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Abstract: Lithium-ion batteries are widely used in the energy field due to their high efficiency
and clean characteristics. They provide more possibilities for electric vehicles, drones, and other
applications, and they can provide the higher requirements necessary for the reliability of battery
pack systems. However, it is easy for a battery pack to be unbalanced because of the dependence
between the cells. The unbalanced state will make the degradation process more complex and
cause abnormal discharge parameters, which brings challenges in the analysis of the state of health
(SOH) of battery packs. In order to study the degradation process in the unbalanced condition,
in this study, a degradation test of four different configurations of battery packs was designed and
implemented, and the degradation process was primarily studied from the perspective of dependence.
First, the degradation characteristics and dependency degree of different configurations of the
unbalanced state were discussed. Second, a hypothesis test and a linear regression analysis were used
to analyze the degradation process and the acceleration effect of a battery pack in the unbalanced state.
Finally, partial least squares regression was used to establish the dependence model of battery packs
in the unbalanced state. A high regression coefficient (R2 > 0.9) and low p-value < 0.0001 indicated
that the correlation of the degradation process was effectively quantified. The results provide a
reference for optimizing a consistent design of battery packs and managing the SOH of battery packs.
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1. Introduction

Lithium-ion batteries have attracted great interest in recent years due to their high specific
energies, long cycle lives, and wide operating temperature ranges. Electric vehicles [1], hybrid ships [2],
and unmanned aerial vehicles (UAVs) [3] powered by lithium-ion batteries have also been widely
used. Therefore, the safety and reliability of lithium-ion batteries play an important role in the
operation of equipment and the health of a system. Because of the low voltage of the lithium cells,
they must work as a battery pack in power supply applications. Ideally, the cells will remain consistent,
and their degradation processes will be regular and controlled. In reality, it is difficult to maintain
good consistency between single cells because of the initial difference and environmental stresses
(temperature, humidity, vibration and other external factors during use). In this case, a pack can
easily enter an unbalanced state due to the dependence between the cells, which causes accelerated
degradation and other consequences. Therefore, the determinant of the performance and reliability of
a power supply system is not only the cells but also the dependence of the packs.
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The unbalanced state refers to a situation in which the high level of non-uniformed operational
states of the components would speed up the failure process of an entire system [4]. As a typical
performance balancing system, the consistency of lithium-ion packs has always been a matter of
concern [5–8]. Due to manufacturing tolerances and environmental stresses during use, there are
typically performance differences between individual cells [9]. This, in conjunction with the strong
dependence of the cells, will cause an unbalancing effect for a battery pack, such as over-current and
over-discharge [10]. Recently, some methods have been developed to alleviate the unbalance of battery
packs, mainly divided into the active balance method and passive balance method [11–13]. The active
balance method uses external circuits to actively transport energy from cells with higher SOC(State of
charge) to cells with lower SOC by using a switched capacitor as an intermediate repository. It ensures
that all energy stored in the battery can be fully utilized, thereby maximizing the available capacity of
the battery. The passive balance method enables the battery with excess energy to exhaust the excess
energy as heat through the dissipation bypass until the charge matches that of the lower cells in the
pack or charge reference. However, the active balance method requires more additional components,
increasing the cost and unreliability, and the battery needs to be balanced for a long time. The passive
balance method will cause the battery energy to be dissipated as heat, resulting in lower energy
efficiency, and cannot be used in lithium-based batteries due to the high risk of explosion. Most of these
methods cure the symptoms but do not focus on the actual degradation process [14]. The dependence
of lithium-ion batteries has been confirmed in a previous study [10]. In the lithium-ion battery pack
balance system, the degradation processes of each cell in the battery pack affect each other. Ideally, the
dependence effect is not significant, and it will not exert much influence on the use and analysis of
the battery pack. However, as the unbalanced state occurs and accumulates easily, the reliability of
the battery pack is greatly reduced, and the interaction between the cells makes it difficult to clarify
the degradation process, which brings great difficulties to the balance strategy and health assessment
of the battery pack. In order to solve the unbalance problem further, it is meaningful to study the
degradation law and dependent effect in the unbalanced state.

