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Abstract: Modern data analytics techniques and computationally inexpensive software tools are
fueling the commercial applications of data-driven decision making and process optimization
strategies for complex industrial operations. In this paper, modern and reliable process modeling
techniques, i.e., multiple linear regression (MLR), artificial neural network (ANN), and least square
support vector machine (LSSVM), are employed and comprehensively compared as reliable and robust
process models for the generator power of a 660 MW, supercritical coal combustion power plant.
Based on the external validation test conducted by the unseen operation data, LSSVM has outperformed
the MLR and ANN models to predict the power plant’s generator power. Later, the LSSVM model
is used for the failure mode recovery and a very successful operation control excellence tool.
Moreover, by adjusting the thermo-electric operating parameters, the generator power on an average
is increased by 1.74%, 1.80%, and 1.0 at 50% generation capacity, 75% generation capacity, and 100%
generation capacity of the power plant, respectively. The process modeling based on process data
and data-driven process optimization strategy building for improved process control is an actual
realization of industry 4.0 in the industrial applications.
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1. Introduction

Given the increased domestic and commercial industrial sectors, almost 100% of energy
consumption has increased over the last four decades [1]. Harvesting the rising energy demand
through the inefficient power complexes and their poor operation control, not only the operation cost of
power generation is increased significantly, but huge volumes of greenhouse gas emissions also cause
degradation and deterioration of the environment. Over the past few decades, researchers and energy
experts are closely collaborating in a wide range of research activities to mitigate the harmful impacts
of power generation to ensure sustainable power generation and environmental protection. [2-16].

The power generation from large commercial power plants is a highly complex and critical
industrial operation. A large number of thermo-electric operating parameters are simultaneously
controlled and monitored via distributed control systems. The large volume of operation data and the
underlying nonlinear interactions analysis in the operating parameters make it practically impossible
by conventional analytical means.

The advanced and sophisticated artificial intelligence (AI) algorithms are designed to analyze
the high-dimensional featured data describing complex industrial operations [17-19]. With the
development of information and communication technologies (ICT), the collection, storage,
and retrieval of a process’s large volume of operation data are significantly improved. Modern data
analytics techniques and computationally inexpensive software tools are fueling the commercial
applications of data-driven decision making and process optimization strategies for complex industrial
operations [20]. Machine learning and deep learning, the reliable and promising data analytics
domains of Al, are practically suitable for modeling, controlling, and optimizing the processes.
However, the comprehensive analysis of the optimization and operation management of power
generation systems conducted in the true spirit of industry 4.0 is scarcely reported in the literature [20].

A comprehensive review of Al applications’ current status in the energy systems is presented in the
literature. The key challenges impeding Al inclusion in real-life applications are extensively explored,
and the widespread Al-based applications in the various industrial sectors are predicted [21,22].
A preliminary study is carried out to develop a platform built in the context of industry 4.0. Deep learning
models employed to model the waste to heat recovery system have performed well in mapping the
system’s dynamic response [20]. LSSVM based hybrid models are reported for forecasting the energy
demand of the grid [23] and the energy consumption of complex industrial processes to ensure the
efficient operation management and control of the cement industry [24].

Elfaki et al. have modeled the electrical output power of a combined cycle power plant by
ANN using four input variables. The deviation between the target value and validation dataset
value is negligible, signifying the model’s effectiveness [25]. Zhu, H., et al. have employed
wavelet decomposition and ANN to forecast power generation from the photovoltaic power plant.
The developed methodology presents better performance and forecasting precision as compared
to traditional ANN models [26]. The researchers have reported the modeling of wind turbine
generator operation by ANN and LSSVM techniques under various operating parameters [27-29].
However, the literature concerning the generator power modeling of a large-scale power complex
under various operating scenarios is scarce.

In this paper, various process modeling techniques, i.e., MLR, ANN, and LSSVM, are utilized
and comprehensively compared for the operational analysis of the generator power production from
a 660 MW, supercritical coal power plant. Considering 330 MW, and 660 MW, as 50% and 100%
unit load (that is essentially the resistive power, and power factor between 0.85 to 1.00), the generator
power (that accounts for both resistive and reactive power production from the power plant), is varied



Energies 2020, 13, 5619 30f 22

from 355 MVA to 715 MVA (50% generation capacity to nearly 100% generation capacity). The power
plant’s characteristics operation data under the various power generation scenarios are taken from the
Supervisory Information System (SIS). After machine learning techniques perform the data visualization
test, i.e., self-organizing feature map (SOFM), MLR, ANN, and LSSVM, are employed to predict
the generator’s power. The best performing and reliable process model is utilized for two principal
objectives, i.e., (1) to plot the characteristics response of the generator power under the failure mode of
the power plant; and (2) to optimize the generator power of the supercritical power plant for effective
control of thermo-electric operating parameters.

Two Al techniques applications are presented in this study. In the first case, carefully designed
computer-simulated Monte-Carlo experiments are performed on the Al process models to develop a
standard operating procedure for failure mode recovery and mitigation of cost of failure. Secondly,
Al process models are employed as a very successful operation control excellence tool. The paper’s
contribution constitutes a further step ahead in the spirit of industry 4.0 data analytics for actual
commercial processes in various industrial sectors.

