. This is a
linear model which is convenient for applying optimal control.

3. Proposed Real-time Energy Management Strategy

3.1. Approach

3.1.1. Original Problem Statement

The energy management problem of the parallel hybrid truck can be stated as follows. Find an
optimal control law Topt

ICE ref for the model (16) to minimize the cost function J:

J =
∫ t

0

.
mfuel(TICE, ΩICE)dt. (17)

Applying directly the optimal control theory to solve this problem leads to a trivial solution in
which Topt

ICE ref = 0 [35]. This solution can be intuitively explained as: the best way to save fuel is not
to use the ICE. However, it is not an expected solution because the batteries will be fully discharged
very quickly.

To overcome this issue, two approaches are often used in literature. The first one is to add the
final constrain of the batteries SoC:

SoCbat final = SoCbat init. (18)
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Then, optimal control techniques such as DP [36,37] or PMP [35,38] are applied. This approach,
however, is suitable only for off-line strategies when the driving cycles are known in advance. In act,
there is no way to ensure this final state constraint in real-time since the final time is unknown.
To develop real-time EMSs, λ-control [26,39] is often applied to adapt the PMP-based optimal solution
to real-time operations. The strategies, therefore, become sub-optimal.

The second approach is to charge the cost of SoC variation by adding to the cost function a penalty
such as [25]:

J =
∫ t

0

[
a
( .
mfuel

)2
+ b(SoC− SoCref)

2
]
dt. (19)

where a and b are weighting factors. The problem is then solved by using MPC [25] or PMP [40] with
λ-control scheme [26].

There is a common drawback of these approaches that the fuel consumption rate
.

mfuel(TICE, ΩICE)

must be considered to develop the strategies. For numerical methods such as DP, a look-up table of the
fuel consumption rate is directly used. For analytical methods such as PMP, the fuel consumption map
is approximated by polynomial functions of which derivatives can be analytically calculated, such
as [41]. This is because the PMP method requires analytical expression of the partial derivative. In both
cases, a fuel consumption map of ICE is required. This is a drawback in real-world applications since
such data are not often available.

Strategy development using these approaches is also often complicated. Moreover, methods such
as MPC require strong computational efforts that leads to difficulties to implement them in real-time.

As a consequence, the problem could be reformulated for simplification without requirement of
any data map and low computational efforts.

3.1.2. Problem Reformulation

This study proposes an alternative approach, firstly by reformulating the problem. It is known
that the fuel consumption rate is mainly proportional to the ICE power [26,42]. In other words, for a
given speed, the higher the engine torque is, the higher the fuel consumption rate

.
mfuel is. The data of

the engine (Figure 4) show an almost linear behavior of the fuel consumption rate as a function of the
torque and the speed.
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Hence, it can be considered that minimizing the engine torque will minimize the fuel consumption.
That means instead of using the original cost function (Equation (17)), it can be:

J =
∫ t

0
TICE refdt. (20)
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Here, Equation (20) can be considered as an approximation of the cost (Equation (17)).
This approximation offers the following advantages: (i) it does not require any data set of fuel
consumption rate of the engine; and (ii) it allows simple analytical calculations that are useful for
developing real-time strategy.

Additionally, as discussed above, a term of SoC variation should be used with penalty in order to
ensure the charge sustaining of the energy storage as follows:

J =
∫ t

0

[
T2

ICE ref + Q(SoCbat − SoCbat ref)
2
]
dt; (21)

where Q is an equivalent conversion factor to convert the SoC variation to the engine torque.
Since the reduced model (Equation (16)) is linear while the cost function (Equation (21)) is in a

quadratic form of the state and control variables, the LQR method can be employed [43]. That can
deduce a simple analytical control law that is suitable for on-board real-time implementation.

3.2. Strategy Development

3.2.1. Linear Quadratic Regulation (LQR)

The LQR control law is developed for the linear system in the following form:

d
dt

x = Ax + Bu; (22)

where x generally denotes state variables vector; u the control variables vector; A the dynamical matrix;
B the control matrix; with the cost function in the form given by:

J =
∫
∞

0

(
xTQx + uTRu

)
dt (23)

where Q and R are weighting matrices. In real-world real-time applications, the final time of the
driving cycle is unknown. Thus, the formulation with an infinite time horizon is suitable.

By applying PMP to this linear system and quadratic cost function, the control law is obtained as
follows:

u = −R−1BTP(x− xref); (24)

where P is the solution of the algebraic Riccati equation:

PA + ATP− PBR−1BTP + Q = 0 (25)

.