Previous research has shown that initial variations in production and environment stresses in
use are the primary causes of battery pack unbalance [9,10,14–16]. The unbalanced effect of a battery
pack is mainly revealed in the uneven distribution of characteristic parameters of the charge–discharge
process. This includes over-current and over-discharge caused by an uneven current and voltage
distribution, high temperatures caused by a difference in the internal resistance, and the circulating
current caused by a difference in the open-circuit voltage [17–19]. Specifically, in a series circuit,
Stoican [20] and Aizpuru [21] pointed out that an uneven distribution of the voltage would cause a
difference in the open-circuit voltage between the cells. This would form a reverse voltage, and the
difference of the internal resistance would make the temperature increase significantly. They also
pointed out that the connection method of an external circuit was one of the primary causes of the
unbalanced state. Compared with a series circuit, the unbalance of a parallel circuit is reflected more in
the uneven current distribution. Chang [22] and Shi [23] used an equivalent circuit model to study the
current distribution mechanism of parallel circuits and the unbalanced intensity caused by different
degradation degrees. They found that the unbalanced effect would exacerbate with an increase in
the cell’s differences, and they proposed to reduce the deviation of the product of the resistance and
capacity to relieve the unbalance effectively. Zhang [24] also studied the risk of current unbalance
in a parallel circuit, and they found unbalanced effects including the over-discharge and circulating
current. However, these studies have primarily focused on the variation trend of the characteristic
parameters of a battery pack in the unbalanced state, and there was not much focus on the dependent
degradation mechanism of a battery pack for the unbalanced condition. In addition, the research object
has primarily been the single configuration, and the unbalanced effect on a series-parallel combination
needs to be examined.

Based on the above discussion, building a model of battery pack degradation and quantitatively
analyzing the dependence between cells is important for studying the unbalanced state. There have been
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some recent studies which have presented results of the battery pack modeling method [25–28]. Most of
the research was focused on the various performance indicators based on the cell-to-cell variation, and a
battery pack variation quantitative model was built to evaluate performance. In contrast, there have
been few studies on the degree and difference of dependence between cells. The traditional modeling
method for analyzing degradation dependency is the statistical dependence analysis presented by
Copula [29]. However, due to the complexity of the algorithm, the difficulty of high-dimensional
expansion, and the need for an accurate component distribution function, it was difficult to conduct
this analysis for the small sample test data utilized in this research [30]. Partial least squares regression
(PLSR) considers the degree of influence of a sample population on a predicted value, and it fully
considers the degree of influence of the combined effect of individual factors on the predicted value.
Its regression factor extraction focuses on maximizing factors and covariances, and the factors can contain
more information about the system of independent variables in order to maximize the ability to interpret
the dependent variables [31]. For a battery pack, the PLSR method can fully consider the correlation
between the cells and the battery pack, as well as analyze the degree of influence of every single cell in
the battery pack, eliminating the collinearity between the data to ensure the accuracy of the model.

In summary, in this study, a battery pack unbalanced cycle degradation test was designed and
implemented in four configurations. The unbalanced state was formed by implanting degraded
batteries, and the discharge capacity was used as the health status index of the battery pack [32]. First,
based on the test data, the unbalanced effect of the battery pack was analyzed based on the profile of
cyclic charging and discharging. Second, a hypothesis test and linear regression were used for the
quantitative analysis and modeling of the degradation process. Finally, the PLSR was used to model
the dependence of the battery pack. The results could provide a theoretical basis for a consistent design
of a battery pack and the optimization of balance strategy for a battery pack.

The rest of this paper is organized as follows. Section 2 introduces the life cycle tests of battery
packs during unbalanced conditions. Section 3 presents the test results of battery aging in detail and
describes the analysis of the dependent degradation relationship. In Section 4, the conclusions of this
research are summarized [33,34].

2. Experimental Methods

To provide the necessary data for the difference analysis and the modeling of the degradation
process of batteries in the unbalanced condition, degradation tests of lithium-ion battery packs were
designed and conducted for the unbalanced condition.

2.1. Test Equipment

The test cells were 18,650 cylindrical lithium-ion batteries manufactured by Samsung SDI.
The parameters are shown in Table 1.

Table 1. Nominal specifications of a battery.

Item Specification

Typical Capacity 2150 mAh
Minimum Capacity 2050 mAh
Charging Voltage 4.2 V ± 0.05 V
Nominal Voltage 3.62 V
Charging Method Constant voltage with limited current

Charging Current Standard charge: 1075 mA
Rapid charge: 2150 mA

Charging Time Standard charge: 3 h
Rapid charge: 2.5 h
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Table 1. Cont.

Item Specification

Max. Charge Current 2150 mA
Max. Discharge Current 10 A (Continuous discharge)

Discharge Cut-Off Voltage 2.75 V
Cell Weight 44.5 g max.

Cell Dimension Diameter (max.): Φ 18.40 mm
Height: 65 mm max.

Operating Temperature
Charge: 0 to 45 ◦C−10 to 0 ◦C (Charging voltage: 4.10 V/Cell,

Charging Current: Under 0.5 C) (2 *)
Discharge: −20 to 60 ◦C

Storage Temperature 1 year: −20~25 ◦C (1 *); 3 months: −20~45 ◦C (1 *)

The relevant parameters and connection methods of the lithium-ion battery packs are detailed in
the literature [10].