2. Schematic of Power Plant

The schematic process flow of the pulverized coal power plant is shown in Figure 1. Two basic
systems can be distinguished; one is the flue gas system, and the second is the water and steam system.
In the flue gas system, the primary air provided by the primary air fan (PAF) is heated by air pre-heater
(APH). The hot primary air is used to transfer the pulverized coal from the coal mill to the boiler
burners for coal combustion. After passing through APH, the secondary air provided by the forced
draft fan (FDF) is used for the complete combustion of coal in the boiler. The hot gases produced after
coal combustion, known as flue gas, transfer the heat to the boiler’s heating surfaces and converts
water to supercritical or subcritical steam. The flue gas leaving the boiler heats primary and secondary
air through APH. Induced draft fan (IDF) draws out the flue gas from the boiler and maintains negative
pressure inside the furnace. The electrostatic precipitator (ESP) and flue gas desulphurization (FGD)
system are installed to remove the particulate matter, Hg, and SOy in the flue gases. After that, clean
flue gas is discharged to the atmosphere via stack.

Super
heater

Reheater

Economizer

10

®- Steam —J» Feed Water == Steam Extraction - --»
Condensate water —— Primary air =---—
Pulverized coal flow ——p Flue gas -——

Figure 1. The schematic process flow of pulverized coal power plant.
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Feed water is an essential part of the steam power plant operation and known as the power plant’s
blood. The condensate pump takes condensate water from the condenser’s hot well, pressurizes it,
and passes it on to low pressure (LP) heaters (LP8, LP7, LP6, and LP5). A part of feed-water flow
taken from the outlet of LP8 and LP7 is diverted to LT-Economizer (LT ECO) for feed water heating
by the flue gas exhaust from the boiler, and then is mixed with the feed-water coming out of LP7
and directed to LP6 and LP5 for further heating, and sent to deaerator. In the deaerator, oxygen and
other dissolved gases, which can cause rusting and corrosion in the boiler, are removed from the
feed water. Feed water pump then pressurizes the feed water to the reacquired pressure. Feed water
passes through high pressure (HP) heaters (HP3, HP2, HP1), where the temperature of feed water
is increased before entering the boiler’s economizer. In LP and HP heaters, feed water is heated by
steam extractions from different stages of turbines. Then, the preheated feed water enters the boiler’s
economizer, super-heater, and finally leaves the boiler as the steam of reacquired temperature and
pressure. The pressurized steam expands in the HP turbine, where its temperature and pressure is
dropped. As steam temperature leaving the HP turbine is low and to avoid condensation of steam in
the latter stage of intermediate pressure (IP) turbine, steam is heated in re-heater before entering the IP
turbine. The reheat steam expands in the IP turbine and then in LP turbines A and B (LPA and LPB).
After expanding in LPA and LPB turbines, steam is condensed, and the cycle continues. The expansion
of steam in the turbines helps rotate the turbines, which are mounted on the same shaft, and the shaft
is coupled with the generator for the production of electricity.

The sensors are installed at various points for measuring the values of different thermo-electric
operating parameters of the power plant. However, soft sensors take the input from the other measuring
sensors and record a particular parameter by the specified mathematical operator that cannot be
measured directly. The make and model number of the sensors involved in this study are mentioned
in Table 1.

Table 1. Summary of the sensors for various thermo-electric operating parameters of power plant.

Sensor Make Model
1 Coal flow rate (M,) Vishay Precision Group (USA) 3410
2 Air flow rate (M,) Siemens (Germany) 7MF4433-1BA22-2AB6-Z
3 Water/Coal ratio (w/c) Soft sensor Soft sensor
. Anhui Tiankang China
4 Middle temp. (Tpniq) Thermocouple WRNR2(K TYPE)
5 LT Eco water outlet temp. Anhui Tiankang China WRNR2(K TYPE)
(TLTECO) Thermocouple
. Anhui Tiankang China
6 APH air outlet temp. (Ta)apu Thermocouple WRNR2(K TYPE)
7 %O2in ﬂ“e(gasoa; APH outlet Walsn (Canada) 0AM-800-R
0 U
8 Flue gas temp. after APH Anhui Tiankang China WRNR2(K TYPE)
((Trg)aPH) Thermocouple
. Anhui Tiankang China
9 Ambient temp. (Tymp) Thermocouple WRNR2(K TYPE)
10 Feed water pressure (FWP) Siemens (Germany) 7MF4033-1GA50-2AB6-Z
11 Feed water temp. (FWT) Anhui Tiankang China WRNR2(K TYPE)
Thermocouple
12 Feed water flow (FWF) Siemens (Germany) 7MF4533-1FA32-2AB6-Z
13 Main steam pressure (MSP) Siemens (Germany) 7MF4033-1GA50-2AB6-Z
14 Main steam temp. (MST) Anhui Tiankang China WRNR2(K TYPE)
Thermocouple
15 Reheat pressure (RHP) Siemens (Germany) 7MF4033-1GA50-2AB6-Z
16 Reheat temp. (RHT) Anhui Tiankang China WRNR2(K TYPE)
Thermocouple
17 Absolute condenser vacuum Siemens STTRANSDPSIII ~ 7MF4233-1GA50-2AB6-Z

(PVﬁC)
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Table 1. Cont.
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Sensor Make Model

Anhui Tiankang China

18 Deaerator temp. (Tq) Thermocouple WRNR2(K TYPE)

Attemperation water flow .

19 rate(AWF) Siemens (Germany) 7MF4533-1FA32-2AB6-Z
Anhui Tiankang China

20 Condensate temp. (T¢) Thermocouple WRNR2(K TYPE)

. Nanjing Suatak Measurement and

21 Auxiliary power (Paux) Control System STM3-WT-3-155A4BN

22 Turbine speed (N) Braun (Germany) A5S

23 Excitation voltage (Exc. V) Siemens (Germany) SPPA-E3000 SES 530

24 Excitation current (Exc. I) Siemens (Germany) SPPA-E3000 SES 530

25 Generator power (G.P) Nanjing Suatak Measurementand g 13 w3 555048y

Control System

3. Training Data and Data Visualization

3.1. Training Data for Process Modeling

In this paper, twenty-four thermo-electric operating parameters of the power plant are taken to
model the generator power under various power generation scenarios. The thermo-electric operating
parameters are selected based on the operation engineers’ experience and the comprehensive literature
review [30-35]. The operating parameters are taken from the boiler, turbine, and generator sides of the
power plant and are critically controlled within the operating ranges. The average values of the coal
used at the power plant are listed in Table 2.

