
energies

Article

Interior Permanent Magnet Synchronous Motor Drive System
with Machine Learning-Based Maximum Torque per Ampere
and Flux-Weakening Control

Faa-Jeng Lin * , Yi-Hung Liao , Jyun-Ru Lin and Wei-Ting Lin

����������
�������

Citation: Lin, F.-J.; Liao, Y.-H.; Lin,

J.-R.; Lin, W.-T. Interior Permanent

Magnet Synchronous Motor Drive

System with Machine Learning-Based

Maximum Torque per Ampere and

Flux-Weakening Control. Energies

2021, 14, 346. https://doi.org/

10.3390/en14020346

Received: 2 December 2020

Accepted: 6 January 2021

Published: 9 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan;
yhungliao@ee.ncu.edu.tw (Y.-H.L.); lukelin84101@gmail.com (J.-R.L.); s9235914@gmail.com (W.-T.L.)
* Correspondence: linfj@ee.ncu.edu.tw; Tel.: +886-3-4227151 (ext. 34532)

Abstract: An interior permanent magnet synchronous motor (IPMSM) drive system with machine
learning-based maximum torque per ampere (MTPA) as well as flux-weakening (FW) control was
developed and is presented in this study. Since the control performance of IPMSM varies significantly
due to the temperature variation and magnetic saturation, a machine learning-based MTPA control
using a Petri probabilistic fuzzy neural network with an asymmetric membership function (PPFNN-
AMF) was developed. First, the d-axis current command, which can achieve the MTPA control of the
IPMSM, is derived. Then, the difference value of the dq-axis inductance of the IPMSM is obtained
by the PPFNN-AMF and substituted into the d-axis current command of the MTPA to alleviate the
saturation effect in the constant torque region. Moreover, a voltage control loop, which can limit the
inverter output voltage to the maximum output voltage of the inverter at high-speed, is designed for
the FW control in the constant power region. In addition, an adaptive complementary sliding mode
(ACSM) speed controller is developed to improve the transient response of the speed control. Finally,
some experimental results are given to demonstrate the validity of the proposed high-performance
control strategies.

Keywords: interior permanent magnet synchronous motor (IPMSM); maximum torque per ampere
(MTPA) control; flux-weakening (FW) control; Petri probabilistic fuzzy neural network with an asym-
metric membership function (PPFNN-AMF); adaptive complementary sliding mode (ACSM) control

1. Introduction

IPMSMs have many attractive characteristics, including wide speed operating range,
high-power density, and high torque-to-inertia ratio. Thus, IPMSMs has been utilized
in many industrial applications [1–4]. However, the control characteristic of IPMSMs
tends to time-varying behavior due to the machine parameters variation caused by the
magnetic saturation.

For the IPMSM, the quadrature-axis inductance is increased by the rotor magnetic
circuit saliency, which leads to a reluctance torque term incorporating into the torque
equation [5]. However, to utilize the advantage of the reluctance torque term in the
constant torque and constant power region, appropriate control methods are required.
Therefore, an MTPA control has been proposed to improve the torque output in the constant
torque region [5–10]. In [8], the method of using the high-frequency variation of the output
mechanical power combined with a fuzzy-logic controller to obtain the advance angle of
the MTPA for an IPMSM was proposed.

Moreover, the method proposed in [9] injects a small virtual current angle signal to
track the MTPA operating point and to generate the d-axis current command by utilizing
the inherent characteristic of the MTPA operation. With model-based torque correction
in [10], an accurate and efficient torque control, as well as robust torque response, can be
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achieved for the MTPA operation. However, there is no intelligent control method using a
neural network to achieve MTPA control in the above literature.

FW control is mainly applied to the DC and AC motors operation above the rated
speed in the constant power region. There are quite a few methods to achieve FW control,
such as current control [11], voltage control [12,13] and flux control [14]. In [11], a robust
nonlinear control technique to achieve a wide-speed-range operation of the IPMSM based
on the MTPA and FW controls was presented. For the proposed nonlinear controller, the
FW and MTPA schemes are used to control the d-axis stator current above and below the
rated speed, respectively. Moreover, a model-based design method of a voltage phase
controller for the IPMSM was presented in [12]. The voltage phase controller controls
the torque only in a high-speed region where the inverter output voltage amplitude is
saturated. Furthermore, in [13], a voltage feedback FW control scheme for vector-controlled
IPMSM drive systems was considered. A voltage control loop is also designed in this study
to limit the inverter output voltage to the maximum output voltage of the inverter at
high-speed for the FW control.

Since the PNN possesses the probability density function estimator and Bayes classi-
fication rule, it has superior modeling performance and adaptability [15–17]. Moreover,
the PFNN comprises both the merits of PNN and fuzzy logic [18]. Therefore, many re-
searchers have used PFNN to design advanced controllers and model represent complex
plants [16,19]. Furthermore, PN is capable of analytical, graphical and mathematical mod-
eling and is widely utilized to analyze the behavior of discrete event systems [20–22]. In
addition, the learning capability of the neural networks can be upgraded, and the number
of fuzzy rules can be further reduced by extending the dimension of the membership
functions to AMFs [23]. A PPFNN-AMF, which possesses the merits of the PFNN, PN and
the AMFs, was proposed in [23] and is adopted in this study to estimate the difference
value of the dq-axis inductance of the IPMSM.