3.2.2. Proposed LQR-Based Strategy

Applying the reduced mathematical model (Equation (16)) and the reformulated cost function
(Equation (21)) to their general forms (Equations (22) and (23)), respectively, the system coefficients are
defined by: 

A = 0
B =

kbeltΩICE
Cbatubat

Q remain
R = 1

(26)

.
Replacing Equation (26) in Equation (25), it leads to:

P =

√
Q

B
. (27)
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By replacing Equation (27) in the general form (Equation (24)) of the control law, the ICE torque
reference can be deduced as follows:

TICE ref =
√

Q(SoCbat ref − SoCbat). (28)

It is seen that, eventually, the LQR-based control law has a form of a proportional (P) controller of
the batteries SoC (see Appendix A).

3.2.3. Weighting Factor Determination

The square-root of the weighting factor Q can be determined by using the well-known
pole-placement technique for the P controller. The reduced model (16) can be rewritten in Laplace
domain as follows:

SoCbat =
kbeltΩICE

Cbatubats
(TICE ref − Tbelt ref); (29)

where s is the Laplace operator. Since the belt torque reference Tbelt ref is the disturbance of the studied
control loop, it is neglected while synthesizing the controller. Thus, the closed-loop transfer function
from SoCbat ref to SoCbat is:

SoCbat =
1

Cbatubat
kbeltΩICE

√
Q

s + 1
SoCbat ref. (30)

The closed-loop system is a first-order transfer function, in which its response time (to 95% of the
step reference) is three times of the time constant, as given by:

tres = 3
Cbatubat

kbeltΩICE
√

Q
(31)

where tres is the response time of the closed-loop system. Hence, the square-root of the weighting
factor can be determined as: √

Q = 3
Cbatubat

kbeltΩICEtres
. (32)

Eventually, by replacing Equation (32) in Equation (28), the LQR-based torque distribution strategy
for the studied parallel hybrid truck is obtained as follows:

TICE ref = 3
Cbatubat

kbeltΩICEtres
(SoCbat ref − SoCbat). (33)

where the response time tres is the only parameter needed to be defined by the strategy developer.
In fact, it is a trade-off between the fuel saving (longer tres) and charge sustaining of the batteries
(shorter tres). In order to guarantee the charge-sustaining condition of the energy management problem
for parallel HEVs (see Equation (18)), the battery SoC reference SoCbat ref should be set as SoCbat init.

The proposed real-time LQR-based strategy is implemented as illustrated in Figure 5.
The limitations of the electrical drive torque and the batteries SoC are treated by using the conventional
switching method. When the system reaches its limitations, the ICE must provide all the demanded
traction power. The strategy is simple and straightforward without requiring complex data such
as an engine fuel consumption map. Thus, it is suitable for on-board real-time implementation for
real-world applications.
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4. Comparative Evaluations by Simulation

4.1. Simulation Conditions

The studied vehicle is based on a parallel hybrid truck designed in [44] with main parameters
given in Table 1. A traditional six-level gearbox is employed. A 205-kW diesel engine is coupled
with a 58-kW permanent magnet synchronous machine (PMSM) drive via a belt with the 1:1 ratio.
The electrical drive is supplied by a 300-V 62-Ah batteries pack. The PMSM electrical drive is modeled
by using nominal efficiency in traction and regenerative modes which are given in [44]. It could be of
interest if an efficiency map is available that may compute the power consumption of the drive with
higher accuracy. However, the use of the electrical drive efficiency data only affects the comparison
between different traction models rather than between the different EMSs which is the objective of this
paper. Hence, the nominal efficiency parameters are sufficient for this study.

Table 1. Examined system parameters for simulation of the parallel hybrid truck.

Parameters Values

Vehicle (Based on the Hybrid Delivery Truck Designed in [44])
Vehicle total mass Mveh 7514 kg

Aerodynamic standard cxA 0.73 × 6.9 m2

Rolling coefficient kroll 0.008
Final drive ratio kFD 3.33

Wheel radius Rwh 0.397 m

Gearbox
Gearbox ratio kgear (7.14 4.17 2.50 1.59 1.00 0.78)

Efficiency ηgear (0.94 0.95 0.9 0.95 0.91 0.91)

Belt
Belt ratio kbelt 1
Efficiency ηbelt 0.95

ICE (Detroit Diesel Corp. Series 50 8.5 Diesel Engine)
Maximal power PICE max 205 kW
Maximal speed ΩICE max 2100 rpm

Idle speed ΩICE idle 650 rpm
Maximal torque TICE max 1100 Nm

Mass density of diesel Mvol 850 g/L

Electrical Drive (PMSM)
Maximal power PED max 58 kW
Maximal torque TED max 400 Nm
Nominal speed ΩED nom 1500 rpm
Maximal speed ΩED max 4000 rpm

Nominal efficiency in traction mode ηED trac 96%
Nominal efficiency in regenerative mode ηED regen 90%

Batteries (LiPho A123 20Ah 2010 Cells)
Battery bank capacity Cbat 62 Ah

Battery bank resistance (at 70% SoC) rbat 26 mΩ
Battery bank OCV (at 70% SoC) ubat OC 300 V
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This study examines the system with two standard driving cycles: the Urban Dynamometer
Driving Schedule (UDDS) and the New European Driving Cycle (NEDC). UDDS was developed for
testing heavy-duty vehicles, which is the case of the studied hybrid truck. Meanwhile, NEDC is
for passenger cars and light-duty trucks. However, in this study, NEDC was employed, due to its
simple profile, to better analyze the results. DP was employed to ensure the global optimal solution as
a benchmark.