Table 2. Properties of coal (air-dried basis).

LHV
Properties of Coal/wt.%
MJ/kg P /
2423 Moisture Volatile Mater Ash Sulfur Fixed Carbon by diff
: 2.5 23.73 16.6 0.55 57.66

Moreover, the input-process-output diagram connecting the thermo-electric operating parameters
of the power plant (input variables) and generator power (output) is shown in Figure 2.

The power plant’s operation data representing the detailed and extensive information on power
generation under the influence of selected thermo-electric operating parameters are taken from the
SIS portal. The total 1900 data points of the thermo-electric operating parameters under the power
plant’s continuous power generation mode are retrieved to model complex and nonlinear power
generation operations. The list of the thermo-electric operating parameters with the measuring units,
minimum-maximum operating range, and standard deviation is mentioned in Table 3.
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Figure 2. Input-Process-Output diagram of generator power.
Table 3. Statistics of the training data.
Parameters Unit Min Max St. Dev
Coal flow rate (M) t/h 129 252 86.76
Air flow rate (M,) t/h 1469 2636 825
Water/Coal ratio (w/c) - 6.98 8.49 1.07
Middle temp. (Tpiq) °C 343 425 57.78
LT Eco water outlet temp. (Trrrco) °C 90 100 6.94
APH air outlet temp. (Ta)apy °C 311 352 29.43
% Oy in flue gas at APH outlet (% Oy) % 5.27 8.50 2.28
Flue gas temp. after APH (Teg)aPH °C 120 157 26.84
Ambient temp. (Tymp) °C 5.0 43.0 27.2
Feed water pressure (FWP) MPa 15.0 30.0 10.39
Feed water temp. (FWT) °C 260 299 27.67
Feed water flow (FWF) t/h 942 1987 738.98
Main steam pressure (MSP) MPa 13.0 244 8.05
Main steam temp. (MST) °C 550 569 13.97
Reheat pressure (RHP) MPa 2.6 5.0 1.69
Reheat temp. (RHT) °C 553 569 10.88
Absolute Condenser vacuum (Pyac) kPa 95.60 89.30 4.48
Deaerator temp. (Tq4) °C 164 190 18.59
Attemperation water flow rate (AWF) t/h 4 97 65.94
Condensate temp. (T¢) °C 27 47 13.8
Auxiliary power (Paux) MW, 20.3 29.2 6.31
Turbine speed (N) Rpm 2986 3017 22.49
Excitation voltage (Exc. V) \Y 186 435 182.65
Excitation current (Exc. I) A 1940 4144 1629.85
Generator power (G.P) MVA 355.1 714.9 254.44

3.2. Self-Organizing Feature Map (SOFM)

To confirm the presence of useful and featured information that may exist in the power generation’s
characteristics operation data, a reliable and sophisticated machine learning data visualization technique,
i.e., self-organizing feature map (SOFM), is used [36]. SOFM is an unsupervised learning machine
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that maps the underlying possible statistical features of the high-dimensional input space data on
the nodes of a two-dimensional square lattice. The square lattice’s length is equal to the input space
dimensions [2,36]. SOFM has an excellent ability to distribute the input space data on the nodes in
homogenous groups and is used in many real-life applications [37-39]. In this work, a two-dimensional
square lattice carrying 24 x 24 nodes is created, and the distribution of the thermo-electric operating
parameters data, which are the input space data, is shown in Figure 3. The z-axis represents the
frequency of occurrence of data points on a node. It is evident from Figure 3, that the data points are
reasonably well-distributed. Therefore, the SOFM directs to construct the process models of generator
power using the retrieved data of the power plant’s thermo-electric operating parameters.

Frequency, Metwork 1.S0OFM 24-576

Figure 3. SOFM of 24 X 24 lattice for input variables.
4. The Theoretical Background of Modeling Techniques

An essential theoretical background of the three modeling techniques used in this study is
provided below.

4.1. Multiple Linear Regression

Multiple linear regression (MLR) is a statistical model which describes how various inputs affect
the output of a function. It is an extension of simple linear regression and incorporates two or more
independent variables to model the dependent variable. The model works to create a relationship
between a few or more input variables and an output variable by fitting a linear mathematical equation
to the observed data. MLR is a computationally downscaling technique that is widely used in statistical
analysis [40].

Each value of the independent variable x is associated with a value of the dependent variable v,
and if y is a dependent variable and x1, x, ... , x; are independent variables, then the basic MLR model
will be given in the following equation,

y= bo+ bix1 4+ boxo + ...+ bix; + e @))

“ 1
e

where by, b1, by, ..., b; are the regression coefficients, and
regression line across the observed data [41].

accounts for the error in fitting the
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4.2. Artificial Neural Network

Artificial neural network-based algorithms are inspired by the working of the human brain
and are capable to effectively dig and learn the relationships among the complex, nonlinear, and
multi-dimensional set of variables [32].

