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Abstract: Accurate simulation and prediction of occupants’ energy use behavior are crucial in building
energy consumption research. However, few studies have focused on household energy use behavior
in severely cold regions that have unique energy use patterns because of the low demand of cooling in
summer and the use of central heating system in winter. Thus, we developed an agent-based model to
simulate the household electricity use behavior in severely cold regions, according to data for Harbin,
China. The model regards apartments, residents, household appliances, and energy-management
departments as agents and generates the household electricity consumption with respect to time,
temperature, and energy-saving events. The simulation parameters include basic information of
the residents, their energy-saving awareness, their appliance use behaviors, and the impact of
energy-saving management. Electricity use patterns are described by decision-making mechanisms
and probabilities obtained through a questionnaire survey. In the end, the energy-saving effects
of different management strategies are evaluated. The results indicate that the model can visually
present and accurately predict the dynamic energy use behavior of residents. The energy-saving
potential of household electricity use in severely cold regions is mainly concentrated in lighting and
standby waste, rather than cooling and heating, since the cooling demand in summer is low and the
heating in winter mainly relies on central heating system of the city, not on household electricity
appliances. Energy-saving promotion can significantly reduce the amount of energy waste (41.89% of
lighting and 97.79% of standby energy consumption), and the best frequency of promotional events
is once every four months. Residents prefer incentive policies, in which energy-saving effect is
57.7% larger than that of increasing electricity prices. This study realized the re-presentation of the
changes of energy consumption in a large number of households and highlighted the particularity
of household energy-saving potential in severely cold regions. The proposed model has a simple
structure and high output accuracy; it can help cities in severely cold regions formulate energy-saving
management policies and evaluate their effects.

Keywords: energy use behavior; agent-based model; scenario simulation; energy use intensity;
residential building energy consumption; severe cold cities

1. Introduction

The energy use behavior of occupants is an important factor affecting the overall energy
consumption of buildings [1–5]. Previous studies have indicated that occupants account for 80%
of the building energy consumption [6], and improper usage habits can cause >30% of the total
energy waste [7]. Therefore, there is considerable potential to conserve energy by changing the

Energies 2020, 13, 5581; doi:10.3390/en13215581 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-2570-5248
http://www.mdpi.com/1996-1073/13/21/5581?type=check_update&version=1
http://dx.doi.org/10.3390/en13215581
http://www.mdpi.com/journal/energies


Energies 2020, 13, 5581 2 of 22

energy use behavior. However, because of its subjectivity and randomness, energy use behavior has
always been regarded as a source of uncertainty in simulations and predictions of building energy
consumption [8] and has been the main reason for differences between the simulation results and the
actual situation [9–12]. In the simulation process, a simplified and fixed energy behavior schedule
can lead to simulation results >2 times smaller than the actual energy consumption [6,7,12]. A better
understanding of occupants’ energy use behaviors and their interactions with buildings will help to
improve the accuracy of the model [12,13].

In the past 10 years, complex modeling methods for occupants’ energy use behavior have emerged,
among which agent-based modeling (ABM) is one of the most popular. ABM is a decentralized
simulation technique [14] that can effectively deal with the complexity and random changes in the
energy use behavior and then construct an accurate dynamic model [15]. Agents in ABM can behave
as humans; they can interact with other agents or environments according to certain rules of behavior,
operate under autonomous control, and adapt to changes. The macroscopic behavior pattern of all the
individual agents is the global behavior pattern [16]. Compared with other models, the advantage
of the ABM is its bottom–up structure, which can flexibly obtain information; self-learn; restore and
simulate complex, nonlinear, and discrete interactions; and provide global visualization results [8,17].
Researchers can change an agent’s interaction with its surroundings by controlling its behavior,
allowing agents to learn and change their behaviors in response [18]. However, ABM has limitations.
The key to ABM is whether the detailed information of interactions between the agents and the
environment can be accurately obtained [19].