4.2. Results and Discussions

The objective of the torque distribution strategies is to minimize the engine fuel consumption.
Hence, with different driving cycles, fuel consumption per 100 km is the criteria to evaluate and
compare the different EMSs. Figure 6 shows a comparative evaluation of the proposed LQR-based
strategy with the DP-based optimal solution and the conventional ICE truck. The hybrid truck can
save up to 7.8% the fuel consumption with DP in the case of driving with UDDS cycle. It should be
noted that DP is the off-line benchmark and only gives the theoretical optimal result, whereas the
proposed real-time strategy saves 6.3% without knowing the driving cycle in advance. The fuel saving
is 7.9% (DP) and 5.6% (proposed EMS) with NEDC.
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To have better understanding of the system behavior with the proposed strategy, the results
with NEDC are presented here in detail. This driving cycle is simple; thus, the behavior is easier to
analyze and understand. The examined NEDC contains four repeated urban cycles and a highway
part (Figure 7). The controller acts to force the vehicle velocity to respond well to its reference without
any overshoot. The torque distribution results are given in Figure 8. During every urban cycle, the ICE
torque and the electrical drive torque perform in the same patterns. That confirms the consistency
of the proposed EMS. The strategy let the machine support the engine as much as possible during
the accelerations, then the ICE produce power to recharge the batteries. The electrical drive torque
TED is kept within the torque constraints due to the drive power limitation. The electrical drive works
to support the ICE to reduce the engine torque production as much as possible. When the machine
reaches its torque limitation, the engine has to compensate for the remaining part to follow the torque
reference needed to drive the vehicle. It should be noted that the electrical drive torque limitations
reduce when its speed is higher than the machine nominal speed. Furthermore, it is seen that the drive
torque is balanced in traction and regenerative braking mode. It indirectly shows the charge sustaining
of the battery, which is often a requirement of the non-plug-in HEVs.
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The batteries charge sustaining can be observed via the SoC evolutions, in a comparison with
the result from DP (Figure 9). DP strategy can anticipate that there is a huge amount of regenerative
energy at the end of the driving. Thus, it allows the batteries SoC to continuously reduce after each
urban cycle. Meanwhile the real-time EMS does not “know” the driving condition in advance. Hence,
it “tries” to ensure the charge sustaining after every urban one. The proposed LQR-based EMS perform
well in both fuel saving and batteries charge sustaining. Yet, the DP strategy can save more fuel by a
priori knowing the cycle.
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Figure 9. (Simulation) batteries SoC evolutions with NEDC.

It can be seen that the batteries SoC variation is kept within a narrow range of about 2%. This is
because the batteries are often over-sized for non-plug-in HEVs in order to ensure the charge-sustaining
condition. It is noteworthy that if the batteries are more deeply discharged, there will be a need of
more energy to recharge them to the initial SoC. Working around this SoC range is optimal for this
vehicle, as proven by the off-line optimal solution deduced by DP. The agreement between DP and
the LQR-based strategy in term of batteries SoC range confirms the close-to-optimal performance of
the proposed method. The batteries can be downsized by using advanced design methods; however,
the sizing problem is not considered here because this paper focuses on EMS development.

5. Experimental Validation of the Proposed Strategy

5.1. Experimental Setup

The experiments are carried out to validate the proposed real-time torque distribution strategy
by using reduced-scale power HIL simulation [30]. Figure 10 illustrates the experimental setup
configuration and Figure 11 shows the test bench in the laboratory.Energies 2020, 13, x FOR PEER REVIEW 14 of 20 
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The electrical drive is realized by a three-phase wound rotor induction machine (IM) and a
voltage-source inverter. The DC bus of the inverter is connected in parallel with the DC bus capacitor
of the battery emulator. The IM is connected in delta-connection scheme to increase the speed range
since the emulated batteries voltage ubat HIL is much lower than the nominal DC bus voltage of the
machine. The traction emulation is realized by using a DC machine, of which the armature is connected
to a chopper to control the armature current iDCM. That DC machine drive is supplied by a voltage
source composed by a SCs pack, an inductor, a chopper, and a DC bus capacitor. The SCs pack charges
and discharges to consume and to provide the emulated traction power, respectively. The traction
DC bus voltage udc trac is controlled to be constant. The electrical drive and the traction emulator are
mechanically connected via a single shaft with a speed sensor. The batteries emulator is realized in
the same way as described in [15], in which a controllable voltage source is composed by using a
bidirectional DC/DC converter and SCs are employed to emulate the batteries.