A typical ANN consists of three layers: an input layer, a hidden layer, and an output layer. The
number of neurons in the input layer is equal to the number of input variables. After multiplying
by the weights with the input variables data, the information is fed to the hidden layer. A transfer
function is applied at the hidden layer to process the received information. The information from
the hidden layer is multiplied by a weight and is transferred to the output layer. The output layer
contains neurons with a transfer function to process the previous layer’s values and yields a final
output value [42].

An ANN model is described mathematically with the following equation,

yi= fz[i Wz[fl[i xi+ Wy + bl]

where, x and y are the input and output variables and, i =1,2,3, ..., n equal to the number of data
points of input and output variables. Wy and W, are the weights at the input and hidden layer, b; and
by are the biases at different layers and f1 and f, are the transfer functions in the hidden and output
layer, respectively.

The output value calculated by ANN is compared with the output variable’s actual value, and error
is calculated. If the error is higher than the threshold value, the weights and biases at the layers
are modified, and calculations are performed in each iterative cycle unless the error lies within the

+ bz] )

acceptable level [43].

4.3. Least Square Support Vector Machine

Least square support vector machine training algorithms are among the efficient supervised
learning techniques used for their good generalization ability and accuracy. LSSVM training is based
on the structural risk minimization principle (SRM), and its basic concept is to transform the data into
a high-dimensional feature space and solve the nonlinear problems in a linear pattern [42]. LSSVM
uses squared errors as the cost function and can be written as an optimization problem with equal
constraints [42],

: 11N
min(w,8) = Jw'w+ Eyi);‘ & ®
such that : y; = ngo(xl-) +b+&,i=1,---,n (4)

where w is a weight vector, y is a penalty parameter, ¢ is the ith error variable, ¢ is a nonlinear function
mapping inputs from the data to a higher feature space, and b is a bias.

According to the Karush-Kuhn-Tucker (KKT) theory, the solution can be obtained by solving a
linear equation in terms of the dual variables, and then the LSSVM model is given as follows [42],

n

y(x) =) aiK(xx) +b 5)

i=1

where «; is a KKT multiplier, and K(.,.) is a radial basis function that simplifies the mapping process.
The kernel function is linear, gaussian, and polynomial type, and generally, the gaussian kernel function
is used in the development of LSSVM models for mapping the complex and nonlinear interactions
among the data. Gaussian kernel function can be expressed as:

K(x,x;) = exp(~ Il x = x; |I?). (6)
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More detailed information on the LSSVM model development can be found elsewhere [44].

5. Development of Process Models

The least-square approach is used for developing the MLR model. The deviation between the
actual and observed values of the process is computed, termed as residuals. In the least-square model
approach for the best-fit line, the sum of the square of residuals is minimized. The residuals are
normally distributed, having a mean equal to zero and standard deviation (o).

The ANN model is a multi-layered perceptron (MLP) that consists of three layers, an input layer,
a hidden layer, and an output layer [45]. The hidden layer itself may consist of one or more layers. It is
proved that one hidden layer is enough to approximate the nonlinearity present in the data provided
enough number of neurons are present in the hidden layer [46]. The optimum number of neurons in the
hidden layer is determined by hit and trial methods [47,48]. The feedforward backpropagation network
algorithm is used in this work. Gradient descent with momentum is employed as a training function,
tangent hyperbolic and purelin is employed as transfer functions at the hidden and output layer of
MLP, respectively [2,44]. ANN training is carried out until one of the two stopping criteria is met,
i.e., either a 0.0000001 change in convergence error or a maximum number of epochs is reached [2,49].
In this work, multiple ANNSs are trained, and the number of neurons in the hidden layer is varied from
10 to 36 to find the optimal number of hidden layer neurons based on the validation test, as mentioned
in the Section 5.2.

LSSVM can be trained quite effectively for modeling a system based on the structural risk
minimization (SRM) principle. A Gaussian kernel function is generally used for mapping the
complicated nonlinear relationship between the input and output variables onto the feature space [42].
It is essential to mention here that the training data set should be standardized for developing a useful
LSSVM model. Bayesian optimizer and expected improvement per second plus acquisition function is
used to optimize y for LSSVM under 30 epochs [50-53].

The input and output data described in Table 3 are used to develop models. The 24 data values
from the top 24 rows of Table 3 and one from the last row of Table 3 correspond to input and
output parameters.

5.1. Errors and Evaluation Criteria

The developed process models’ performance is evaluated based on the model’s prediction error
against the validation dataset unseen to the development phase models. Coefficient of determination
(R?), root-mean-square error (RMSE), normalized RMSE (NRMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE) of the models’ prediction are calculated to evaluate
the robustness and effectiveness of the process models. The definition of the evaluation criteria is
given below,

n Y 2
RZ =1- Zl:] (yl 3/1)2 (7)
Z?:l(]/i_yi)
RMSE = 1Zn"(-—~2 8
= E : Vi yl) ( )
1=
NRMSE = _RMSE +100% 9)
Ymax— Ymin
1 n
MAE = - Z; lvi = i (10)
1=
Ly |yi= 8"
MAPE = = Y |Z—Z «100% 11
n Z‘ Yi (1)

i=1
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where, 1 is the sample size, §j;, y; and v; are the predicted values, actual values, and mean of actual
values; Yuax and vy, are the maximum and minimum value of y;, respectively.

5.2. Validation Case against Unseen Data

After the training of MLR, ANN, and LSSVM process models, all models are validated against
unseen generator power data that was not added in the training dataset during the models” development.
The unseen data consist of 110 data points of the thermo-electric operating parameters and entail the
extensive and diverse operating state of power plant operation.

The validation performance of the developed MLR model is evaluated based on the evaluation
criteria. R2, RMSE, NRMSE, MAE and MAPE for MLR model are 0.99958, 2.674 MVA 0.834%,
1.940 MVA, and 0.007%, respectively.

