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Abstract: Spectral induced polarization (SIP) is a non-intrusive geophysical method that collects
chargeability information (the ability of a material to retain charge) in the time domain or its phase
shift in the frequency domain. Although SIP is a temporal method, it cannot measure the dynamics
of flow and solute/species transport in the subsurface over long times (i.e., 10–100 s of years).
Data collected with the SIP technique need to be coupled with fluid flow and reactive-transport
models in order to capture long-term dynamics. To address this challenge, PFLOTRAN-SIP was built
to couple SIP data to fluid flow and solute transport processes. Specifically, this framework couples
the subsurface flow and transport simulator PFLOTRAN and geoelectrical simulator E4D without
sacrificing computational performance. PFLOTRAN solves the coupled flow and solute-transport
process models in order to estimate solute concentrations, which were used in Archie’s model to
compute bulk electrical conductivities at near-zero frequency. These bulk electrical conductivities
were modified while using the Cole–Cole model to account for frequency dependence. Using the
estimated frequency-dependent bulk conductivities, E4D simulated the real and complex electrical
potential signals for selected frequencies for SIP. These frequency-dependent bulk conductivities
contain information that is relevant to geochemical changes in the system. This study demonstrated
that the PFLOTRAN-SIP framework is able to detect the presence of a tracer in the subsurface. SIP offers
a significant benefit over ERT in the form of greater information content. It provided multiple datasets
at different frequencies that better constrained the tracer distribution in the subsurface. Consequently,
this framework allows for practitioners of environmental hydrogeophysics and biogeophysics to
monitor the subsurface with improved resolution.

Keywords: parameter estimation; uncertainty analysis; forecasting; numerical modeling; Monte Carlo
simulation; observation worth

1. Introduction

Engineered subsurface systems are dynamic due to natural and anthropogenic activities
that alter porosity, permeability, fluid saturation, and geochemical properties over time [1].
Geophysical techniques, such as seismic (deep or near-surface seismic) and potential-based methods
(electromagnetic, magnetic, electrical resistivity tomography (ERT), spectral induced polarization (SIP))
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characterize changes in the subsurface [2–4]. Among these, ERT and SIP map the distributions
of bulk electrical conductivity (i.e., the reciprocal of resistivity) due to changes in subsurface
fluid flow, temperature, deformation, and reactive transport [5–9]. Because structural, topological,
and geochemical properties (e.g., pore structures, fracture networks, electron donor, etc.) influence
bulk electrical conductivity [2,4], ERT and SIP are applied in environmental and energy industries in
order to characterize subsurface interactions. Hence, coupling ERT and/or SIP process models to flow
and reactive-transport process models can enhance the interrogation of engineered subsurface systems.

ERT’s data-collection component measures the electric potentials that result from an applied
direct current (DC), while the data-processing component inverts these measured potentials in order to
map the spatial distribution of bulk electrical conductivities [2,9,10]. ERT looks at amplitude responses,
not their frequencies; therefore, it is difficult to capture multi-frequency data (typically, greater than
20 Hz). Because subsurface properties are often frequency-dependent, ERT fails to interrogate
the polarization features of geologic materials, heavy metals, and induced-polarization minerals
(e.g., clay minerals, hydrothermal-alteration products, pyrite, finely disseminated sulfide minerals,
etc.) [2,11,12]. However, by injecting alternating currents (AC), the induced polarization (IP) method
can measure "chargeability: in the time domain or “phase shift” in the frequency domain, which is
the phase angle (phase lag) between the applied current and induced voltage of polarized geologic
materials [13,14]. The IP method measures the energy storage capacity of certain minerals and it
can be used to detect hydrocarbons [15], contaminant plumes [16–18], municipal waste, green waste
(agricultural and biodegradable wastes) [19], sulfide minerals [11,20], hydrothermal products [11,20],
hydrological properties [21,22], finding tree roots [23], prospecting alpine permafrost [24],
investigating seawater intrusion [25], finding preferential infiltration in loess [22], and monitoring
internal erosion processes [21]. IP is a single- or double-frequency method that generally
fails to distinguish between a true IP response (e.g., polarized geologic materials) and noise
(e.g., electromagnetic interference) [15,20]. IP signals are often low in porous geologic media and noise
often masks polarization responses. Moreover, polarization responses are frequency-dependent and
they reach their maxima at different frequencies. Therefore, SIP data that are collected at multiple
frequencies improve subsurface imaging, even under noisy conditions.

SIP is representative of a polarization response and it cannot directly measure contaminant
concentrations or chemical reactions. Coupling with a subsurface flow and reactive-transport model
can tie SIP back to these processes. Furthermore, SIP is a temporal method for imaging subsurface
bulk electrical conductivities. However, in practice, subsurface contaminant transport is a slow
process (≈1–100 years). A continuous SIP survey across a wide range of frequencies is feasible over
such a long time. Consequently, SIP is performed at discrete times (snapshots) and for discrete
frequencies. The acquired data are then tied back to subsurface processes through coupling to flow and
reactive-transport models. The electrical conductivity from the SIP method contains information on the
spatial distribution of conducting fluids and fluid chemistry. In addition, the SIP method inverts for
frequency-dependent electrical conductivity that is based on measured/simulated electrical-impedance
and phase-shift data, which facilitates the detection, extraction, and understanding of the evolution of
hydrogeophysical and biogeophysical signatures at both the lab and field scales [26–29].