ABM of occupants’ energy use behavior involves three essential processes: define behaviors, identify
behavior triggers, and quantify behaviors [20]. Defining behaviors is the basis of the modeling. It involves
not only classifying the energy use behavior but also classifying people according to the behavior.
Linkola et al. constructed water behavior models for different types of households and concluded that
retired households used more water [21]. According to the energy use characteristics, Azar et al. [22,23]
and Ding et al. [7] divided residents into three categories—a “high energy-consuming group”, “medium
and high energy-consuming group”, and “low energy consumption group”—and examined the effects
of social propaganda and peer influence on the energy use behaviors of the three groups. In some
studies, in addition to the occupants, the energy-management system was treated as a behavior agent.
Gomes et al. built a complete microgrid management system using ABM, realizing the monitoring,
management, and control of the energy consumption [24]. Identifying behavior triggers and quantifying
behavior are the keys to modeling. The research of Chen [25] indicated that the “moving mechanism”
and “event mechanism” are the two main control methods in current behavior research. The moving
mechanism requires long-term complex and accurate movement tracking, and the trigger condition of
each behavior is defined by time-varying parameters. The main function of the event mechanism is to
determine the type and arrangement of basic events and then trigger the energy-consuming behavior
randomly by changing the probability and occurrence frequency. Mittal et al. used an agent-based
model to simulate the triggers of renewable energy use behaviors at the household level under different
selection conditions [26]. Khansari et al. designed energy use behavior models for families and
individuals and predicted the potential of New York City to achieve the goal of reducing carbon
emissions by 80% by 2050 [27]. Pagani et al. constructed a large-scale agent-based energy-consumption
model of a residential building and accurately captured the time-resolved dynamics of the heat demand
by considering the behaviors of the building occupants [28]. Additionally, owing to the extensive use of
ABM technique, the model accuracy is increasing. Scholars proposed the use of sensors with models
to improve the simulation accuracy [29]. Jia et al. developed a sophisticated agent-based energy use
behavior model for office buildings and compared its output results with measurements to evaluate its
accuracy and limitations [30]. Dziedzic et al. developed an energy use behavior simulation model in
which accuracy can be improved by testing the changes and feedback of the energy use behavior in
different scenarios [31].
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Based on the review of existing research, we found that there are two gaps in the research
regarding to energy use behavior: (1) Household energy use in severely cold regions is affected by
special climatic conditions and has its particularity, but there are very few discussions on energy use
behavior in severely cold regions; and (2) the discussion on household energy use behavior focuses
on the simulation of a single family, while there are few research on energy use behavior of a large
number of individual households on the urban scale. First, the discussion on the occupants’ energy
use behavior mainly focuses on the air-conditioning use [25]. There has been inadequate research on
severe cold cities that have a low demand for cooling in the summer and depend on central heating
systems in the winter. We conducted a literature search on the Web of Science database with search
query of two key concepts: energy use behavior; and severe cold region. Table 1 shows the final search
terms of each concept adjusted after multiple searches. The final search query is: TS = (energy use
behavior* in building* OR occupant behavior* OR energy usage behavior*) AND TS = (cold climate
OR severe cold OR severely cold region OR winter city) AND PY = (2010–2020). Search results
showed that only 12 articles were highly relevant to the topic: energy use behavior in severe cold
regions, in the last 10 years. However, the characteristics of occupants’ energy use behavior and
energy-saving potential in the severely cold regions should not be ignored. The special climatic
conditions make most of the research results based on air conditioning inapplicable to severely cold
regions. It is necessary to obtain a better understanding of the building energy use behavior and
the evaluation of energy-saving measures for improving the energy use behavior in severely cold
regions. Second, compared with commercial buildings, residential buildings have more flexible and
complex activities and time schedules, leading to higher randomness in the energy use behaviors [25].
Studying the energy needs of a large number of individual households is a complex task that requires
data collection, as well as comprehensive consideration of the decision-making mechanism underlying
the occupant behavior. Differences in the resident characteristics, energy-saving awareness level,
outdoor temperature, and work schedule can lead to changes in the energy use behavior, affecting the
building energy consumption. Therefore, it is difficult to design rules for the energy use behavior in
residential buildings.

Table 1. Concepts and search terms for the search query.

Concepts Search Terms

Energy use behavior
energy use behavior in building

occupant behavior
energy usage behavior

Severely cold region

cold climate
severe cold

severely cold region
winter city

This study aimed to address the current research gaps and challenges by developing an agent-based
model to simulate the household electricity use behavior in severely cold region. The objectives supposed
to achieve in this study are: (1) to build an agent-based model which is suitable for a large number
of individual households, (2) to identify the characteristics and energy-saving potential of household
electricity use behavior in severely cold regions, and (3) to quantify the impact of energy-saving
management on household electricity consumption. Harbin, China was taken as the research area for
data collection. The energy use behavior was described by statistical data, the behavioral probability,
and the decision-making mechanism. The effects of different energy-saving management scenarios
were evaluated to investigate the energy-saving potential of behavior in households under severe cold
climate conditions. As central heating systems are adopted in severely cold regions of China, the main
portion of the heating energy consumption is controlled by not residents but heating companies, mainly
using hot water and adjusted according to external temperature. In other words, in one household,
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the heating energy consumption cannot be adjusted by residents themselves, indicating that residents’
energy use behavior will not show significant effect on heating energy demand. The energy-saving
for heating of residential buildings in severely cold regions mainly depends on the building envelope
structure and the heat loss in the heating path, rather than the behavior of household energy use.
Therefore, in severely cold regions, the most important portion of energy in household which can be
reduced by changing energy use behavior is residents’ daily electricity consumption. The proposed
model in this study, which takes the weather conditions, basic personal information and behavioral
characteristics of the occupants, and energy-saving management as inputs, can provide a dynamic
representation of the household electricity consumption per hour in severely cold regions. Additionally,
the characteristics of the annual electricity consumption can be identified through a statistical analysis
of the electricity consumption per day. The sufficient data and simple structure are conducive to the
application of this model for predicting the electricity demand of numerous individual households.

2. Materials and Methods

2.1. Energy Use Behavior Data Collection

The questionnaire (Appendix A) was distributed randomly and submitted anonymously.
The respondents did not communicate with each other, eliminating the interference of expectation
deviation. A total of 368 questionnaires were returned in the survey, but the sample sizes for the groups
under 18 and over 60 (years of age) were too small for the results to be statistically significant. Therefore,
there were 362 valid questionnaires, and the effective rate was 98.4% (Table 2). The Cronbach alpha
coefficient was used for a reliability test. The value of the reliability coefficient was 0.791, which was
>0.7, indicating that the data were reliable.

Table 2. Resident survey responses.