2.2. Cycle Life Tests

In order to ensure the comparability of the test results, it was necessary to ensure that:

1. The battery with no degradation treatment (referred to as the normal cell) had good
initial consistency.

2. The battery that underwent the initial capacity degradation treatment (referred to as the degraded
cell) had the same degree of degradation.

In this study, cells with good initial consistency were selected to form a battery pack. In the same
production batch, twelve 18,650 lithium-ion batteries were randomly selected as the test batteries.
The cells were discharged from the fully charged state at 1/20 C, and their initial discharge capacities
were tested. The discharge capacity in this case was close to the maximum usable capacity of the
battery. The optimal means of judging the consistency of the initial capacity is to check whether
the capacity data conform to the normal distribution. The normality of the data can be verified by
drawing the distribution histogram and p-p diagram of the capacity data. If the capacity obeys a
normal distribution and the data are well distributed around the baseline, then the initial capacity can
be considered to have good consistency. Figure 1 shows the initial capacity histogram and the normal
probability plot of the cells. The data were distributed around the reference line. It can be seen that
the initial capacity of the 12 cells could be modeled using a normal distribution. The fluctuation was
small, and there were no abnormal values. The batteries had good initial consistency. Table 2 shows
the initial capacity values of the test cells.

Figure 1. Cont.
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Figure 1. (a) Initial capacity distribution. (b) Normal probability plot of the initial capacities. (c) Initial
resistance distribution. (d) Normal probability plot of the initial resistances.

Table 2. Initial capacities of the focal 12 cells.

Cell-1 Cell-2 Cell-3 Cell-4 Cell-5 Cell-6

Initial capacity (mAh) 2100 2095 2103 2110 2100 2090

Cell-7 Cell-8 Cell-9 Cell-10 Cell-11 Cell-12

Initial capacity (mAh) 2103 2104 2101 2115 2099 2110

After obtaining 12 cells with good initial consistency, Cell-1, Cell-3, Cell-5, and Cell-9 were selected
for the degradation treatment to obtain the degraded cells that were used to implant a circuit. The cycle
parameters of the degradation treatment had to be consistent with the degradation test parameters.
The discharge capacity per cycle was measured. The degradation treatment was stopped after 95%
of the initial capacity was reached. For the degraded cells, in order to ensure that the unbalanced
states were at the same level in each battery pack, the capacity and internal resistance of the degraded
batteries were also analyzed. The discharge capacity histogram and the probability plot of the treated
degraded cells are shown in Figure 2 and the degraded discharge capacity values are shown in Table 3.

Figure 2. Cont.
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Figure 2. (a) Initial capacity distribution (degraded cells). (b) Normal probability plot of the initial
capacity (degraded cells). (c) Initial resistance distribution (degraded cells). (d) Normal probability
plot of the initial resistance (degraded cells).

Table 3. Initial capacity values of the degraded cells.

Cell Initial Capacity (mAh) Degraded Capacity (mAh)

Cell-1 2100 1995
Cell-3 2103 1997
Cell-5 2100 1996
Cell-9 2101 1995

It can be seen that the degradation degree of the degraded battery was consistent, which ensured
the high reliability of the test.

As shown in Figure 3, the battery pack unbalance degradation test was divided into four different
configurations. Pack A: series, Pack B: parallel, Pack C: series and parallel, and Pack D: parallel and
series. Each pack was implanted with a degraded cell. The black squares in the figure represent the
degraded cells, and the white squares represent the normal cells.

Figure 3. Configurations of the four battery packs.
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The grouping situations and the cell numbers are shown in Table 4

Table 4. Test battery grouping and numbering.

Pack No. Configuration Cell No.

Pack A Series Cell 1, 2
Pack B Parallel Cell 3, 4
Pack C Series–parallel Cell 5, 6, 7, 8
Pack D Parallel–series Cell 9, 10, 11, 12

During the degradation test, the batteries were placed in an optimal operating environment at
25 ± 2 ◦C. The effect of small temperature fluctuations on the test was then considered negligible.
K-type thermocouples were placed in the same position on all battery surfaces to monitor the surface
temperature of each cell in a battery pack. Similar to normal use, each charge–discharge cycle could
be divided into five phases: (I) constant current charging (CC), (II) constant voltage charging (CV),
(III) rest, (IV) constant current discharge (CC), and (V) rest. The test parameters for each charge and
discharge cycle of each battery pack were same as in the literature [10].

The test parameters that were primarily recorded were the battery discharge capacity, the circulating
voltage, the current, the cell temperature, and the ambient temperature.

3. Results

3.1. Unbalance Analysis in the Charge–Discharge Cycle

The parameter difference of each cell during the charge–discharge can directly reflect the
dependence of each cell in the unbalanced state. In this research, a charge–discharge profile was used
as an example to observe the difference between the typical characteristic parameters (current and
voltage) of the cells in each stage of the charge–discharge cycle. As shown in Figure 4, the current
value of the charging process was defined as positive, and the current value of the discharging process
was negative.