Multiple ANN models are trained based upon the number of hidden layer neurons varied from 10
to 36. Each of the trained ANN models’ performance is evaluated against the validation data set and
presented in Table 4. By comparing the performance of trained ANN models, the ANN model having
twelve number of neurons in the hidden layer has outperformed the remaining ANN models in terms
of the evaluation criteria for assessing the performance of models and is represented as ANN [24-12-1].
The structure of the ANN [24-12-1] is shown in Figure 4. The R2, RMSE, NRMSE, MAE and MAPE for
ANN [24-12-1] are 0.999707, 2.093 MVA, 0.653%, 1.447 MVA and 0.006% respectively.

Table 4. Performance evaluation of ANNs against validation dataset.

Hidden Layer Neurons R? RMSE NRMSE MAE MAPE
- - MVA % MVA %
10 0.999369 3.177 0.991 2.171 0.009
1 0.999685 2.344 0.731 1.597 0.006
12 0.999707 2.093 0.653 1.447 0.006
13 0.999218 3.391 1.057 2.173 0.009
14 0.999267 3.638 1.134 2.528 0.01
15 0.999612 2.609 0.813 1.903 0.007
16 0.999692 2212 0.69 1.534 0.006
17 0.999468 3.095 0.965 2.177 0.008
18 0.999395 3.084 0.962 2.123 0.008
19 0.999536 2.401 0.749 1.672 0.007
20 0.999568 2.532 0.79 1.98 0.007
21 0.999684 2218 0.692 1.627 0.006
22 0.999447 2.899 0.904 2.037 0.008
23 0.999491 2.742 0.855 2.055 0.008
24 0.999655 2.447 0.763 1.853 0.007
25 0.999244 3.281 1.023 2.228 0.009
26 0.999551 2.552 0.796 1.81 0.007
27 0.999656 2.608 0.813 1.931 0.007
28 0.999601 2.549 0.795 1.669 0.007
29 0.999337 3.595 1.121 2.677 0.01
30 0.999438 3.066 0.956 2.164 0.008
31 0.999698 2.328 0.726 1.831 0.006
32 0.999556 2,533 0.79 1.783 0.007
33 0.999495 2.931 0.914 2.132 0.008
34 0.99924 3.354 1.046 2.729 0.009
35 0.999483 2.817 0.878 2.065 0.008

36 0.999668 227 0.708 1.723 0.006
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Figure 4. ANN [24-12-1] structure.

Similarly, the performance of the LSSVM model is also measured based on the evaluation criteria.
R?, RMSE, NRMSE. MAE and MAPE for the LSSVM model are 0.999878, 1.521MVA. 0.474%, 1.069 MVA,
and 0.004%, respectively. The comparative performance analysis of MLR, ANN [24-12-1], and LSSVM
model performance against the evaluation criteria are presented in Figure 5 and Table 5.

Table 5. Performance comparison of MLR, ANN, and LSSVM models.

R? RMSE  NRMSE  MAE MAPE
Model
odels ; MVA % MVA %
MLR 0.99958 2.674 0.834 1.940 0.007
ANN [24-12-1] 0999707  2.093 0.653 1.447 0.006
LSSVM 0.999858 1.521 0.474 1.069 0.004

According to Table 5, the LSSVM model has relatively higher superiority over the MLR and ANN
models in predicting the plant’s generator power. Therefore, the LSSVM model is selected for further
analysis of interest, as discussed in the next sections.
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Figure 5. External validation data graphs of MLR, ANN [24-12-1] and LSSVM models. (a) MLR

(b) ANN (c) LSSVM.
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6. Results and Discussion

The successfully validated LSSVM model is used to predict the power plant’s generator power
for various operating strategies of the power plant. The approach provides insight into the influence
of power plant thermo-electric operating parameters on power generation. The minimum, average,
and maximum values of the thermo-electric operating parameters at 50% and 100% unit load are listed
in Table 6. Comprehensive Monte-Carlo experiments are constructed, and gaussian noise is equal to
one percent of the operating range of the thermo-electric operating parameters [54,55]. It is essential to
mention here that the generator power trends are constructed with a 99% confidence interval to ensure
the relationship and interaction among the thermo-electric operating parameters and generator power,
as discussed in the next sections.

Table 6. Statistics of thermo-electric operation parameters at 50% and 100% unit load.

50% Unit Load 100% Unit Load
Operating Parameters (MW.) (MW.)
Unit Min Avg Max Min Avg Max
Coal flow rate (M,) t/h 129 137 156 210 238 252
Air flow rate (M,) t/h 1469 1559 1703 2197 2472 2636
Water/Coal ratio (w/c) - 6.98 7.52 8.08 7.63 8.09 8.49
Middle temp. (Tpiq) °C 343 356 377 410 417 425
LT Eco water outlet temp. (Trrrco) °C 94 98 100 90 93 100
APH air outlet temp. (Ta)apn °C 311 318 334 332 343 352
% O in flue gas at APH outlet (% O;) Y% 7.37 7.93 8.50 5.27 5.88 6.85
Flue gas temp. after APH (T¢g) ApH °C 120 127 144 129 137 157
Ambient temp. (Tymp) °C 5.1 25.2 39.3 5.0 25.7 43.3
Feed water pressure (FWP) MPa 154 16.2 18.0 26.8 29.7 30.0
Feed water temp. (FWT) °C 260 263 268 291 298 299
Feed water flow (FWF) t/h 942 1032 1139 1676 1923 1987
Main steam pressure (MSP) MPa 13.0 13.7 15.3 22.1 241 244
Main steam temp. (MST) °C 550 567 569 552 567 569
Reheat pressure (RHP) MPa 2.6 2.8 35 34 4.8 5.0
Reheat temp. (RHT) °C 553 567 569 561 567 568
Absolute condenser vacuum (Py4c) kPa 9560 9410 9190 9550 93.60 89.40
Deaerator temp. (Ty4) °C 164 166 170 181 187 190
Attemperation water flow rate (AWF) t/h 5 39 81 6 58 97
Condensate temp. (T¢) °C 27 33 40 31 35 47
Auxiliary power (Paux) MW, 20.3 22.2 24.0 25.4 27.8 29.2
Turbine speed (N) Rpm 2986 3003 3017 2986 3002 3017
Excitation voltage (Exc. V) A% 186 218 277 297 359 431
Excitation current (Exc. I) A 1940 2259 2845 3022 3556 4124