Information Options Percentage (%) Information Options Percentage (%)

Age (year)

18–25 19.61
Income

(yuan/month)

≤3000 37.29
26–30 17.13 3000–5000 26.80
31–40 20.44 5000–8000 22.65
40–60 42.82 ≥8000 13.26

Gender
Male 39.50

Living Situation

Alone 8.84
Female 60.50 With Family 78.45

Education

Under
College 12.43 Dormitory/Renting 9.39

College 14.09 Others 3.31

Undergraduate 50.28
Graduate 23.20

According to the questionnaire results (Table 3), >97% of the interviewees agreed that energy
conservation is a major factor related to the national economy and people’s livelihood (Q1).
This indicates that the residents in severely cold regions in China understand the importance of
energy conservation. However, only approximately 60% of the respondents were familiar with the
energy-saving policies and electricity prices in their area (Q2, Q3), >36% of the respondents did
not know how to save energy (Q6), and >82% of the respondents considered that the community
energy-saving promotion and education should be strengthened (Q8), indicating that the current
energy-saving management is insufficient. Approximately 80% of respondents indicated that they
would be affected by energy-conservation promotion (Q5). Further, 57% of respondents indicated that
changes in electricity prices would affect their behavior in using household appliances (Q4), and >88%
of respondents indicated that rewards could promote energy conservation (Q7), which suggested
that economic incentives are more likely to encourage households to take active energy-conservation
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measures than increasing fees. Although, there are several studies that have observed that rising
energy prices will prompt residents to reduce energy consumption, and the greater the increase in the
peak electricity price, the more obvious the reduction and transfer of electricity load, regarding tiered
electricity price [32–35]. However, from the result obtained in this study, it can be seen that the
varying tariffs on residential electricity proposed so far in Harbin do not strongly motivate residents to
modify their electricity use habits, as they are unable to effectively trigger behavioral changes and
offer flexibility services [36]. The current electricity price of Harbin is 0.51 yuan/kW·h for the monthly
electricity consumption less than 170 kW·h, 0.56 yuan/kW·h for 70–260 kW·h and 0.81 yuan/kW·h for
more than 260 kW·h. For most households, the monthly electricity consumption is less than 170 kWh,
and the price fluctuation is quite small, which will not attract their attention. Compared with electricity
price, research shows that consumers are more willing to pay for energy efficiency appliances in China’s
market to save daily energy consumption [37,38]. Regarding to incentive policies, studies have shown
that the behavioral results of economic savings have a small impact on energy-saving intentions, but the
spiritual satisfaction brought by incentive policies will significantly affect energy-saving intentions [39].
Generally, economic incentives provided through policy means can effectively expand energy-saving
benefits [34].

More than 86% of the respondents turn off the lights in time when leaving the room;
only approximately 8% of the respondents do not (Table 4). More than 90% of the respondents
turn off home appliances when they are not in use, and only 9.94% of the respondents set them to
standby (Table 5).

Cities in severely cold regions are usually cool in summer and do not have strict cooling
requirements. Therefore, the energy-consumption characteristics of cooling and heating in residential
buildings are different from those for cities in other regions. The survey results (Figure 1a) indicated that
the usage rate of air conditioning in residential buildings in summer is only 17.96%, and that of electric
fans is 14.64%, while the remaining 67.40% of the residents selected natural ventilation. Cities in severely
cold regions in China mainly use central heating systems in winter, and the heating intensity is uniformly
deployed by the heating company according to the weather conditions. Thus, residents usually cannot
adjust the heating themselves. The survey results indicated (Figure 1b) that only 16% of the residents
use air-conditioning or electric heaters for supplementary heating in winter.

2.2. Awareness of Energy Saving and Impact Level of Energy-Saving Management

The use behaviors for lighting and household appliance were used as measures of the
energy-saving awareness. The feedback regarding various energy-saving events was used as a measure
of the impact of energy-saving management. The answers to related questions were divided into three
levels (Table 6). When the options of the three questions related to energy-saving awareness were all in
level I, the resident was considered to have high awareness. When at least two of the three questions
were in level III, the resident was considered to have low awareness. In other cases, the resident was
considered to have medium awareness. The survey results indicated that only 17.96% of the residents had
high energy-saving awareness, and >78% of the residents had medium awareness. Compared with the
results for Q1, the cognitive attitude towards energy saving did not determine whether the behavior was
energy-saving. This is consistent with the research results of Yue et al. [39]. Therefore, social promotion
and policy guidance are necessary.
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Table 3. Awareness and willingness of energy saving.

Statement Strongly Agree (%) Agree (%) Neutral (%) Disagree (%) Strongly Disagree (%)

1. Energy conservation is a major issue concerning the
national economy and people’s livelihood. 79.56 18.23 1.38 0.55 0.28

2. You are familiar with the policies and measures of energy
conservation in your city and region. 14.36 45.86 18.78 18.78 2.21

3. You are familiar with the household electricity price. 17.40 38.67 22.65 19.06 2.21

4. The change of electricity price will affect your using
habits of household appliances. 19.89 37.29 27.07 13.81 1.93

5. You will be influenced by the promotion about
energy saving. 46.96 36.46 12.43 3.31 0.83

6. Energy saving is far from your life, and you don’t know
how to save energy. 10.77 25.69 10.22 38.12 15.19

7. You are willing to save energy if the behavior can
be rewarded. 50.83 37.29 10.50 0.83 0.55

8. Your community should strengthen the promotion of
energy conservation in daily life. 43.09 39.23 11.33 5.52 0.83
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Table 4. Household light use behavior.

Always (%) Usually (%) Sometimes (%) Seldom (%) Never (%)

Turn on the light
during daytime. 1.66 7.18 18.78 18.78 53.59

Turn off the light when
leaving the room. 59.39 27.07 6.35 3.31 3.87

Table 5. State of household appliances not in use.

Standby (%) Turn Off (%)

When the household appliances
not in use 9.94 90.06
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Table 6. Awareness of energy saving and impact level of energy-saving events.