Figure 4. Cont.
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Figure 4. Comparison of charge and discharge profiles between cycle 5 and cycle 95: (a) Pack A;
(b) Pack B; (c) Pack C; (d) Pack d.

1. The series configuration that primarily reflected the voltage difference:

The internal resistances of Cell-1 and Cell-2 were different due to the degree of degradation.
The voltage of Cell-1 in phase I was significantly higher than that of Cell-2. During phase III, due to
the weak discharge ability of Cell-1, the voltage was reduced faster and reduced more than that of
Cell-2. In addition, the series configuration had good current consistency.

2. The parallel configuration that primarily reflected the current difference:
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The internal resistance of Cell-3 was larger than that of Cell-4. During phase I, the current of Cell-4
was less than that of Cell-3, which caused the charging current of Cell-4 to be greater than 2 C, and the
charging cut-off voltage was reached in advance. Phase III was similar in that the Cell-4 discharge
current exceeded 2 C due to the internal resistance difference, and the capacity consumption was
accelerated. At the end of phase III, as Cell-4 continued to discharge at a higher current, its discharge
capacity and current began to decrease and the Cell-3 current increased at the same time. In phase
V, due to the difference in the open circuit voltage between the two cells, a significant circulation
phenomenon was formed between the parallel circuits. The above phenomenon was likely to cause
over-current and over-discharge for Cell-4. The parallel configuration had good voltage consistency.

3. The series–parallel configuration that reflected both the current and voltage differences:

The series–parallel connection can be regarded as a parallel module consisting of two series of
cells. The unbalanced effect was similar to that in the above analysis. There was a voltage difference
between the batteries connected in series and a significant current difference between the two branches,
as well as a circulation phenomenon at the end of the discharge.

4. The parallel–series configuration that reflected both the current and voltage differences:

The parallel–series configuration can be seen as a series module consisting of two parallel cells.
The unbalanced effect was similar to that in the above analysis. There was a voltage difference between
the two series modules and a significant current difference between the two parallel circuits, as well as
a circulation phenomenon at the end of the discharge.

At the same time, Figure 4 also shows the charge–discharge profiles of each battery pack at the
beginning of charge–discharge (cycle 5) and the middle of charge–discharge (cycle 95). It can be seen
from the figure that as the cycle increases, the unbalance effect gradually becomes more serious. When
the battery pack is in an unbalanced state, there is significant inconsistency between the batteries.
Regarding the internal resistance of the battery, the inconsistency of the internal resistance will cause
uneven distribution of the discharge parameters. As the cycle increases, the effect becomes more and
more obvious, and the specific performance is also related to the configuration of the battery pack.

1. For the series circuit, the voltage value of the degraded battery is significantly higher than that of
the normal battery. Moreover, due to the higher internal resistance, the degraded battery increases
the load in the circuit and accelerates the energy consumption of the battery pack, and there is
also the risk of reverse voltage;

2. For the parallel circuit, due to the lower discharge capacity of the degraded battery and the higher
resistance, the normal battery must make up for its insufficient discharge, causing the current of
the normal battery to become higher than the set value.

Figure 5 shows the temperature curves of the charge–discharge profiles.
It can be seen from the temperature profile that there were certain regularities in the temperature

changes of the individual cells in the four configurations. The temperatures of Pack A, Pack B, and Pack
C all changed at nearly 28 ◦C, and the temperature of the degraded cells was higher than that of the
other normal cells by 1–3 ◦C. The reason for this was that the degraded battery had a larger internal
resistance. Pack D had a higher average battery temperature than the others. The temperature of
Cell-10 was the highest, and the temperature in the late test was nearly 40 ◦C.

The changes in temperature are also related to the internal resistance. It can be seen from Figure 4
that the temperature of the degraded battery is higher due to the greater internal resistance. However,
according to the previous discussion, the normal battery in the parallel circuit has an over-current
phenomenon. As the cycle increases, the difference between cells increases, and the over-current
phenomenon of the normal cell becomes more serious, which eventually leads to a sharp increase in
temperature and failure.
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Figure 5. Surface temperatures of all the cells in the charge–discharge profiles: (a) Pack A; (b) Pack B;
(c) Pack C; (d) Pack D.

Pack D of this test experienced significant failures in the battery pack after approximately 100 cycles.
Figure 6 shows a charge–discharge parameter profile for the 95th cycle of Pack D.