6.1. The Combined Effect of Excitation Voltage and Excitation Current on the Generator Power

In order to evaluate the combined effect of excitation voltage and excitation current on the
power generation from the generator at the sustained 50% and 100% unit load (resistive power in
MWe,), the excitation voltage and excitation current are systematically increased from the minimum to
maximum values, whereas the remaining thermo-electric operating parameters are maintained at the
average values as mentioned in Table 6. Keeping the remaining thermo-electric operating parameters
at the average values is essential to sustain the 50% and 100% unit load from the generator.

Figure 6a,b shows the combined effect of excitation voltage and excitation current on the generator
power at 50% and 100% unit load.
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Figure 6. Effect of the combined effect of excitation voltage and current on reactive generator power
(a) 50% unit load; (b) 100% unit load.

A general increasing trend of generator power is observed with the increase in excitation voltage
and excitation current. At 50% unit load, generator power is increased from 372.5 MVA to 405.2 MVA
when excitation voltage and excitation current are changed from 186 V to 277V and 1940 A to 2845 A,
respectively. At 100% unit load, generator power is increased from 649.2 MVA to 713.9 MVA when
excitation voltage and excitation current change from 297 V to 431 V and 3022 A to 4124 A, respectively.
With every 10V and 100A increase in excitation voltage and excitation current, the average relative
increase in the generator power is 0.84% and 0.96% at 50%, and 100% unit load, respectively.

6.2. Generator Power Control during Coal Mill Trip Accident (Failure Mode Recovery and Mitigation of Cost
of Failure)

The robust externally validated and flexible LSSVM process model is potentially applicable for
predicting the system response under the power plant’s failure modes. Based on the model prediction,
the strategies and standard operating procedures can be prepared to effectively deal with the abnormal
and failure modes of the industrial operations without facing the actual accidents and failures, and thus,
help minimize the operation cost. Moreover, the model response under the simulated operating
parameters of the industrial operations provides the characteristics system response that, in turn,
can be effectively useful for enhancing the operation control training of the workforce.

The coal mill trip is a potentially costly failure in the power plant operation that poses severe
implications to the power complex’s safe and continuous power generation. Coal mill trip causes
a sharp decrease in the total coal flowrate, and under the improper operation control of the boiler,
the performance of heating surfaces (super-heater, re-heater, economizer) installed inside the boiler
gets poor. Furthermore, under the sudden and considerable reduction in the fuel supply and improper
operation control, the combustion and flame may get unstable or die out, leading to complete power
loss from the unit. In this scenario, operators’ immediate action is to effectively control the power
plant’s thermo-electric operating parameters to avoid the sharp drop in power production and restore
power generation’s safe operation from the power complex.

Figure 7 shows the generator power trend against the main steam pressure and excitation current
(two of the thermo-electric operating parameters). Generator power is commonly made to decrease
from about 100% to nearly 50% generation capacity by the variation in the thermo-electric operating
parameters based on the grid’s energy demand variation. A smooth declining gradient of the generator
power generation trend from 669.5 MVA to 518.4 MVA is observed by the systematic variation in
thermo-electric operating parameters. At the main steam pressure of 18.9 MPa, it is considered that
a coal mill is tripped (accident), causing the abnormal variation in the thermo-electric operating
parameters. As a result, generator power is decreased from 518.4 MVA to 450.4 MVA. The dip in the
trend represents the coal mill operation failure and can be directly related to power, operation safety,
and monetary costs. A set of adjustments in the thermo-electric operating parameters are made in
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computer-simulated Monte-Carlo experiments based on the discussions with operation engineers
and literature review [32,56-59]. Insufficient adjustments and inefficient handling of thermo-electric
operating parameters related to boiler and turbine operation may lead to complete power loss from the
power plant. Five sets of computer-simulated experiments with potential solutions were prepared and
tested on a robust and well-validated LSSVM process model of the power plant. One set of simulated
experiments is successfully employed to ensure combustion stability and achieve a smooth and gradual
50% power generation capacity after the accident. The sharp decrease in generator power is highly
avoidable as it affects the safe and smooth operation of the generator and the stability of the grid.

Excitation Current (A)
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Figure 7. Generator power trend during the coal mill trip accident.

The generator power trend plotted by the LSSVM model in Figure 7 may also serve as the generator
power’s performance curve during the coal mill trip scenario. The operation data based constructed
process models can be potentially employed for preparing the operation strategies and scheme of action
for the possible accidents that happen during the operation in industries. Therefore, the presented
approach constitutes the one step ahead in advancing the industry 4.0 data analytics concept in the
industrial operation for improved process control and efficient operation management practices.