I II III

Energy-saving awareness
Turn on the light during daytime Seldom/Never Sometimes Always/Usually
Turn off the light when leaving

the room Always/Usually Sometimes Seldom/Never

Household appliances not in use Turn Off Sometimes turned off Standby
Impact level of

energy-saving events
Will be influenced by

the promotion (Strongly) Agree Neutral (Strongly) Disagree

Electricity price will affect
using habits (Strongly) Agree Neutral (Strongly) Disagree

Willing to save energy if the
behavior can be rewarded (Strongly) Agree Neutral (Strongly) Disagree

Cross-comparing the energy-saving awareness with the interviewees’ information revealed that
gender did not significantly affect the awareness. Residents 18–25 and 40–60 years old had slightly
higher awareness of energy saving than those in the other age groups. Residents whose education
level was graduate or above had significantly lower energy-saving awareness than those with other
education levels. Residents whose income was <3000 yuan/month paid more attention to daily energy
conservation than residents at other income levels. Residents who lived in dormitories or shared
rent with others were more energy-efficient than those in other living situations. The energy-saving
awareness exhibited a similar stepwise proportional distribution for the education level and income
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level. Therefore, to match the actual situation, the income level is taken as the classification standard in
the setting of residents’ energy-saving awareness parameters.

2.3. Model System

The software employed in this study—AnyLogic—is widely used for modeling and simulating the
dynamics of multi-agent and hybrid systems and is suitable for modeling complex systems that evolve
over time [8,22,40]. By issuing instructions to independently operating “agents”, modelers investigate
the relationship between individual behaviors and macro-patterns emerging from interactions between
individuals, that is, unpredictable and complex phenomena created by simple interaction behaviors
between individuals in a system.

2.3.1. Defining Agents and Behaviors

The model consists of 16 agents and is divided into two main systems: the apartment system and
the energy-management system (Figure 2). The overall energy consumption of the apartment system
is affected by the energy-saving management.
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Figure 2. Agents in the household electricity use behavior model.

The apartment system includes residents and energy-consuming appliances. Residents’ daily
routines, energy use habits, and energy-saving awareness affect the building energy consumption.
Energy-consuming appliances mainly include cooling and heating appliances, lights, and household
appliances. The energy-management system includes social promotion and polices. Residents’ knowledge
and awareness of energy conservation in their daily lives are affected by social promotion and relevant
energy-conservation policies.

2.3.2. Identifying Behavior Triggers

The behavior control of the agent is mainly divided into the control of the residents’ energy use
behavior and the control of the operating state of the energy-consuming appliances. The simulated
time unit is ’day’; thus, the behavior and parameter updates for each agent take 24 h.

The daily status of residents is at home or out, which determines their home time and affects the
use of appliances. The characteristics of energy use behavior in the model are reflected by the control
parameters and control conditions of the appliances. Another important parameter of the residents is
the energy-saving awareness. When residents receive the information conveyed by the occurrence of
an energy-saving event, the energy-saving awareness parameters are changed according to the impact
level of the energy-saving event on the resident agent, affecting their energy use behavior.
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Figure 3 shows the state charts of energy-consuming appliances. In addition to refrigerators,
lights and other energy-consuming appliances, which needs to be set in standby or off state when not
in use, are inspected every 24 h to ensure that the operating time, operating probability, and status
during the simulation date are updated according to the residents’ personal characteristics, temperature,
and other conditions. The operating time of lights mainly depends on the home time of the residents and
the season (Figure 3d). The operating status of cooling, heating (Figure 3a,b), and household appliances
(Figure 3c) depends on the possession probability, operation time, and residents’ energy-saving
awareness. The energy-saving awareness determines whether an appliance is in a standby or off state
when not in use. For cooling and heating appliances, another important behavioral trigger which
determines when cooling and heating appliances will be turned on is the external temperature. In the
existing studies, cooling and heating temperature for household usually refers to indoor temperature.
However, in this study, we used the outdoor temperature for three reasons. First, from the survey,
we found that residents usually used the outdoor temperature on a certain day to describe their heating
and cooling demand. Second, because of the lack of indoor temperature monitoring, it is difficult
to obtain the corresponding changes in their energy use behavior with indoor temperature. Third,
considering this model aims to simulate the energy-saving effect of energy management on a large
number of individual households on the urban scale, it is easier for model users to operate and obtain
data by using outdoor temperature to set the temperature point. We set a cooling setpoint temperature
at 26 ◦C and a heating setpoint temperature at 12 ◦C. In other words, when the external temperature
is higher than 26 ◦C, the residents will choose to use the cooling appliance, while when the external
temperature is lower than 12 ◦C, they will choose to use the heating appliance. For refrigerators,
its normal operating state is 24 h a day. Normal household use will not specifically set it to standby or
turned off. Therefore, the operating state chart of the refrigerator is relatively simple. As shown in
Figure 3e, there is only one state of “Turn On”.
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2.3.3. Quantifying Behavior

The state parameters set in the model were obtained from the survey questionnaire, the 2019
Heilongjiang Statistical Yearbook (Heilongjiang is the province where Harbin is located), the National
Meteorological Science Data Center, and the JGJ 26-2018 Residential Building Energy Efficiency Design
Standard in Severe Cold and Cold Areas.

The main panel parameter settings included the quantity of simulated apartment, simulated daily
temperature which referred to the average outdoor temperature of the simulated day, simulated date
(DayOfYear), and energy-saving management (Figure 4). The parameters of the residents included their
basic information, home time, energy-saving awareness, and impact level of management. The basic
information included the age, gender, education level, income, and living situation. All the parameter
values were set according to the results of the foregoing questionnaire. The energy-consuming



Energies 2020, 13, 5581 10 of 22

appliance parameters included the operating rate, quantity of a certain appliance, operating time (TO),
and standby time (TS).Energies 2020, 13, x FOR PEER REVIEW 9 of 19 
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Table 7 presents the parameter settings of the main panel and resident agents. The model
used “households” as the simulation unit, and the initial quantity of simulated apartments was set
as 100. The variable “Temperature” obtained the day’s temperature from the table function “2017 daily
temperature” based on the value of “DayOfYear”. The ’energy-saving awareness’ of the residents was
classified as high, medium, or low. The ‘impact level’ indicated how likely the residents were to increase
their own energy-saving awareness after participating in energy-saving events. The initial values of the
awareness and impact level were set according to the percentages obtained from the questionnaire survey.