While there are numerous software for modeling geoelectrical data (e.g., IP-decay model [30],
Res2Dinv [31–33], Aarhusinv [34], BERT [35,36], EarthImager3D [37], E4D [38], pyGIMLi [39],
and ZondRes3D [40]), none capture the physics that are associated with dynamic subsurface processes.
These software packages can also image frequency-dependent electrical conductivities, but they cannot
capture dynamic subsurface processes. In order to overcome these problems, Johnson et al. [41]
developed the massively parallel PFLOTRAN-E4D simulator, which couples PFLOTRAN [42], a subsurface
flow and reactive-transport code, to E4D, a finite element code for simulating and inverting geoelectrical
data. However, PFLOTRAN-E4D does not account for induced polarization. In order to capture dynamics
of subsurface processes and the true sources of induced polarization, a computationally efficient
framework is needed in order to couple fluid flow and solute transport with the SIP process model.
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The main contribution of this study was development of a framework to include SIP in a module called
PFLOTRAN-SIP. This module couples subsurface flow and transport processes in PFLOTRAN with SIP capabilities
in E4D. This framework adds to the recently developed PFLOTRAN-E4D code and it leverages the
PFLOTRAN-E4D massively parallel capabilities. We demonstrated PFLOTRAN-SIP capabilities with
a representative tracer-transport process in a medium with polarization properties. The primary
focus of this modeling exercise was to illustrate the capabilities of the PFLOTRAN-SIP framework not to
validate the proposed model.

The paper is organized, as follows: Section 1 discusses the limitations of ERT along with the
advantages of the SIP method. The importance of coupling between fluid flow, reactive-transport,
and SIP process models is discussed. A discussion on the state-of-the-art simulators is also provided.
Section 2 introduces the PFLOTRAN-SIP framework. The methodology for coupling PFLOTRAN and E4D
simulators is described. Process models that are related to SIP, fluid flow, and solute transport
in PFLOTRAN and E4D simulators are presented. Additionally, this section discusses the mesh
interpolation that transfers state variables between the PFLOTRAN and E4D meshes. Section 3 describes a
reservoir-scale model setup in order to perform high-fidelity numerical simulations. It describes
the model domain, related meshes, initial conditions, boundary conditions, and various input
parameters that are related to the PFLOTRAN-SIP framework. Additionally, this section provides
details on the inversion procedure for electrical conductivity at different frequencies. This exercise
was performed with the intention of comparing the simulated conductivity/tracer distribution from
the PFLOTRAN-SIP framework and inverted electrical conductivity from SIP inversion. Section 4
explains simulated electrical potentials for a measurement and then compares the true/simulated
and estimated conductivities. It shows that the estimated frequency-dependent conductivities from
the SIP inversion were consistent with the tracer concentration/simulated conductivity from the
PFLOTRAN-SIP framework. Section 4 also provides a discussion on the numerical results, limitations
of the proposed framework, and how geoscientists can use the PFLOTRAN-SIP framework for their
applications. Finally, conclusions are drawn in Section 5.

2. PFLOTRAN-SIP: Process Models and Coupling Framework

The PFLOTRAN-SIP framework couples flow and reactive-transport process models in
PFLOTRAN [42–45] with the SIP process model in E4D [38,46,47] to characterize fluid-driven electrical
impedance signatures across multiple frequencies. At each time-step, the simulation outputs from
PFLOTRAN (fluid saturation, tracer concentration, etc.) were supplied to Archie’s Law [48] to calculate
fluid-dependent bulk electrical conductivities for E4D simulations. These estimated bulk electrical
conductivities were decomposed into real and imaginary components for each frequency while using
the Cole–Cole model [49,50], which is an empirical description of frequency-dependent behavior of
bulk electrical conductivities. These processes were repeated until the entire transient simulation
was completed.

2.1. E4D Process Model

E4D is an open-source, massively parallel, finite-element code for simulating and inverting
three-dimensional time-lapsed ERT and SIP data [38,46,47,51]. The process models in E4D for ERT
and SIP assume that the displacement currents are negligible and current density can be described
by Ohm’s constitutive model [51]. These assumptions result in a Poisson equation relating induced
current to the electric potential field:

− div [σ (x) grad [Φσ (x)]] = Iδ (x− x0) , (1)

where œ [S m−1] is the effective electrical conductivity, I [A] is the injected current, and Φσ(x) [V] the
electrical potential all at position-vector x [m], δ (·) is the Dirac delta function, div is the divergence of
a vector field, while grad is the gradient of a scalar field [52,53].
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Equation (1) models the DC effect, which is required in ERT forward/inverse modeling;
however, it does not account for induced polarization under AC. IP under AC results in a secondary
potential that needs to be accounted for in the SIP forward/inverse modeling. This requires the
modification of Equation (1) in order to solve for the total electrical potential field under IP effects:

− div
[
(1− η (x)) σ (x) grad

[
Φη (x)

]]
= Iδ (x− x0) , (2)

where Φη [V] is the total electrical potential field, which includes IP effects from a polarized material
with chargeability distribution  (r) [mrad] [54]. The secondary potential that results from the IP effect
is [55]:

Φs = Φη −Φσ, (3)

and the apparent chargeability is [54]:

ηa =
Φη −Φσ

Φη
. (4)

The secondary potential Φs and apparent chargeability ηa are weakly nonlinear, which result
from Equations (1) and (2). These potentials Φη , Φσ, and Φs are time-domain signatures of induced
polarization. Equation (3) is in the time domain and it is transformed into the frequency domain:

− div [σ∗ (x, ω) grad [Φ∗ (x)]] = Iδ (x− x0) , (5)

where ω [Hz] is the frequency. σ∗(x, ω) [S m−1] and Φ∗(x) [V] are the frequency-dependent electrical
conductivities and electrical potential, respectively. Φ∗(x) includes the real and imaginary electrical
potentials that correspond to induced polarization. Zero potential is enforced on boundaries of the
domain ([51], Section 3) in order to solve Equation (5).

E4D simulates four-electrode configurations (e.g., Wenner and dipole–dipole arrays) [38].
Current is injected from source to sink electrodes, while measurements are recorded between the other
two electrodes [3,8,38]. For ERT, the measured response is the potential difference (voltage) between
the two electrodes, while SIP also includes the phase shift (radians). Based on the user-defined survey
design, E4D can simulate up to thousands of ERT/SIP measurements to compute electrical potential
distributions. Because the governing equations are linear in Φσ and Φη , E4D solves Equation (5) by
superimposing pole solutions with different current sources that makes ERT or SIP forward modeling
highly scalable [38,51].

E4D solves the ERT and SIP process models in the frequency domain while using a low-order
finite element method (FEM). The output of the FEM solution for the ERT process model is electrical
potential throughout the domain, which is real valued and frequency independent. Because the SIP
process model is frequency dependent, the corresponding output of the FEM solution has both real and
imaginary components of electrical potential. The complex-valued electrical potential (or, equivalently,
the phase-shift distribution in the model domain) provides new information on IP in the subsurface,
which is not capturable by ERT.

E4D uses the standard Galerkin weak formulation [56] on an unstructured, low-order, tetrahedral,
finite element mesh [57], and it iteratively computes the total electrical potential field due to
IP effects ([51], Section 3). Equations for computing the real and imaginary components of the
complex-valued electrical potential are decoupled, and the finite-element analysis is performed in
the real-number domain. First, E4D solves for the real component without considering the IP effects.
Second, the current source for the imaginary component is computed from the real component.
Third, the imaginary component of the total electrical potential is calculated based on this computed
current source. Fourth, the secondary current source arising from the imaginary component is
computed. This secondary current source considers the IP effects. Later, the real component is
calculated based on this secondary current source. These steps are repeated until a convergence
criterion is satisfied.
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2.2. PFLOTRAN Process Models

PFLOTRAN solves a system of nonlinear partial differential equations describing multiphase,
multicomponent, reactive flow, and transport while using the finite-volume method (FVM) [42,43,58].
In this paper, we only consider single-phase fluid flow and solute transport when predicting
the spatio-temporal distribution of solute concentrations. Mass conservation for single-phase,
variably saturated flow is:

∂φsρ

∂t
+ div [ρq] = Qw, (6)

where ρ [kg m−3] is the fluid density, φ [–] is the porosity, s [–] is the saturation, t [s] is time, q [m s−1] is
the Darcy flux, and Qw [kg m−3 s−1] is the volumetric source/sink term. Darcy flux is:

q = −κκr (s)
µ

grad [p− ρgz] , (7)

where κ [m2] is the intrinsic permeability, κr [–] is the relative permeability, µ [Pa s] is dynamic viscosity,
p [Pa] is pressure, g [m s−2] is gravity, and z [m] is the vertical component of x. The source/sink term is:

Qw =
qM

Ww
δ
(
x− xQ

)
, (8)

where qM [kg m−3] is the mass flow rate, Ww [kg kmol−1] is the formula weight of water, and xQ [m]
denotes the location of the source/sink. The governing equation for tracer transport is:

∂φc
∂t

+ div [cq− φsτD grad [c]] = Qc, (9)

where c [molality] is the solute concentration, D [m2 s−1] is the diffusion/dispersion coefficient, τ [–] is
tortuosity, and Qc [molality s−1] is the solute source/sink term. Dirichlet, Neumann, or Robin boundary
conditions are specified when solving Equations (6)–(9).

Coupled governing Equations (6)–(9) are solved with a two-point flux FVM in space and a fully
implicit backward Euler method in time while using a Newton-–Krylov solver [43,59]. PFLOTRAN
consists of master process A, child process B, and peer process C (see, Figure 2 of Johnson et al.,
(2017) [41]). Here, the flow model is master process A, while B and C are the solute transport
and E4D/SIP models, respectively. The time step for the flow model may be different from the
solute-transport model. The transfer of information betweenA (e.g., flow) and B (e.g., solute transport)
takes place before and after each of A’s time steps. The synchronization of A and C (e.g., ERT or
SIP) occurs at specified times. Execution starts with the master-process model A, which can take as
many adaptive time steps as needed to reach the synchronization point. B and C proceed according to
their time steps (≤A’s) in order to reach the synchronization point. When A, B, and C all reach the
synchronization point, variables and parameters (e.g., saturation, solute concentration, porosity, etc.)
are updated between A and C.