Figure 6. Pack D during the 95th charge–discharge profile: (a) current and voltage; (b) temperature.
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The failure manifested a sudden drop in the discharge capacity of the battery pack, and the current
distribution became seriously out of balance. After detection, Cell-10 experienced failure. To ensure
the safety of the test, the Pack D test was stopped. It can be seen from the 95th cycle parameters that
the discharge current distributions of Cell-9 and Cell-10 were severely unbalanced, and the discharge
currents rose to approximately 4.5 A, which was nearly twice the normal condition. This also caused
Cell-10 to be in high-power operation. The increased heat generation and the speeding up of the
battery degradation process made the highest temperature in the end nearly 40 ◦C.

According to the analysis, the degree of dependence of the four configurations of batteries under
the unbalanced condition could be ranked as follows: Pack D > Pack C > Pack B > Pack A. The degree
of dependence of the unbalanced battery pack was related to the battery configuration. The degree of
dependence of the parallel structure was greater than the series. The more complex the group structure
was, the greater the degree of influence was.

3.2. Degradation Process and Dependency Analysis

3.2.1. Capacity Degradation Process Analysis

Discharge capacity can be used as an evaluation indicator of battery health or degradation.
Over time, the dependence of a battery pack during the charge–discharge cycle accumulates, causing
the degradation processes of cells to affect each other. In addition, the overall degradation process of the
battery pack will be affected. Thus, it is important to analyze the dependence of a battery pack during the
degradation process. In this study, the capacity degradation cumulative amount was used to characterize
the battery degradation to ensure the same starting point and to facilitate a comparison of the results.

Figure 7 shows the cumulative capacity degradation of the four battery packs and cells. The first
three battery packs contained 300 cycles of degradation, and Pack D contained only the data for
100 cycles prior to failure. The negative value of the degraded accumulation during the early cycles
was due to the activation effect of the battery.

Figure 7. Battery pack discharge capacity degradation curve: (a) Pack A; (b) Pack B; (c) Pack C; (d) Pack D.
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The discharge capacity primarily depended on the discharge current. Therefore, the discharge
capacity had good consistency in series. The parallel connection of the cells had a large difference in
discharge capacity due to the obvious unbalance in the current distribution. It can be seen from the
figure that the batteries connected in series in Pack A and Pack C maintained a relatively consistent
degradation characteristic, but the rates of degradation of the cells in parallel with each other in Pack B
and Pack C were quite different. Among them, Cell-3, as well as Cell-5 and Cell-6, were significantly
more degraded than Cells 4, 7, and 8.

The difference in the degree of influence of cell degradation on the battery packs was described
using the Pearson correlation coefficient (PCC). The PCC can reflect the degree of correlation between
two variables, and it can be used to estimate the correlation strength between two variables based
on the covariance matrix of the data [35,36]. Typically, the Pearson correlation coefficient of the two
variables αi,α j was:

ρ
(
αi,α j

)
=

cov
(
αi,α j

)
√

var(αi), var
(
α j

) , (1)

where α is the capacity of the cells and packs.
The PCC between the cells and the battery pack in each configuration was calculated to observe

the degradation inside the battery pack under unbalanced conditions. The results are shown in Table 5.

Table 5. Pearson correlation matrix for capacity degradation in (a) Pack A; (b) Pack B; (c) Pack C; (d)
Pack D.

(a) YCell-1 YCell-2 YPack-A

YCell-1 1 0.9995 0.9910
YCell-2 1 0.9906
YPack-A 1

(b) YCell-3 YCell-4 YPack-B

YCell-3 1 0.9887 0.9750
YCell-4 1 0.9123
YPack-B 1

(c) YCell-5 YCell-6 YCell-7 YCell-8 YPack-C

YCell-5 1 0.9995 0.9188 0.9178 0.9856
YCell-6 1 0.9181 0.9171 0.9857
YCell-7 1 0.9990 0.8999
YCell-8 1 0.8991
YPack-C 1

(d) YCell-9 YCell-10 YCell-11 YCell-12 YPack-D

YCell-9 1 0.5767 0.3264 0.5750 0.4570
YCell-10 1 0.3664 0.4711 0.2647
YCell-11 1 −0.5109 0.1485
YCell-12 1 0.2640
YPack-D 1

It was found that there was a strong correlation between the variables. The PCCs of the degraded
cells in Pack B and Pack C were slightly higher than those in the normal cells. That is to say, the degraded
cells were more relevant to the battery pack than the normal cells were. The Pack A correlation
coefficient was not significantly different.

Pack D was in an abnormal working state, and the data were highly volatile and had abnormal
values. Therefore, the obtained data could not explain the dependence of the battery pack degradation,
and this seriously affected the subsequent data analysis.
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In order to analyze the change in the capacity degradation rate of the cell and the battery pack
during the first 300 cycles, the amount of degradation per cycle was defined as shown in Equation (2):

∆C = Ci+1 −Ci, (2)

where i is the number of cycles, and Ci is the discharge capacity of the cycle. A change in Ci indicates a
change in the rate of degradation of the battery capacity as the number of cycles increased. Hence,
the law of the degradation rate variation could then be more directly displayed.