Table 8 presents the main parameter settings for the cooling and heating appliances. The cooling
point and heating point are set to an outdoor temperature of 26 ◦C and 12 ◦C, respectively. According to
the survey questionnaire, the operating probabilities were as follows: air-conditioning (AC) for cooling,
17%; electric fan, 15%; air-conditioning for heating, 5%; electric heater, 11%. Air conditioning for cooling
and electric fan were controlled by the same ‘cooling rate’ parameter, preventing the simultaneous
operation of both. This was also true for the heating appliances.

The use of the lights is controlled by two parameters: “lighting time” and “number of lights
on” (Table 9). The “lighting time” is affected by the residents’ “home time” and seasons. In winter,
the sunshine time is short, and the lighting time is increased compared with other seasons. According to
the sunset time of each day in Harbin in 2017, February 15 and October 9 were taken as the
“turning points” for the change in the lighting time. The “number of lights on” indicated whether
residents would turn off the lights when they left the room. In this study, we hypothesized that
residents with high, medium, and low energy-saving awareness would keep one, two, and four lights,
respectively, turned on simultaneously. The parameters of the other five categories of household
appliances (except for refrigerators) included the TO, TS, and quantity of appliances. The daily operating
time for refrigerators is 24 h. The quantities of certain appliances per household were obtained from
the 2017 Heilongjiang Statistical Yearbook.
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Table 7. Parameter settings of the main panel and resident agents.

Parameters Type Initial Value [Proportion] Unit

Quantity of apartments int 100 household

DayOfYear int 1–365 day

Temperature double / ◦C

Age int 18–60 year

Home time double Weekday: triangular (8, 24, 11.5)
Weekend: triangular (8, 24, 19) hour

Energy-saving awareness awareness

Income of <3000: High [0.22] Medium [0.72] Low [0.06]
Income of 3000–5000: High [0.18] Medium [0.75] Low [0.07]
Income of 5000–8000: High [0.14] Medium [0.82] Low [0.04]

Income of >8000: High [0.06] Medium [0.88] Low [0.06]

/

Impact level of promotion promotion
High awareness: Changed [0.84] Maybe [0.11] Unchanged [0.05]

Medium awareness: Changed [0.83] Maybe [0.13] Unchanged [0.04]
Low awareness: Changed [0.82] Maybe [0.14] Unchanged [0.04]

/

Impact level of incentive policies rewarding
High awareness: Changed [0.85] Maybe [0.12] Unchanged [0.03]

Medium awareness: Changed [0.89] Maybe [0.10] Unchanged [0.01]
Low awareness: Changed [0.82] Maybe [0.14] Unchanged [0.04]

/

Impact level of
increasing electricity prices costing

High awareness: Changed [0.64] Maybe [0.23] Unchanged [0.13]
Medium awareness: Changed [0.56] Maybe [0.28] Unchanged [0.16]

Low awareness: Changed [0.50] Maybe [0.27] Unchanged [0.23]
/

Table 8. Parameter settings for the cooling and heating appliances.

Parameters Type Initial Value Unit Operating Condition

Cooling rate double uniform (0,1) / /

Cooling time of AC double Weekday: triangular (0.5, 4, 2)
Weekend: triangular (0.5, 6, 4) hour Temperature > 26 ◦C;

Cooling Rate < 0.17
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Table 8. Cont.

Parameters Type Initial Value Unit Operating Condition

TS of AC for cooling double 24-Cooing time of AC hour Low energy-saving awareness

Cooling temperature int triangular (15, 28, 24) ◦C /

Cooling time of fan double Weekday: triangular (0.5, 4, 2)
Weekend: triangular (0.5, 6, 4) hour Temperature > 26 ◦C;

0.17 ≤ Cooling Rate < 0.32

TS of fan double 24-Cooling time of fan hour Low energy-saving awareness

Heating rate double uniform (0,1) / /

Heating time of AC double Weekday: uniform (0.5, 4)
Weekend: uniform (1, 4) hour Temperature < 12 ◦C;

Heating Rate < 0.05

TS of AC for heating double 24-Heating time of AC / Low energy-saving awareness

Heating temperature int triangular (18, 28, 26) ◦C /

Heating time of heater double Weekday: uniform (0.5, 4)
Weekend: uniform (1, 4) hour Temperature < 12 ◦C;

0.05 ≤ Heating Rate < 0.16

Table 9. Parameter settings for the lights and household appliances.

Parameters Type Initial Value [Proportion] Unit Operating Condition

Lighting time double

uniform (1, 2)

hour

Home time < 8

uniform (4, 6) 8 ≤ Home time < 14

uniform (4, 6) Home time ≥ 14; 46 < DayOfYear < 282

uniform (6, 8) Home time ≥ 14; DayOfYear ≤ 46 or ≥ 282
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Table 9. Cont.