2.3. PFLOTRAN-SIP Coupling

Coupling involves six steps: (1) PFLOTRAN’s flow model calculates fluid pressure, saturation, and
velocity; (2) while using those simulated outputs, the transport model calculates solute concentrations;
(3) solute concentrations in each PFLOTRAN mesh cell are used to calculate DC electrical conductivities
for ERT based on Archie’s law; (4) the Cole–Cole model is used to calculate frequency-dependent
electrical conductivities; (5) real and imaginary electrical conductivities are interpolated onto the
E4D mesh; and, (6) the SIP model solves the forward problem to calculate electrical impedance and
phase shifts.

PFLOTRAN and E4D use Message Passing Interface calls for inter-process communication. Based on
user specification, PFLOTRAN divides the computing resources between PFLOTRAN and E4D at the initial
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step. PFLOTRAN and E4D read their corresponding input files and complete pre-simulation steps.
These include setup of the flow model, the solute transport model, the SIP model, and the mesh
interpolation matrix. Mesh interpolation is needed for two reasons: (1) the meshes of PFLOTRAN
and E4D are different and (2) the solution procedure of PFLOTRAN is based on the FVM, while E4D’s
solution procedure is based on the FEM. Consequently, the state variables (e.g., solute concentration,
fluid saturation) computed at the cell center by PFLOTRAN need to be accurately transferred from the
PFLOTRAN mesh to the E4D mesh in order to calculate electrical conductivities. Section 2.5 describes the
generation of the mesh interpolation matrix. Algorithm 1 and Figure 1 summarize the coupling of
PFLOTRAN and SIP models.

Algorithm 1 Overview of the proposed PFLOTRAN-SIP framework for simulating electrical
impedance data.

1: INPUT: Initial and boundary conditions for fluid flow and solute transport models in PFLOTRAN,
fluid density, porosity, saturation, volumetric source/sink with its location, intrinsic and relative
permeabilities, dynamic viscosity, mass flow rate, diffusion/dispersion coefficients, tortuosity,
solute source/sink with its location, Archie’s and Cole-Cole model parameters, total simulation
time, time-step for PFLOTRAN, interrogation frequencies, electrode locations and measurement
configuration, number of processors for PFLOTRAN and E4D, and meshes for PFLOTRAN and E4D.

2: Solve Equations (6)–(8) for fluid pressure, fluid saturation, and fluid velocity.
3: Solve Equation (9) to calculate the spatio-temporal distribution of solute concentration.
4: Transfer solute concentration from PFLOTRAN to the E4D master processor to perform SIP simulations

at specific times.
5: Receive numerical model setup information from PFLOTRAN input files to perform mesh

interpolation for SIP simulations.
6: Broadcast run information and distribute mesh assignments to E4D slave processors.
7: Calculate the mesh interpolation matrix to interpolate PFLOTRAN simulation outputs (e.g., solute

concentrations) onto the E4D mesh for SIP simulations.
8: Calculate electrical conductivities using Archie’s model Equation (10).
9: Calculate frequency-dependent electrical conductivities using the Cole-Cole model Equation (11).

10: Pass real and imaginary conductivities calculated at different frequencies to the E4D master
processor to perform SIP simulations.

11: Broadcast real and imaginary conductivities to E4D slave processors to compute pole solutions for
electrode configurations.

12: Solve Equation (5) to compute complex electrical potential at different frequencies and solute
concentrations at specified times.

Flow model

Reactive-transport model

Grid interpolation

Archie’s model

Cole-Cole model

SIP

Figure 1. Coupling PFLOTRAN and spectral induced polarization (SIP) Process Models:
Steps involved in coupling fluid flow, solute transport, and SIP process models in the PFLOTRAN-SIP
framework. Details of the inputs, data, process models, and outputs are described in Algorithm 1.
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2.4. Petrophysical Transformation

A mathematical relationship linking fluid flow state variables and bulk electrical conductivities is
required in order to simulate SIP signals during fluid flow and solute transport. Archie’s Law [48,60,61]
is a petrophysical transformation relating state variables simulated by PFLOTRAN in order to bulk
electrical conductivities:

σb (x) =
1
τf

φαsβ
f σf, (10)

where τf [–] is the tortuosity factor (path length of current), σb(x) [S m−1] is the bulk electrical
conductivity at near-zero frequency (ω ∼ 0), α [–] is the cementation exponent (1.8 to 2.0 for sandstone),
sf [–] is the solute concentration that is simulated by PFLOTRAN, β [–] is the saturation exponent (close to
2.0), and σf [S m−1] is the fluid electrical conductivity.

In order to account for frequency dependence, Equation (10) was modified using the Cole–Cole
model [49,50,62–64]:

σ∗ (x, ω) = σb (x)
{

1 + ηa

[
(iωtr)

γ

1 + (1− ηa) (iωtr)
γ

]}
, (11)

where i2 = −1, γ [–] is a shape parameter and tr [s] is the characteristic relaxation time constant
(time for the imaginary electrical component to reach equilibrium after perturbation) that is related to
characteristic pore or grain size.