The model and control program are implemented in a dSPACE controller board. As there is no
full-scale machine available in the laboratory, a reduced-scale HIL testing is achieved. The mechanical
emulation of the traction subsystem is realized in a similar way to [45]. The only difference in this work
is that a SC pack, connected via a DC/DC converter, is employed to exchange the emulated traction
energy. Via the power adaptation blocks, the full-scale traction model imposes the drive speed and
torque references to the system. The DC machine is controlled by a speed controller to follow the
speed reference, whereas the IM is controlled by a torque controller to follow the torque reference.
The emulated torque is estimated from the measured currents of the IM. This torque is then imposed to
the full-scale traction model via a power adaptation block.
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5.2. Results and Discussions

During the driving cycle, the gearbox is shifted by a DP-based look-up table, which forms the
electrical drive speed, and therefore also the ICE speed, as shown in Figure 12. The rotational speed is
scaled with a ratio of 1.8 due to the limitations of the electrical machines used for the experiments.
The lower boundary is the ICE idle speed. The left axis indicates the experimental results, while the
right axis shows the simulation ones. It can be seen that the experimental speed matches well with
the simulation. These results confirm that the emulator emulates well the behaviors of the traction
subsystem. Some small differences appear when the engine is shifted too fast. This is because the
DP-based gearshift strategy is developed with the assumption that the gearbox can be shifted without
any delay.
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The results of electrical drive torque with the proposed LQR-based torque distribution strategy
are plotted in Figure 13. The torque is scaled 80 times by considering the power limitation of the
experimental IM drive. The experimental and simulated torques are kept within the boundaries of the
electrical drive torque limitations. Here, it should be noted that the electrical drive torque limitation
varies with time. It is reduced when the machine speed is higher than its rated value.
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The software program of the experiments is implemented in the dSPACE DS1005 card with a
sampling time of 0.2 ms. In fact, most of the computational resource of the card is devoted for the
complex control schemes of the batteries and traction emulators and for the full-scale model of the
traction subsystem. Very little computational effort is required to perform the LQR-based strategy,
which composed of a simple Equation (33). That demonstrates the real-time capability of the proposed
EMS which is the main objective of the experiments despite the limitation of the experimental set-up in
terms of power.

6. Conclusions

In this paper, a novel real-time energy management strategy has been proposed and validated
for a parallel hybrid truck. Firstly, the truck has been modeled and controlled considering its full
dynamical behaviors. To overcome the complexity of the system, the model, represented by using
EMR, has been reduced to obtain a suitable mathematical model. Then, optimal control theory has
been applied to this reduced mathematical model to deduce the real-time EMS.

To avoid the requirement of using ICE fuel consumption data, which is hard to achieve in
real-world applications, the cost function has been reformulated. Furthermore, the variation of the
batteries SoC has been added to the function as a penalty. Eventually, the cost is in form of a quadratic
function of the control and the state variables. Since the reduced model is linear, the LQR method has
been applied to obtain the optimization-based control law of the ICE torque reference. The obtained
strategy is a closed-loop control scheme of the batteries SoC, which is suitable to be implemented in
real-time. The development procedure and the strategy implementation require only basic system
parameters such as the batteries capacity and the belt ratio. The proposed EMS is, therefore, realistic
for real-world applications.
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The new strategy has been compared to the DP-based off-line optimal solution and the case of
the conventional ICE-only truck. Simulation results have verified the performances of the LQR-based
strategy. Moreover, reduced-scale power HIL simulation has been used to validate the proposed EMS
in experiments. It has been shown that the LQR-based strategy works properly in real-time.
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Appendix A

The algebraic Riccati Equation (25) is available for the linear time-invariant (LTI) system; moreover,
the model (16) is time-varying. For that, a variable substitution can be done:

udum =
kbeltΩICE

Cbatubat
(TICE ref − Tbelt ref) (A1)

where udum is a dummy control variable. The model is now linear. The corresponding quadratic cost
function is, therefore:

Jdum =

∫ t

0

[
u2

dum + Qdum(SoCbat − SoCbat ref)
2
]
dt. (A2)

Applying the LQR method and then replacing the dummy control variable udum by the TICE ref,
the same control law as Equation (33) is eventually obtained. In this paper, these steps are neglected to
use the variables with physical meaning only.
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