Parameters Type Initial Value [Proportion] Unit Operating Condition

Number of lights on int
4

/
Low energy-saving awareness

2 Medium energy-saving awareness

1 High energy-saving awareness

TO of water heater (WH) double triangular (0.5, 2, 1) hour /

TS of WH double 24-TO of WH hour Low energy-saving awareness

Quantity of WHs int 1[0.52], 0[0.48] / /

TO of refrigerator double 24 hour /

Quantity of refrigerators int 1[0.95], 0[0.05] / /

TO of washing machine
(WM) double

triangular (0, 1, 0.5)
hour

Weekday

triangular (0.5, 2, 1) Weekend

TS of WM double 24-TO of WM hour Low energy-saving awareness

Quantity of WMs int 1[0.94], 0[0.06] / /

TO of microwave oven
(MO) double

triangular (0.08, 0.33, 0.17)
hour

Weekday

triangular (0.08, 0.5, 0.17) Weekend

TS of MO double 24-TO of MO hour Low energy-saving awareness

Quantity of MOs int 1[0.36], 0[0.64] / /

TO of television
(TV) double

triangular (0, 3, 2)
hour

Weekday

triangular (0, 6, 4) Weekend

TS of TV double 24-TO of TV hour Low energy-saving awareness

Quantity of TVs int 1 / /

TO of computer double
triangular (0.5, 3, 2)

hour
Weekday

triangular (0.5, 6, 3) Weekend

TS of computer double 24-TO of computer hour Low energy-saving awareness

Quantity of computers int 1[0.60], 0[0.40] / /
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According to the statistical yearbook, the average number of residents per household in 2017
was 2.5, and the average apartment size was 81.5 m2. The interior design temperature, the lighting
power, and the operating power (P) and standby power (PS) of household appliances were set
according to the “JGJ 26-2018 Design Standard for Energy Conservation of Residential Buildings in
Cold and Cold Regions” and average level of each kind of appliances in China (Table 10).

Table 10. Parameter settings for apartment and household appliances.

Parameters Value Unit Parameters Value Unit

Average resident 2.5 person P of TV 175 W
Average size 81.5 m2 PS of TV 0.66 W

Interior design temperature 18 ◦C P of computer 350 W
P of lights 48 W PS of computer 0.61 W
P of WH 2000 W P of AC for heating 1300 W
PS of WH 1.05 W P of AC for cooling 800 W

P of refrigerator 600 W PS of AC 1.19 W
P of WM 500 W P of fan 60 W
PS of WM 0.6 W PS of fan 1.57 W
P of MO 900 W P of heater 800 W
PS of MO 5 W

2.4. Model Validation

2.4.1. Single-Agent State Tracking

We randomly observed whether the statuses of energy-consuming appliances and the resident
of one “apartment agent” changed over time according to the suggested behavior rules, as well as
whether the variables and parameters were correctly calculated and updated. Figure 5 shows the daily
electricity consumption in January and July 2017 for “Agent11” with low energy-saving awareness,
“Agent60” with medium awareness, and “Agent96” with high awareness. The electricity use exhibits
periodic changes: two levels are observed on weekdays and weekends, which is consistent with the
model’s setting of behavior rules for residents’ energy use, indicating that the transformation of the
state of energy use by a single agent was correct during the running of the model.
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2.4.2. Stability and Accuracy Validation

Increasing the number of agents increases the complexity of the model, and it can also test all
possible random results. To evaluate the overall stability of the model, 100 apartment agents were used
for a simulation, which was performed 10 times to obtain 1000 sample data. The results indicated that
the standard deviation of the average annual electricity use intensity was 0.4023 kW·h/m2; the coefficient
of variation was 0.542%, indicating that the model was relatively stable (Table 11).
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Table 11. Stability validation results for the model.

Sample Size Mean Standard Deviation Coefficient of Variation

Annual electricity
use intensity 1000 74.2481 kW·h/m2 0.4023 kW·h/m2 0.542 kW·h/m2

The simulation results for the monthly electricity use intensity of 1000 samples were compared
with the actual data in terms of cumulative values [7]. The actual building energy consumption data
were obtained from the 2017 Harbin residential building energy consumption database provided by
the Chinese government. The trend line of the cumulative value indicated that the overall trends of
the two datasets were almost identical, with small differences (Figure 6). The independent sample
test results indicated that the Sig value was >0.05, indicating that there was no significant difference
between the two datasets; that is, the simulated value was very close to the actual value, and the model
was accurate.
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3. Scenario Simulation and Results

In this study, three types of energy-saving management were considered: energy-saving
promotion, incentive policies, and increasing electricity prices. We hypothesized that for all three
types, information can be transmitted to all residents and improve their energy-saving awareness,
thereby changing their energy use behavior. And also, the energy-saving management should not
affect the residents’ daily needs regarding the use of household appliances.

3.1. Energy-Saving Promotion

Existing studies indicated that “communication” affects the spread of energy-saving ideas [7,41–43].
In the present study, 82% of the survey respondents thought that the community should strengthen the
energy-saving promotion, and >36% of the respondents indicated that they did not know how to save
energy, suggesting that energy-conservation education and promotion are necessary. The probability of
residents with different levels of energy-saving awareness being affected by energy-saving promotion
was determined according to the results of the survey questionnaire (Table 7). The probability of
awareness changing was 100%, 50%, and 0% for residents who responded with “changed”, “maybe”,
and “unchanged”, respectively.

The simulation results (Table 12) indicate that proper energy-saving promotion can reduce the
annual electricity use intensity of lighting by 42.06% (0.2962 kW·h/m2) and reduce the amount of
energy waste generated by standby consumption by 97.51% (0.0705 kW·h/m2). The impact on daily
household appliances and cooling and heating appliances is negligible. According to the average
size of an apartment, each household can reduce its electricity consumption by 29.886 kW·h per year.
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Meanwhile, the proportion of energy-saving awareness levels indicates that energy-saving promotion
can significantly enhance residents’ energy-saving awareness.

Table 12. Simulation results for energy-saving promotion.

Promotion
Annual Electricity Use Intensity (kW·h/m2)

Energy-Saving Awareness
(%)

All Appliance Lights Cooling & Heating Standby High Medium Low

None 74.8812 73.1437 0.7043 0.9609 0.0723 5 83 12
Once 74.5163 73.1439 0.4081 0.9625 0.0018 83 15 2

3.2. Energy-Saving Policies

Two types of policies were considered in this study: incentives and increasing electricity prices.
At present, many countries and regions in the world have implemented the policy of “peak and valley
electricity price” [44–47]; that is, the price ladders are set at different time periods to reduce the peak
electricity consumption of residents and ease the pressure on power supply. Meanwhile, more and
more studies and practices have proven that the use of energy-saving incentives can also greatly
encourage active energy-saving behaviors [48–53].