2.5. Mesh Interpolation

Once the frequency-dependent real and imaginary components of bulk electrical conductivities
were calculated on the PFLOTRAN mesh, they were interpolated onto the E4D mesh. The conductivity at
any intermediate point in a PFLOTRAN mesh cell was approximated while using tri-linear interpolation.
Tri-linear interpolation is a multivariate interpolation function on a three-dimensional regular grid.
It linearly approximates the value of a function at an intermediate point (x, y, z) within the local
rectangular prism, using function data on the lattice points. Here, approximated values were computed
while using values at the PFLOTRAN cell centers surrounding the point at E4D grid [41].

3. Methodology

3.1. PFLOTRAN Model Setup

A simple example model was developed in order to demonstrate PFLOTRAN- SIP. Similar to the
Hanford Site, Richland, Washington [41], a uniform pressure gradient drove flow in the positive x
direction. The system was intended to be representative of sandstone with an intermittent shale layer.
This synthetic problem included contaminant transport with the intention to support remediation by
providing insight into the evolution of the tracer distribution. The domain was 500× 500× 500 m3 and
it consisted of three layers, as shown in Figure 2. The upper layer was 500× 500× 350 m3 and extended
from z = 0 to −350 m as a highly conductive material with κ = 7.38× 10−13 m2 (see, Table 1). The fluid
was assumed to be water while rock properties (e.g., κ, φ, D, etc.) were assumed to be sandstone.
The middle layer was less permeable (κ = 1.05× 10−22 m2) with size 500× 500× 50 m3 extending from
z = −350 to −400 m. This κ is representative of shale or granite. However, the low-permeability layer
included a small-volume, sandstone (κ = 7.38× 10−13 m2) material between x = 300 and 350 m, y = 0
and 500 m, and z = −400 and −450 m. The bottom layer was also sandstone (κ = 7.38× 10−13 m2),
with dimensions of 500× 500× 100 m3.
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5002500
-500

-250

0

x (m)

z
(m

)

y (m)
z

(m
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x (m)

0

-250

-500

500 250
0 250 500

(a) (b)

7.38×10!"# m$ 1.05×10!$$ m$ Initial tracer location

Pressure = 1 atmPressure = 
2 atm

Figure 2. PFLOTRAN model domain: Schematics of (a) permeability distribution and (b) pressure
boundary conditions.

A solute (conservative tracer) at 10 mol/kg was placed below the low permeable zone, as shown
in Figure 2 as the green 50× 500× 50 m3 block. The initial and boundary conditions for the model
included: pressure of 1 atm at the top with a hydrostatic pressure gradient from top to bottom. The left
face (x = 0) was assigned a hydrostatic pressure of 2 atm in order to drive flow from left to right.
For solute transport, the boundary conditions were zero-concentration Dirichlet inflow at the left face
and zero diffusive gradient outflow at the right face that allowed only advective outflow. The remaining
faces were specified as zero-solute flux boundaries.

For low- and high-κ zones, τ = 1, while φ were 0.3 and 0.25, respectively. The solute diffusivity
was 10 m2 s−1. The Newton solver (20-iteration maximum) was applied for flow and solute transport.
For the flow solver, relative and absolute tolerances [–] were 10−50 with a relative update tolerance of
10−60, while, for solute transport solver, the relative and absolute tolerances were 10−4 with a relative
update tolerance of 10−60. The simulation was run for one year with an initial time step of 10−8 years,
which was allowed to accelerate by a factor of 8.

Table 1. PFLOTRAN and SIP parameters used in the model and corresponding values.

PFLOTRAN Parameters Values SIP Parameters Values

κ (top & bottom layers) 7.38× 10−13 m2 Injected current 1 A
κ (middle layer) 1.05× 10−22 m2 σ heterogeneous values Sm−1

Initial solute concentration 10 mol kg−1 α 0.564
φ (top and bottom layers) 0.3% β 0.576

φ (middle layer) 0.25% tr 0.061
Diffusivity 10 m2 s−1 ω 0.1, 1, 10, 100, and 1000 Hz

3.2. SIP Model Setup

Although the domain dimensions for SIP simulations were identical to the PFLOTRAN simulation,
there was only a single layer. The corresponding E4D mesh for the simulation had 86,780 nodes and
609,562 tetrahedral elements. In order to avoid zero potentials effects on the SIP model, zero potentials
were enforced on the external boundaries, which were 9500 m away from each lateral boundary,
except for the top, which corresponded to the ground surface in both models. This extension of the
SIP model domain aided the SIP simulation [38]. A total of 80 point electrodes were placed in the
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domain, all located at z = −425 m arranged in five lines along the x-axis, with each line comprising
16 electrodes. The electrode coordinates started at (40, 50,−425) and ended at (460, 450,−425) with
a 100 m separations between lines see, Figure 3. Although, in practice, it is much easier to place
electrodes on the surface, in this simulation they were placed in the region of interest (i.e., at depth) to
provide more accurate data that facilitated a better inversion of subsurface properties and processes.
When compared to surface-lain electrodes, electrodes buried at depth are less impacted by noise
(e.g., due to anthropogenic activities). Electrode measurement configurations included a combination
of Wenner and dipole–dipole arrays.

x (m)

(b)

x (m)

z
(m
)

y (m)

0

-250

-500
0

250

500

250
0

(a)

5002500
500

250

0

y
(m
) vI

Figure 3. SIP model: (a) The three-dimensional (3D) SIP model domain where (b) red dots represent
electrodes on the xy-plane. White circles represent electrode configuration of 80th out of 1062 simulated
electrical impedance where I and V represent current and potential electrodes, respectively.