6.3. Effect of Adjustment in Thermo-Electric Operating Parameters for Optimal Generator Power (A Case of Al
for Operation Control Excellence Tool)

This section presents a detailed example of the validated LSSVM process model’s commissioning
as an operational excellence tool based on its prediction for carefully designed computer
simulated experiments.

Three actual operating conditions of the power plant at approximate 50% generation capacity
are randomly selected. It is important to note that the power plant is operating under controlled
operational conditions during this time. The set of values of operational parameters at these three
randomly selected controlled operational states are shown in Table 7. Similar tests are conducted to
take the operational control data of thermo-electric operating parameters at 75% and the power plant’s
100% generation capacity.

Extensive literature review [32,56-59] and detailed critical discussions are conducted with
operating engineers’ inter-discipline teams. Multiple options of computer-simulated experiments are
designed to check the possible increase in generator power with the adjustments in thermo-electric
operating parameters. The viable and possible adjustments designed in the thermo-electric operating
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parameters, considering the power plant’s operating conditions, are listed in Tables 7-9. It is essential
to mention here that the coal flow rate is essentially kept the same in the three power generation
capacities to keep the same thermal energy spent. Moreover, the main steam pressure, reheat steam
pressure, turbine speed, and excitation voltage are kept nearly unchanged at the sustained 50%, 75%,
and 100% generation capacity of the power plant.

Table 7. Summary of actual and adjusted thermo-electric operating parameters at 50% generation capacity.

Thermo-Electric Operating 50% Generation Capacity (MVA)

Unit
Parameters Actual Adjusted Actual Adjusted Actual Adjusted
Coal flow rate (M) t/h 134 134 135 138 137 137
Air flow rate (M,) t/h 1519 1500 1508 1497 1531 1519
Water/Coal ratio (w/c) - 7.46 743 8.05 7.8 7.69 743
Middle temp. (Tpiq) °C 354 357 366 368 353 356
LT Eco water outlet temp. oC 98 99 98 99 9% 97
(TLreco)
APH air outlet temp. (Ta)apu °C 315 318 334 336 323 325
% Oy in ﬂue(;‘;’aéa; APHoutlet o 7.98 7.90 7.60 7.55 7.63 7.59
o U
Flue gas temp. after APH °C 127 121 133 127 129 121
(Teg)ap
Ambient temp. (Tymp) °C 15.0 15.0 12.0 12.0 27.0 27.0
Feed water pressure (FWP) MPa 159 159 17.3 17.3 16.4 16.4
Feed water temp. (FWT) °C 263 265 267 269 263 265
Feed water flow (FWF) t/h 1004 996 1088 1076 1056 1043
Main steam pressure (MSP) MPa 13.5 13.5 14.8 14.8 13.6 13.6
Main steam temp. (MST) °C 550 566 551 566 551 566
Reheat pressure (RHP) MPa 2.7 2.7 3.3 33 2.7 2.7
Reheat temp. (RHT) °C 559 567 560 567 561 567
Absolute Co(rlldersser Vacumm - xpa 9384 9392 9435 94.4 93.55 93.62
vac
Deaerator temp. (Tq4) °C 165 167 168 169 167 169
Attemperation water flow rate
(AWF) t/h 56 35 27 19 14 9
Condensate temp. (T¢) °C 34 34 32 32 36 36
Auxiliary power (Paux) MW, 20.5 20.3 22.4 22.2 20.8 20.5
Turbine speed (N) Rpm 3002 3002 3009 3009 3006 3006
Excitation voltage (Exc. V) v 223 223 210 210 272 272
Excitation current (Exc. I) A 2323 2323 2188 2188 2776 2776

Table 8. Summary of actual and adjusted thermo-electric operating parameters at 75% generation capacity.

Thermo-Electric Operating 75% Generation Capacity (MVA)

Unit
Parameters Actual Adjusted Actual Adjusted Actual Adjusted

Coal flow rate (M) t/h 184 184 201 201 193 193
Air flow rate (M,) t/h 1983 1965 2142 2129 2064 2034
Water/Coal ratio (w/c) - 7.73 7.61 8.04 7.95 7.7 7.58
Middle temp. (Tiq) °C 383 385 401 405 378 382

LT Eco water outlet temp. °oC 97 98 9 93 95 9%

(TrrECO)

APH air outlet temp. (Ta)apy °C 322 325 333 338 325 328

% Oy in flue gas at APH outlet 6.76 6.70 6.25 6.21 6.67 6.53
(% O5)
Flue gas temp. after APH °C 127 122 131 126 137 131

(Teg)arH
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Thermo-Electric Operating

75% Generation Capacity (MVA)

Unit
Parameters Actual Adjusted Actual Adjusted Actual Adjusted
Ambient temp. (Tymp) °C 8.0 8.0 10.0 10.0 27.0 27.0
Feed water pressure (FWP) MPa 21.7 21.7 24.8 24.8 22.2 22.2
Feed water temp. (FWT) °C 278 280 287 289 279 281
Feed water flow (FWF) t/h 1424 1400 1613 1598 1487 1463
Main steam pressure (MSP) MPa 17.7 17.7 20.4 20.4 18.2 18.2
Main steam temp. (MST) °C 554 567 554 566 554 568
Reheat pressure (RHP) MPa 34 34 4.06 4.06 3.7 3.7
Reheat temp. (RHT) °C 560 567 560 567 563 567
Absolute Co(?)der;ser vacuum - ypa 9524 95.32 94,51 94.6 92.74 92.82
vac
Deaerator temp. (Tq4) °C 174 175 180 181 174 176
Attemperation water flow rate
(AWF) t/h 33 12 39 25 19 12
Condensate temp. (T¢) °C 30 30 32 32 38 38
Auxiliary power (Paux) MW, 25.1 249 25.7 25.4 25 24.7
Turbine speed (N) Rpm 3001 3001 3001 3001 3003 3003
Excitation voltage (Exc. V) v 269 269 285 285 296 296
Excitation current (Exc. I) A 2757 2757 2904 2904 3012 3012

Table 9. Summary of actual and adjusted thermo-electric operating parameters at 100% generation capacity.