The simulation results (Table 13) indicate that the energy-saving effect of the incentive measures
is more significant than an increase in the electricity price. The incentive policy can reduce the lighting
energy consumption by 42.88% and the standby energy waste by 90.18%, whereas the corresponding
reductions due to the increase in the electricity price were 29.05% and 42.60%, respectively. According to
the average apartment size, the incentive policy can save 29.92 kW·h per year for each household,
whereas the electricity-price increase can save 19.2 kW·h (36.6% less). Compared with policies that
increase the cost of energy, such as increasing the electricity price, incentives for energy conservation
can better promote residents’ awareness of energy conservation and change their energy use habits.
More than 40% of the survey respondents indicated they were unaware of the cost of energy.
Public unawareness is one of the reasons for the low impact of raising electricity prices. Therefore,
if local economic conditions permit, appropriate standards and incentive measures for energy use can
be formulated to reward households for energy conservation and reduce residents’ energy waste in
their daily lives.

Table 13. Simulation results for energy-saving policies.

Policy Annual Electricity Use Intensity (kW·h/m2) Energy-Saving Awareness (%)

All Appliance Lights Cooling & Heating Standby High Medium Low

None 74.8812 73.1437 0.7043 0.9609 0.0723 5 83 12
Incentive 73.9359 72.5720 0.4023 0.9545 0.0071 78 19 3

Raising price 74.6285 73.1238 0.5024 0.9608 0.0415 57 36 7

3.3. Energy-Saving Event Frequency

Taking the energy-saving promotion as an example, the energy-saving effects of an energy-saving
event with four occurrence frequencies—once a year (1 January), twice a year (1 January and 1 July),
three times a year (1 January, 1 May and 1 September), and four times a year (1 January, 1 April, 1 July
and 1 October)—were simulated.

The simulation results (Table 14) indicated that the energy-saving effect decreased with the
increasing frequency; that is, the effect of the first energy-saving promotion was the most significant,
and the effect decreased thereafter. Figure 7 shows the changing rate of the percentage of “high”,
“medium”, and “low” awareness groups after each time of energy-saving promotion, which can explain
the decreasing changing trend. Since the total population size was fixed, the first-time promotion
led to the largest increase in residents’ awareness. If the energy-saving awareness of one person
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reaches “high” level, or he/she is unlikely to be changed by promotion, the model considers that
the promotion will not work on him/her. In other words, along with the increase of promotion
frequency, the remaining number of people who can be promoted decreases, leading to the effect
of promotion decline. The frequency of three times a year yielded the optimal effect. After three
times promotion, the percentage of “medium” and “low” group reached the minimum, and didn’t
change afterwards. Compared with no energy-saving event, the electricity use intensity of lighting
and standby was reduced by 52.27% (approximately 0.4059 kW·h/m2). According to the average
apartment size, each household can save 33.081 kW·h of energy per year. Therefore, the study suggests
that the frequency of social and community energy-saving promotion should be kept between once a
year and once every four months to ensure effectiveness while avoiding the waste of resources.

Table 14. Simulation results for different energy-saving promotion frequency.

Frequency Annual Electricity Use Intensity (kW·h/m2)
Energy-Saving Awareness

(%)

All Appliance Lights Cooling & Heating Standby High Medium Low

None 74.8812 73.1437 0.7043 0.9609 0.0723 5 83 12
Once 74.5163 73.1439 0.4081 0.9625 0.0018 83 15 2
Twice 73.5244 72.1625 0.3982 0.9625 0.0012 87 13 0

Three Times 73.4954 72.1622 0.3698 0.9625 0.0009 98 2 0
Four Times 73.4954 72.1622 0.3698 0.9625 0.0009 98 2 0
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4. Conclusions

Energy use behavior is the main cause of fluctuations in building energy consumption. A dynamic
description and understanding of changes in energy use behavior can help improve the accuracy of
building energy consumption prediction and evaluation. The energy use behavior characteristics of
residents in severely cold regions exhibit particularities. In-depth simulation and dynamic display
of the residential energy use behavior changes are important for research on the building energy
consumption in severely cold regions.

In this study, according to the event mechanism of energy use behavior, an agent-based model of
the residential building electricity use behavior in a severely cold region was constructed. The dynamic
change characteristics of the household energy use behavior were identified, the energy-saving potential
of residential buildings in severely cold regions was evaluated, and the effects of different types of
energy-saving management and different frequencies of energy-saving events were analyzed and
compared. From the simulation results, the particularity of energy-saving potential in severely cold
regions was identified, which highlighted the importance of detailed research in severely cold regions.
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The results indicated that most of the residents had a good understanding of energy conservation,
but only 16.85% of them had a high awareness of energy conservation. Their cognitive attitude towards
energy conservation did not determine whether their behaviors were energy-saving. The unawareness
of energy conservation methods in daily life and the lack of promotion and policy guidance are
considered to lead to inefficient energy use behaviors. The demand for summer cooling of urban
residential buildings in severely cold regions was low, with only 17.96% of the respondents using
air conditioners in summer. Nearly 70% residents chose nature ventilation for cooling, which did
not consume electricity. In winter, the city used central heating, with only 16% of residents using air
conditioning or electric heaters for additional heating. The energy consumption of central heating
system for each household did not rely on electricity and was not affected by residents themselves,
but heating companies. Therefore, the electricity was mainly consumed by household appliances
and lights, and the energy-saving potential was concentrated in the consumption of lighting and
standby waste. Promotion of energy conservation could significantly enhance residents’ energy-saving
awareness, and the effectiveness decreases after the first promotional event, as the total population
who can receive the energy-saving promotion message is fixed for a community or a city. The optimal
energy-saving effect could be achieved at the frequency of once every four months. After the third time
of the year, the remaining population whose energy-saving awareness could be improved reached
the minimum and stayed the same even the frequency increased. The energy-saving effect of the
incentive measures was approximately 1.5 times that of increasing the electricity price, and the incentive
measures also have a more significant impact on the residents’ energy-saving awareness. According to
the survey, only 60% residents were familiar with the electricity price, indicating that at least 40%
residents did not care about their cost on electricity. Besides, the varying tariffs on residential electricity
proposed so far in Harbin showed quite small change on household cost on electricity. By contrast,
the incentive policy which can reward their energy-saving behavior and bring spiritual satisfaction
will enhance their interests more significantly.