A current of 1A was injected and received at a pair of electrodes, and the potential difference
was measured at another pair of electrodes. There are various advantages of injecting and receiving
the current through a pair of electrodes. For example, such a measurement system can eliminate any
inaccuracies that are caused by the injecting circuit impedance (the contact impedance between the
probe and the medium, which can be high). While using the prescribed measurement configuration,
a total of 1062 simulated measurements were collected in order to capture electrical impedance and
phase shift.

The electrical conductivity of the fluid at ω = 0 Hz was 2× 10−3 S m−1. Parameters α, β, and tr

were 0.564, 0.576, and 0.061 s, respectively, all being representative of sandstone [65] (see, Table 1).
SIP analysis was performed for five different frequencies: 0.1, 1, 10, 100, and 1000 Hz. Forward model
simulations were performed while using 61 processors, where 20 processors were assigned for
PFLOTRAN and 41 for E4D. Out of those 41 processors, 40 performed SIP simulations for different
measurement configurations, and the remaining processors gathered the simulated data.

3.3. SIP Inversion of Electrical Conductivity

For verification, E4D’s inversion module was used in order to estimate frequency-dependent
electrical conductivity that is based on the simulated electrical impedance and phase-shift data.
This estimated conductivity was compared with the simulated conductivity that was generated
by the PFLOTRAN-SIP framework. The employed inversion process was blind (i.e., we did not
provide prior constraints on the conductivity). This can be improved by providing detailed
conductivity information to E4D’s inversion module. The SIP inversion employs an unstructured
mesh, which consisted of 51,124 nodes with 316,183 mesh elements. Low-order mesh elements were
generated to make the inversion process simple and computationally efficient, because high-order
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mesh elements did not improve the resolution of the electrical conductivity [47]. However,
the meshes were refined around electrodes, where the volume of each mesh was in the order of
cm3. Simulated measurements (electrical impedance) by PFLOTRAN-SIP were the data supplied to the
inversion process as observations.

E4D was inverted by minimizing the following objective function:

Φ = Φd

[
Wd

(
Φobs −Φpred

)]
+ ζΦm [Wm (σest − σref)] , (12)

where Φd is a scalar operator that quantifies the misfit between observed and simulated data
(e.g., electrical impedance and phase shift) based on the user-specified norm (e.g., Euclidean norm),
Φm is another operator that provides a scalar measure of the difference between the
frequency-dependent electrical conductivity distribution, σest [S m−1], and constraints placed upon the
structure of σref [S m−1], ζ is the regularization parameter, Wd is the data-weighting matrix, and Wm

is the model-weighting matrix. σest and σref are the estimated and reference frequency-dependent
electrical conductivities. The user specified bounds on the frequency-dependent conductivity in each
mesh cell were 0.000 01 and 1.0. The Φobs and Φpred were the observed and simulated data, respectively.
Equation (12) is solved while using the iteratively reweighted least square method [66]. Further details
on the parallel inverse modeling algorithm and its implementation in E4D are available [38].

The ζ value was 100 at the beginning of the inversion and it decreased as the nonlinear iteration
progressed. Before ζ was reduced, the minimum fractional decrease in the objective function, Φ,
between iterations had to be <0.25 whereafter ζ was reduced to 0.5. The convergence of the SIP
inversion procedure was based on the χ2 value of the current iteration after data culling, being
computed as:

χ2 =
Φd

nd − nc
, (13)

where the data residual is the difference between observed and estimated values divided by the
standard deviation for that measurement. nd is the total number of survey measurements and nc is
the number of measurements that were selected from the total number of measurements during the
current iteration.

4. Results & Discussion

The one-year PFLOTRAN-SIP model simulations were completed in two minutes. The computation
was performed on 61 Intel® Xeon® CPU E5-2695 V4 @ 2.1 GHz processors. Figure 4 shows the tracer
concentrations at the end of the simulation. In one year, the pressure gradient drove tracers about
100 m from its initial location in the x-direction and also moved it upward about 20 m.
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Figure 4. PFLOTRAN Simulation: Spatial distribution of tracer concentrations after one year.
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The SIP module in PFLOTRAN-E4D simulated real and imaginary electrical impedance at 0.1,
1, 10, 100, and 1000 Hz. Because of minimal differences between 1 and 10 Hz, only results for
0.1, 10, 100, and 1000 Hz are discussed. This indicated that some frequencies may be redundant,
because they yield similar impedance. Sensitivity analyses can be performed in order to identify
redundant frequencies; however, this was beyond the scope of this paper. Figure 5 shows the real and
imaginary potentials due to changes in tracer concentration for the various frequencies. Additionally,
this figure provides information on the change in electrical potential at different frequencies for a
single measurement configuration, indicating the maximum tracer concentration. The 80th out of 1062
electrical impedance measurements (see, Figure 3b) was selected where the tracer concentrations were
the most evident. The response clearly shows the polarization feature of the tracer. The gradient of the
real electrical potential was high near x = 300 m (top row of Figure 5), where tracer concentrations were
maximum. From Figure 5, it is evident that the real potential response for 0.1 Hz was different from
the responses at 10, 100, and 1000 Hz. The root-mean-square error (RMSE) between these responses
was approximately 15% of the maximum real potential value, indicating that frequency has an impact
on the real potential distribution.
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Figure 5. Slices of simulated real (top) and imaginary (bottom) components of complex electrical
potentials/impedances at y = 250 m for a single measurement after one year. The measurement
location is in top left-corner plot of this figure and in Figure 3b.