The Ci of Pack A, Pack B, and Pack C are shown in Figure 8.

Figure 8. Inter-cycle capacity degradations: (a) Pack A; (b) Pack B; (c) Pack C.

When Ci satisfied the normal distribution, it could be considered that there was no significant
change in the rate of degradation of the battery capacity; that is, the rate of degradation did not increase
as the cycle increased. Figure 9 shows how Pack A was used as an example to construct a histogram
and a normal probability plot of the capacity degradation of each cell and battery pack. The other
battery packs are shown in the Appendix A.
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Figure 9. Probability map of the capacity degradation between cycles: (a) Cell-1; (b) Cell-2; (c) Pack A.

In order to verify that the amount of degradation between cycles followed a normal distribution,
the cell and the battery were tested for normality. Table 6 shows the means and variances of the
normal distribution of the three configurations, as well as the p-values of the normal test. It was
generally considered that if the p-value was greater than 0.05, the data were considered to be from a
normal population.
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Table 6. Normality test results.

Pack-A Cell-1 Cell-2

mu 0.6789 0.7545 0.7712
sigma 5.0358 6.3175 6.7718
p-value >0.05 >0.05 >0.05

Pack-B Cell-3 Cell-4

mu 1.0801 0.8617 0.4764
sigma 13.7966 12.5706 6.1109
p-value >0.05 >0.05 >0.05

Pack-C Cell-5 Cell-6 Cell-7 Cell-8

mu 1.2921 0.6813 0.6822 0.4124 0.4112
sigma 24.4506 7.5422 7.4526 7.7252 7.6654
p-value >0.05 >0.05 >0.05 >0.05 >0.05

The amount of degradation between cycles for each battery pack and the cells in the first 300 cycles
represented a normal distribution. There was no significant change in the rate of degradation during
the first 300 cycles. That is, the degradation rate did not increase with an increase in the cycle during
the first 300 cycles. This provided a basis for the establishment of the regression analysis for the
subsequent degradation processes.

Due to the dependence effect, there was a significant difference in the degradation process between
the battery pack and the cells in the unbalanced state. Quantifying the difference in the degradation
process helped us to explore the influence of the unbalanced state on the degradation process of the
battery packs. According to the above analysis, the degradation process of the battery pack during
the 300 cycles conformed to the linear law. A linear regression model was then used to establish the
degradation model:

z = β0 +

q∑
k=1

βkxk k = 1, 2, . . . , q, (3)

where z represents the cumulative amount of capacity degradation, and the slope βk represents the rate of
capacity degradation. The degradation rates of the respective battery packs and cells are shown in Table 7.

Table 7. Capacity degradation rates of the battery packs and cells.

Pack No. Degradation Rate Cell No. Degradation Rate

Pack-A 0.7998 Cell-1 0.8019
Cell-2 0.8020

Pack-B 1.2681 Cell-3 0.8613
Cell-4 0.5543

Pack-C 1.3131 Cell-5 0.9024
Cell-6 0.9055
Cell-7 0.4931
Cell-8 0.4930

Pack-D 0.3970 Cell-9 0.0103
Cell-10 0.3730
Cell-11 0.6448
Cell-12 −0.2737

As can be seen from Table 7:

1. When the normal cell was connected in series with the degraded cell, the degradation rate did
not show a large difference.

2. When the normal cell was connected in parallel with the degraded cell, the degradation rate of
the normal cell was significantly smaller than that of the degraded cell.
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3. The degradation rates of Pack A and its cells were not significantly different. The degradation
rates of Pack B and Pack C were significantly higher than the rates of their cells.

When the degraded cell was connected in parallel with the normal cell, the internal resistance of
the degraded battery was large, which directly led to a small current being divided during the constant
current charging and discharging process. In contrast, the normal cell charged and discharged with a
larger current. The calculation of the discharge capacity was primarily related to the discharge current,
so the normal cell discharged more power per cycle, thereby appearing to be smaller than the degraded
battery at the rate of capacity degradation.

3.2.2. Dependency Analysis of the Battery Packs

In the unbalanced state, there was data collinearity between the individual cells and the battery
pack due to their strong dependence. Therefore, the data collinearity needed to be overcome to obtain
a more accurate degradation-dependent regression model.

In this research, the PLSR was used to quantify the dependence of the battery pack in the
unbalanced state to explore the degree of influence of the components in the unbalanced state.

The cycle discharge capacity of single cells was selected as the independent variable, and the
battery pack discharge capacity and the maximum temperature in every cycle of each single cell were
selected as the dependent variables:

Ci =


Ci1

...
Cin

, P =


P1
...