The agent-based model proposed in this study has a clear hierarchy of multiple agents. Its structure
is suitable for general household electricity use behavior and is not limited to severely cold
regions. Additional agents can be continuously added into the model as the increase of household
electricity-consuming appliances. The newly-added agents can choose different operating state charts
(Figure 3) to define their behavior according to their own operating characteristics. The output of
the model can be used to identify the energy-saving potential regarding to energy use behavior in
the early stage of formulating energy-saving policies and can also be used to predict the effects of
energy-saving management. It should be noted that, in practical applications, the parameter values
should be updated according to specific conditions, including the characteristic parameters of energy
use behavior of residents, possession rate of certain appliance, operation and standby power of certain
appliance, and energy-saving policy types.

The study has the following two limitations, which will be addressed in future studies.
(1) The method of combining the intelligent agent model with sensors will be adopted to monitor the
actual heating demand of residents in winter, including the response to overheating and the actual
indoor temperature. (2) For energy-saving promotion, we should investigate the degree of mutual
influence among family members with different awareness levels, which has been proven to show
great impact on household energy conservation [54].

Author Contributions: Conceptualization, S.-Y.S.; Data curation, S.-Y.S.; Formal analysis, S.-Y.S.;
Funding acquisition, H.L.; Investigation, S.-Y.S.; Methodology, S.-Y.S.; Project administration, H.L.; Resources,
S.-Y.S.; Software, S.-Y.S.; Supervision, H.L.; Validation, S.-Y.S.; Visualization, S.-Y.S.; Writing—original draft,
S.-Y.S.; Writing—review & editing, S.-Y.S. and H.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number 51678178.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design of the study;
in the collection, analyses, nor interpretation of data; in the writing of the manuscript, nor in the decision to
publish the results.



Energies 2020, 13, 5581 19 of 22

Appendix A

Questionnaire

1. Gender: �Male � Female
2. Age: � 0–18 � 19–25 � 26–30 � 31–40 � 41–60
3. Education: � Under college � College � Undergraduate � Graduate
4. Income: � ≤3000 yuan/month � 3000–5000 yuan/month � 5000–8000 yuan/month � ≥8000

yuan/month
5. Living Situation: � Alone �With family � Dormitory/Renting � Others
6. How much time do you spend at home per day?

Weekdays � ≤8 h � 9–14 h � ≥14 h

Weekend � ≤8 h � 9–14 h � ≥14 h

7. What status of household appliances will you set when they are not in use (except refrigerator)?
� Standby � Sometimes turned off � Turned off

8. What is your usage habit of lights?

Always Usually SometimesSeldom Never

Turn on the light during daytime. � � � � �

Turn off the light when leaving the room. � � � � �

9. What is the main cooling method used in your home in summer?
linebreak � Air-conditioning � Electric fans (to Q11) � Natural ventilation (to Q12)

10. Which is the temperature of the air-conditioning for cooling in summer?
� 15–17 ◦C � 18–20 ◦C � 21–23 ◦C � 24–26 ◦C � ≥26 ◦C

11. How much time do you use the air-conditioning/electric fans in summer per day?

Weekdays � ≤1 h � 1–2 h � 2–4 h � ≥4 h

Weekend � ≤1 h � 1–2 h � 2–4 h � ≥4 h

12. In addition to central heating, does your home use other heating methods in winter?
� Air-conditioning � Electric heaters (to Q14) � None (to Q16)

13. Which is the temperature of the air-conditioning for heating in winter?
� 18–20 ◦C � 21–23 ◦C � 24–26 ◦C � ≥27 ◦C

14. In addition to central heating, does your home use other heating methods in winter?
� 8–10 ◦C � 11–13 ◦C � 14–16 ◦C

15. How much time do you use the air-conditioning/electric heaters in winter per day?

Weekdays � ≤1 h � 1–2 h � 2–4 h � ≥4 h

Weekend � ≤1 h � 1–2 h � 2–4 h � ≥4 h

16. What do you think of the following statement?

Statement Strongly Agree Agree Neutral Disagree Strongly Disagree

1. Energy conservation is a major
issue concerning the national
economy and people’s livelihood.

� � � � �

2. You are familiar with the policies
and measures of energy conservation
in your city and region.

� � � � �

3. You are familiar with the
household electricity price.

� � � � �
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Statement Strongly Agree Agree Neutral Disagree Strongly Disagree

4. The change of electricity price will
affect your using habits of
household appliances.

� � � � �

5. You will be influenced by the
promotion about energy saving.

� � � � �

6. Energy saving is far from your life,
and you don’t know how to
save energy.

� � � � �

7. You are willing to save energy if
the behavior can be rewarded.

� � � � �

8. Your community should strengthen
the promotion of energy conservation
in daily life.

� � � � �
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