The bottom row of Figure 5 shows the imaginary component of complex electrical potential
responses where the polarity was switched (colors interchanged). Unlike the real electrical potential,
each imaginary electrical potential was notably different, indicating its frequency dependence.
The corresponding RMSE between responses was ∼85% of the maximum imaginary potential value.
Such a high variation was expected, as the imaginary electrical potential depends on frequency,
chargeability, and relaxation time, although the last two were constant in this study. Because the
response of the imaginary potential was clearly visible in the simulation, this indicated that the
PFLOTRAN-SIP framework can effectively simulate polarized geologic materials.

Figure 6 shows the simulated and estimated frequency-dependent electrical conductivities
while using the PFLOTRAN-SIP framework with the SIP inversion module in E4D. The true
(PFLOTRAN simulated) and estimated (inversion of survey data) real electrical conductivities are plotted
in Figure 6a–d and Figure 6e–h, respectively. SIP inversion was performed while using the simulated
electrical impedance, and the phase-shift data obtained from PFLOTRAN-SIP model runs after one
year. Inversion converged after 48 iterations when χ2 reached 60. The computational time that was
required to perform SIP inversion was approximately two hours on 41 Intel® Xeon® CPU E5-2695 V4
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processors running at 2.1 GHz. Estimated electrical conductivities showed high contrast around the
high tracer distribution/simulated conductivities, although they were more diffuse than the true
(simulated) distribution (Figure 6a–h). ERT provided data for Figure 6e, but SIP provided data for
Figure 6e–l. Although not all SIP data were informative, some were useful. For example, the estimated
conductivities at 1000 Hz were more accurate than frequencies <1000 Hz with the same inversion
constraints. Later, real conductivity values were used in Equation (11) in order to provide initial
guesses for imaginary conductivities for SIP inversion. Figure 6i–l shows the estimated imaginary
electrical conductivity distributions. Similar to estimated real conductivities, imaginary conductivities
that were computed from SIP inversion were also diffuse. The inversion process could be improved
by providing prior information and structural constraints on electrical conductivities. However,
both estimated conductivities were generally consistent with the tracer distribution, which showed
that the SIP inversion module can simulate electrical impedance and phase-shift data. To summarize,
SIP provides a major benefit over ERT in the form of greater information content. This is because
an SIP survey yields multiple datasets at different frequencies that help to overcome false positives
(i.e., indication of a tracer where none is present). For example, from Figure 6, it is evident that the
SIP inversion analyses at different frequencies revealed the same tracer region (not a false positive).
With an ERT survey, it may be difficult to identify a false positive from a true positive, because ERT
only generates a single dataset.
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Figure 6. Simulated and estimated frequency-dependent electrical conductivities at y = 250 m after one
year. (a–d) True-electrical conductivities from the PFLOTRAN-SIP framework, (e–h) estimated bulk-real
conductivities from SIP inversion, and (i–l) imaginary components of estimated bulk complex electrical
conductivities from SIP inversion.

Figure 7a–c show the simulated outputs of tracer concentrations, real potentials, and imaginary
potentials for the 80-electrode measurement configuration at frequencies of 0.1, 10, 100, and 1000 Hz.
The location of maximum tracer concentration was around x = 300 m (Figure 7a). The locations
of current and potential measurement electrodes were at (x = 208, 236, 264, and 292 m, y = 250 m,



Energies 2020, 13, 6552 13 of 19

and z = −420 m) (Figure 3b). Note that the electrodes were not placed at the location of maximum
concentration, but they were placed 50 m right of maximum concentration in a line in the subsurface.
Nevertheless, the measured potentials provided meaningful information on the bounds of the tracer
distribution as well as revealing the significance of higher frequencies that were obtained from a
combination of electrical impedance and phase shift.

vI

Figure 7. Distribution of (a) tracer concentration and (b) real potential, (c) imaginary component of
complex potential, and (d) phase shift along the x-axis at y = 250 m and z = −425 m.

For this study, only tracer concentration impacted the real and imaginary components of complex
conductivities revealed through the Cole-Cole model because α, β, and tr were held constant in
order to investigate the effect of tracer concentration over different frequencies. Figure 8a,b show
how the Cole–Cole model increased real conductivities and decreased the imaginary component of
complex conductivities over different frequencies. Figure 7b,c shows that the absolute real potential
and imaginary potential decreased as the frequency increased. E4D first solved the real potential,
Φr, as noted in Section 2.1 and in by [51], for SIP simulations. That is, −div [σrgrad [Φr]] = I,
where σr is the real component of σ∗(x, ω) and Φr is inversely proportional to σr. Additionally,
σr increased as ω increased; hence, the absolute value of the real potential distribution (as shown in
Figure 7b) decreased as ω increased. After σr was evaluated, E4D computed the complex potential
by solving div [σrgrad [Φc]] = −div [σcgrad [Φr]], where σc is the imaginary part of σ∗(x, ω) and Φc

is the imaginary potential. Thus, Φc is proportional to σc. Additionally, σc decreased as ω increased;
hence, the absolute value of the imaginary potential distribution (as shown in Figure 7c) decreased as
ω increased.
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Figure 8. (a) Real, σr, and (b) imaginary, σc, components of complex conductivities vs. frequency.
Each component of the complex conductivity was normalized with respect to its maximum value to
better show trends.