Pn

, Ti =


Ti1

...
Tin

, (4)

where i is the battery number and n is the cycle number, 300. For each configuration, Ci is the discharge
capacity vector of the i battery; P is the discharge capacity vector of the battery pack; and P is the cycle
maximum temperature vector of the -th battery.

Putting the data after standardization into the matrix, the following was obtained:

A =


C11 · · · C1m

...
. . .

...
Cn1 · · · Cnm

, B =


P1 · · · T1m
...

. . .
...

Pn · · · Tnm

, (5)

where m is the number of batteries. The matrices A and B were written as:

A =


a11 · · · a1m

...
. . .

...
an1 · · · anm

, B =


b11 · · · b1p

...
. . .

...
bn1 · · · bnp

. (6)

The first pair of components, u1 and v1, was extracted from the two sets of variables:

u1 = α11x1 + · · ·+ α1mxm = ρ(1)TX; (7)

v1 = β11y1 + · · ·+ β1pyp = γ(1)TT. (8)

u1 and v1 had to satisfy the following:
u1 and v1 had to extract as much variation information as possible from the variable group;
u1 and v1 had the highest degree of correlation.
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The score vector of the first pair of components was calculated and denoted as û1 and v̂1:

û1 = Aρ(1) =


a11 · · · a1m

...
. . .

...
an1 · · · anm



α11

...
α1m

; (9)

v̂1 = Bγ(1) =


b11 · · · b1p

...
. . .

...
bn1 · · · bnp



β11

...
β1p

. (10)

The covariance, Cov(u1, v1), of the first pair of components, u1 and v1, could be calculated from
the inner product of the score vector sum of the first pair of components.

max(û1 · v̂1) = (Aρ(1) · Bγ(1)) = ρ(1)TATBγ(1); (11)

s.t.

 ρ(1)Tρ(1) =
∥∥∥ρ(1)∥∥∥2

= 1

γ(1)Tγ(1) =
∥∥∥γ(1)∥∥∥2

= 1
. (12)

Using the Lagrange multiplier method, the problem was solved by finding the unit vectors, ρ(1)

and γ(1), to maximize θ1 = ρ(1)TATBγ(1). By calculating the eigenvalues and eigenvectors of the m×m
matrix M = ATBBTA, the maximum eigenvalue of M was θ1

2, the corresponding unit eigenvector was
the obtained solution ρ(1), and γ(1) could be calculated with ρ(1).

γ(1) =
1
θ1

BTAρ(1). (13)

The regression model was: {
A = û1σ(1)T + A1

B = v̂1τ(1)T + B1
, (14)

where σ(1) = [σ11, · · · , σ1m]
T and τ(1) = [τ11, · · · , τ1p]

T are the parameter vectors in the regression
model, indicating the degree of influence of the independent variables on the dependent variable. A1

and B1 are the residual error matrices.
The PLSR estimation of the regression coefficient vectors, σ(1) and τ(1), was:{

σ(1) = ATû1/‖û1‖
2

τ(1) = BTv̂1/‖v̂1‖
2 . (15)

By defining Â = û1σ(1)T and B̂ = v̂1τ(1)T, then the residual matrices had to be A1 = A− Â and
B1 = B− B̂.

The cross-validity was defined as:

Q2
h = 1− PRESS(h)/SS(h− 1), (16)

where

PRESS(h) =
p∑

i=1

PRESS j(h) =
p∑

i=1

n∑
j=1

(bi j − b̂(i) j(h))
2
, and (17)

SS(h) =
p∑

i=1

SS j(h) =
p∑

i=1

n∑
j=1

(bi j − b̂i j(h))
2
. (18)

A cross-validity test was performed before the end of each step of the modeling. If there was
Q2

h < 1− 0.952 = 0.0975 in step h, the model met the accuracy requirement and it could stop extracting
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components. If Q2
h ≥ 0.0975, this indicated that the marginal contribution rate of the uh component

extracted in the h-th step was significant, and the calculation in the h + 1-th step had to be continued.
Finally, the extraction of h components produced:{

A = û1σ(1)T + · · ·+ ûhσ
(h)T + Ah

B = v̂1τ(1)T + · · ·+ v̂hτ
(h)T + Bh

. (19)

By substituting uk = αk1x1 + · · ·+ αkmxm(k = 1, 2, · · · , r) into Y = u1τ(1) + · · ·+ uhτ
(h), the PLSR

equation of p dependent variables was obtained:

y j = c j1x1 + · · ·+ c jmxm, ( j = 1, 2, · · · , p). (20)

R2 was then used as the evaluation index of the model:

R2 = 1−
∑
(Y_actual−Y_predict)2∑
(Y_actual−Y_mean)2 . (21)

The standardized parameters reflect the degree of influence of each variable on the dependent
variable and the correlation between the independent variables. The normalized coefficients for the
PLSR of the battery pack and the R2 values are shown in Table 8. below:

Table 8. Unbalanced model normalization coefficient.