Thermo-Electric Operating

Unit

100% Generation Capacity (MVA)

Parameters Actual Adjusted Actual Adjusted Actual Adjusted
Coal flow rate (M) t/h 243 243 239 239 248 248
Air flow rate (M,) t/h 2453 2418 2399 2399 2507 2470
Water/Coal ratio (w/c) - 7.98 7.96 8.15 8.12 7.85 7.79
Middle temperature (Tpiq) °C 415 417 413 415 417 419
LT Eco water outlet oC 9 93 91 9 95 9%
temperature (Trrrco)
APH air outlet temperature oC 340 346 336 343 338 346
- (Ta)apn
%Oy in flue gas at APH outlet o, 5.79 5.63 5.64 5.64 5.43 521
(% Oy)
Flue gas temperature after
°C 133 130 134 129 148 135
APH (Tgg) ApH
Ambient temperature (Tymp) °C 5.0 5.0 10.0 10.0 34.0 34.0
Feed water pressure (FWP) MPa 29.7 29.7 29.6 29.6 29.5 29.5
Feed water temperature (FWT) °C 297 299 297 299 297 300
Feed water flow (FWF) t/h 1950 1935 1951 1936 1947 1935
Main steam pressure (MSP) MPa 241 241 24 24 23.8 23.8
Main steam temperature (MST) °C 553 567 552 566 553 568
Reheat pressure (RHP) MPa 4.8 4.8 4.8 4.8 4.2 4.2
Reheat temperature (RHT) °C 564 566 565 569 563 568
Absolute Co(rl‘)der;ser VaCUumt - ypa 9487 9493 9438 9444 9011 90.26
vac
Deaerator temperature (Tq) °C 186 189 187 188 189 191
Attemperation water flow rate
(AWE) t/h 50 20 47 18 58 19
Condensate temperature (T¢) °C 31 31 33 33 46 46
Auxiliary power (Paux) MW, 27.4 27.1 28.0 27.9 27.8 27.5
Turbine speed (N) Rpm 2996 2996 3012 3012 3004 3004
Excitation voltage (Exc. V) A% 364 364 310 310 396 396
Excitation current (Exc. I) A 3598 3598 3131 3131 3865 3865
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At 50% generation capacity, the generator power for the power plant’s three operating conditions
under the adjusted thermo-electric operating parameters is increased by 1.47%, 1.55%, and 2.19%.
For 75% and 100% generation capacity, the increase in generator power under the adjusted
thermo-electric operating parameters are 1.93%, 1.69%, 1.78% and 1.34%, 1.20%, 0.45%, respectively.
The average increase in generator power under the adjusted thermo-electric operating parameters is
1.74%, 1.80%, and 1.0% at 50% generation capacity, 75% generation capacity, and the power plant’s
100% generation capacity. These increases are illustrated in Figure 8.

(@) 50% Generation Capacity (MVA) [l Actual (b) 75% Generation Capacity (MVA) il Actual
I Il Optimal 1.69% Il Optimal
1.55% 2.19% 1 1.78%
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Figure 8. Comparison of actual and optimal generator power (a) at 50% generation capacity (b) 75%
generation capacity (c) 100% generation capacity.

As observed in Tables 7-9, many thermo-electric operating parameters during the power plant’s
actual operation state lie in the lower controllable operating regimes. For example, the main steam
temperature, reheat steam temperature, flue gas temperature after APH are generally near the lower
controllable limits caused by the in-effective combustion control and reduced heat transfer to the
heating surfaces. The adjustments made in the thermo-electric operating parameters lie within the
manufacturer designed parametric operating limits for the power plant operation control that resulted
in the optimal power production from the power plant. The data-driven optimization strategies for the
improved operation control and operation excellency of the power plant are achieved by combining the

experience of operation engineers of industries and the detailed analysis of Al-based process modeling
conducted in the spirit of industry 4.0.
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7. Conclusions

Based on the real operation data, the process modeling techniques, i.e., MLR, ANN, and LSSVM,
are employed to model the generator power of 660 MW, supercritical coal power plant.

The LSSVM has outperformed the MLR and ANN process models based on the validation test
conducted on the unseen operation data taken from the power plant. The LSSVM has demonstrated
reliable performance in modeling the generator power and thereby constructing the trend lines of the
generator operation against the thermo-electric operating parameters of the power plant.

With every 10 V and 100 A increase in excitation voltage and current at 50% and 100% unit load,
the average increase in generator power is 0.84% and 0.96%.

During the load decrement scenario from about 100% to nearly 50% generation capacity, the
decrease in generator power after the coal mill trip accident is recovered as predicted by the LSSVM
process model by a significant adjustment in the thermo-electric operating parameters.

At 50% generation capacity, the generator power for the three operating conditions of the power
plant under the adjusted thermo-electric operating parameters is increased by 1.47%, 1.55%, and 2.19%,
whereas for 75% and 100% generation capacity, the increase in generator power under the adjusted
thermo-electric operating parameters are 1.93%, 1.69%, 1.78% and 1.34%, 1.20%, 0.45%, respectively.

The data-driven optimization strategies for the power plant’s improved operation control are
achieved by the extensive and detailed discussions with the operating engineers and the analysis of
Al-based process modeling conducted in the spirit of industry 4.0.
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