Figure 7d shows the phase-shift data distribution along the same line as the tracer distribution,
real and imaginary potential distribution. Mathematically, the phase shift is the inverse tangent of
the ratio between the imaginary and real potential responses. Physically, it is the shift between
the measured voltage and applied current signals that is largely governed by the polarization
characteristics of the subsurface. In this study, phase shift leveraged signals from both real and
imaginary potential responses in order to improve the interpretation of complex electrical impedance.
From Figure 7, there was a change in phase shift where tracer transport was predominant. Moreover,
the 1000 Hz frequency bounded the tracer zone better than lower frequencies that cannot be
distinguished with ERT. This phase shift helped to constrain the polarized region or bound the
interface between tracer-laden and tracer-free fluids. After identifying the region of interest according
to these constraints, further geoelectrical interrogation could be performed with this volume. It is
critical to mention that accurate estimation of the region of interest was found without performing a
computationally expensive numerical inversion. Hence, through phase-shift signatures across multiple
frequencies, the PFLOTRAN-SIP framework facilitates the identification of polarized or geochemically
altered zones. The results have demonstrated that, if the subsurface contains polarized materials,
then SIP will better capture signals than its counterpart ERT. For example, polarized materials, such as
sulphide or oxide minerals, undergo electro-chemical reactions in response to additional current
supplied by AC or SIP surveys [67]. This additional reaction could improve electrical signals and yield
better results than ERT.

IP arises from solute transport and accumulation of ions/electrons in polarized materials
(e.g., those with different grain types, colloids, biological materials, phase-separated polymers,
blends, and crystalline minerals, etc.) when subject to an external electric field. Five mechanisms
govern IP phenomena at frequencies <1 MHz: (1) Maxwell–Wagner polarization, which occurs at
high frequencies [68–71]; (2) polarization of the inner part of the interface between minerals and
water [72–74]; (3) polarization of the outer part of the interface between minerals and water [72,75];
(4) membrane polarization for multi-phase systems [65,76,77]; and, (5) electrode polarization observed
in the presence of disseminated conductive minerals, such as sulfide minerals and pyrite [78–80].

4.1. Limitations and Challenges

The proposed framework has challenges and limitations that are similar to SIP geophysical
techniques. Specifically, our PFLOTRAN-SIP simulations were geared toward IP mechanisms (1),
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(4), and (5). Note that the Cole–Cole model that is given by Equation (11) neglects the effects of
polarization at interfaces or sorption onto mineral surfaces. In order to simulate mechanisms (2) and
(3), Equation (11) must be replaced with conductivity models that account for interface polarization
with consideration of effective pore size, electrical formation factor, distribution of relaxation times,
and sorption mechanisms [14,81]. This is one of limitations of the current framework. However,
this challenge can be overcome by considering constitutive models that simulate interface polarization
mechanisms. We note that our PFLOTRAN-SIP framework can easily account for such modifications in
frequency-dependent electrical conductivity, which is beyond the scope of this work.

5. Conclusions

This work demonstrated the PFLOTRAN-SIP framework, which simultaneously simulates fluid
flow, reactive transport, and SIP. A reservoir-scale tracer transport model demonstrated the
proposed PFLOTRAN-SIP framework, where fluid flow and tracer concentration evolution were
simulated over one year. Subsequently, we simulated 1062 electrical impedance at four frequencies.
These simulations showed that contrasts in real potential were minimal, wven as the frequency
varied. However, there was a significant change in the contrast of complex potentials across
frequencies. Phase shift (a combination of real and complex potentials) helped to identify the region
where tracer concentration was high. This analysis showed that SIP has two major advantages
over ERT. First, SIP provides frequency-dependent electrical impedance data. Second, phase-shift
signatures that were obtained from SIP analysis identified and constrained geochemically altered zones.
Combining frequency-dependent real potential, complex potential, and phase responses from an SIP
survey/simulation paints a more detailed picture of the subsurface with an enhanced ability to detect
contaminants/tracers. Moreover, coupling fluid flow, reactive transport, and SIP models can better
detect contaminants when compared to either the ERT or SIP method alone. For instance, through our
numerical example, solute transport simulations provided insight into the tracer distribution.
This information was used in order to customize SIP inversion to estimate frequency-dependent
electrical conductivities, which yielded an improved image of tracer concentrations at different
frequencies. Although this work focused on simulating tracer transport, it could also be applied
to detect hydrocarbon flow, changes in the subsurface due to geochemical reactions, sulfide minerals,
metallic objects, municipal wastes, and salinity intrusion. Moreover, this code could be used in
feasibility studies for developing waste sequestration sites.
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