Pack-A YPack-A TCell-1 TCell-2

YCell-1 0.4936 −0.4968 −0.1104
YCell-2 0.4936 −0.4967 −0.1104
Ncomp 2
R2 0.9824 0.8323 0.9405

Pack-B YPack-B TCell-3 TCell-4

YCell-3 0.5391 −0.1781 −0.0797
YCell-4 0.4664 −0.2226 −0.1875
Ncomp 2
R2 0.9521 0.9082 0.9378

Pack-C YPack-C TCell-5 TCell-6 TCell-7 TCell-8

YCell-5 0.2240 −0.1681 −0.0424 −0.0345 −0.0114
YCell-6 0.2241 −0.1681 −0.0424 −0.0345 −0.0114
YCell-7 0.2100 −0.2019 −0.0742 −0.0658 −0.0417
YCell-8 0.2100 −0.2019 −0.0742 −0.0658 −0.0417
Ncomp 2
R2 0.9300 0.9018 0.9068 0.9133 0.9050

Figure 10 shows the histograms of the absolute values of the standard regression coefficients.
It should be noted here that the capacity of the individual cells in the independent variables

needed to be a decreasing process according to the actual process. Therefore, in this process, the battery
pack capacity was continuously reduced (the coefficient was positive), and the temperature of each
unit cell was continuously increased (the coefficient was negative).
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Figure 10. Normalized coefficient histograms: (a) Pack A; (b) Pack; (c) Pack C.

The absolute value of the standard regression coefficient indicated the degree of influence of the
cell degradation on the dependent variable. The difference in the coefficient reflected the difference in
the degree of influence of each cell on the dependent variable:

1. Cell-1 and Cell-2 in Pack A had the same effect on the battery degradation and temperature.
2. The effect of Cell-3 on the capacity of the battery pack in Pack B was significantly higher than

that of Cell-4. However, for the impact on temperature, Cell-4 is higher than Cell-3. Based on
previous analysis and test results, in the unbalanced state, the normal cell in the parallel structure
will demonstrate an over-current phenomenon because it must compensate for the insufficient
discharge capacity of the degraded cell. As the cycle increases, the difference between the cells
becomes greater, and the current load of the normal battery also becomes greater. It can be
seen from the formula Q = I2R that the heat of the battery increases with the current squared.
Therefore, when the difference between batteries reaches a certain level, the influence of normal
batteries on temperature plays a leading role.

3. Pack C combined the characteristics of Pack A and Pack B, and the battery in series had the same
degree of influence. In addition, there was a significant difference in the degree of influence of the
parallel battery.

4. The temperature of the degraded cells was affected by the cells more than it was by the normal cells.
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4. Conclusions

In this study, degradation tests of four configuration lithium-ion battery packs were conducted.
The influence of the unbalanced dependence on the battery packs was found to be related to
the configuration. The degree of influence in the parallel configuration was greater than that for
the series configuration, and the more complex the configuration was, the more serious influence
it had. In addition, the unbalanced state accelerated the degradation process of the battery
packs. The specific performances included over-discharge, over-current, reverse charging, and high
temperature. Next, a model was built to quantitatively analyze the degradation process and dependence
of the battery pack. The linear regression model was used to analyze the degradation process of the
battery pack and to determine that the difference in the degradation rate between cells can reach
around 1.5 times. Then, the quantitative model of battery dependence was established by PLSR.
When the initial capacity difference reached 5%, the difference in dependence degree between the cells
with poorer performance and the cells with better performance was as high as 2–3 times, which was
especially obvious in the parallel circuits. A high regression coefficient (R2 > 0.9) indicated that the
degradation process dependency could be quantified. In the future, we will conduct further analysis
on the different degrees of unbalanced state and the more complex battery configurations. At present,
degradation tests are carried out for batteries with a 5% difference in initial capacity. In order to
study the unbalanced effects of battery packs under different unbalance levels, it is planned to design
battery combinations with different degradation states for cycle degradation tests. At the same time,
one should consider extrapolating the results to commonly used commercial lithium-ion battery packs
for relevant analysis.
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Glossary

α Variable
C Discharge capacity
β Capacity degradation rate
z Capacity degradation mAh
ρ Correlation coefficient
i Charge–discharge cycle
A Matrix containing the independent variables
B Matrix containing the dependent variables
u Principal component vector of A
v Principal component vector of B
û Score vector of u
v̂ Score vector of v
σ Regression coefficient for independent variables
τ Regression coefficient for dependent variables
Q2

h Cross-validity test coefficient
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