In recent years, SMC has attracted much attention because of its strong robustness
and rapid control response to time-varying uncertainties, including internal parameter
variations and external disturbances [24–29]. However, the disadvantage of SMC is the
chattering phenomenon owing to the switching function [24,25]. In order to decrease the
chattering phenomenon, many methods such as CSMC have been used. The CSMC can
not only reduce the chattering phenomenon but also has good control accuracy [26,27]. On
the other hand, it is necessary to have the boundary of the uncertainty for the design of
CSMC, but it is difficult to obtain in advance in practical applications. Therefore, many
nonlinear controllers combining with intelligent control or adaptive control to estimate
the uncertainty of IPMSM have been proposed [27–30]. However, there is seldom research
of the SMC methodologies considering the effect of reluctance torque of the IPMSM. To
improve the robust control performance of the IPMSM drive system under parameter
variations and external disturbances, an ACSM speed controller considering nonzero d-axis
current is proposed in this study to improve the control performance.

A high-performance IPMSM drive system with intelligent MTPA based on PPFNN-
AMF and FW control is proposed in this study. The PPFNN-AMF is utilized in this study
to learn the difference value of the dq-axis inductance of the IPMSM. It can ensure that the
correct difference value of the inductance is obtained under different operating conditions
for the MTPA control. Furthermore, a voltage control loop is designed for the FW control.
In addition, an ACSM speed controller considering nonzero d-axis current is proposed to
improve the robustness of the speed control. Lyapunov stability theorem is used to derive
the adaptive law, which is used for online estimation of the lumped uncertainty to ensure
that the ACSM speed controller is asymptotically stable. The rest of this study is organized
as follows: The theories and modeling of the MTPA and FW controls of the IPMSM drive
are presented in Section 2, and the ACSM speed controller is developed in Section 3. The
network structure and learning algorithms of the PPFNN-AMF are presented in Section 4.
Some test cases with different speed commands and various load torques are investigated
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to verify the accuracy and robustness of the proposed high-performance control methods
in Section 5. Finally, some conclusions are presented in Section 6.

2. MTPA and FW Control of IPMSM Drive

Figure 1 is the block diagram of the intelligent MTPA and FW-controlled IPMSM drive
system with ACSM speed controller. First, the actual rotor position θrm of the motor is
determined by the encoder, and the mechanical speed ωrm is obtained by differentiating
θrm. Next, the mechanical speed ωrm is subtracted from the mechanical speed command
ω∗rm to derive the mechanical speed error erm. Then, erm is inputted into the ACSM speed
controller to get the q-axis current command i∗q . Moreover, the two inputs and one output
PPFNN-AMF is adopted to learn the difference value of the dq-axis inductance Ld and Lq.
The inputs of the PPFNN-AMF are ω∗rm and i∗q , and the output is the learning result of
the dq-axis inductance differences L̂d − L̂q, which is substituted into the MTPA formula to
derive the d-axis current command i∗d,MTPA for the MTPA control. While the FW control
proceeds, the motor speed will be increased above the rated speed. The input of the MTPA
block shown in Figure 1 will be switched to FW, and the i∗d,MTPA will be kept constant
during the FW control. Furthermore, to make sure that the stator voltage command V∗s
will not exceed the voltage limit Vs_max of the inverter Vs_max − V∗s is inputted into a PI
controller to generate the variation of the d-axis current command ∆i∗d , which is a negative
value. Only when the inverter output voltage V∗s exceeds the maximum output voltage
Vs_max of the inverter, the input of the PI controller will be nonzero. That is to say, the
output of the limiter shown in Figure 1 is zero when the input to the limiter is positive.
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Figure 1. Block diagram of intelligent maximum torque per ampere (MTPA) and flux-weakening (FW)-controlled interior
permanent magnet synchronous motor (IPMSM) drive system with adaptive complementary sliding mode (ACSM) speed
controller.

As shown in Figure 1, the three-phase currents ia ib and ic of the VSI are transformed
to the corresponding q-axis current iq and d-axis current id by using the coordinate trans-
formation. In addition, iq and id are subtracted, respectively from i∗q and i∗d , and then
the dq axis voltage commands v∗q and v∗d are obtained through the PI controllers of the
current loop. After v∗q and v∗d are obtained, v∗α and v∗β are derived by using the coordinate
transformation. Moreover, the switching signals for the IGBTs of the VSI are generated
through the SVPWM, and the switching frequency is 10 kHz. Finally, the switching signals
are sent to the IGBTs to achieve intelligent MTPA and FW control.
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2.1. MTPA Control

The electromagnetic torque of an IPMSM in the dq synchronous frame can be expressed
as follows [5]:

Te =
3P
4
[
λmiq + (Ld − Lq)idiq

]
(1)

where λm is the PM flux linkage; P denotes the number of poles. First, define the relation-
ship of the stator current Is between the dq-axis currents id and iq

Is
2 = id

2 + iq
2 (2)

Substituting (2) into (1) gives the following relationship:

Te =
3P
4

[
λmiq − (Ld − Lq)iq

√
Is2 − iq2

]
(3)

The d-axis current command of MTPA i∗d,MTPA can be obtained by differentiating the
electromagnetic torque equation with respect to the q-axis current and setting the derivative
to zero to obtain the extreme value. The resultant equation is as follows:

i∗d,MTPA =
−λm +

√
λm2 + 4(Ld − Lq)

2iq2

2(Ld − Lq)
(4)

Since the parameters of the IPMSM are not constant resulting from the effects of
magnetic saturation, the measuring method of the dq-axis inductance differences Ld − Lq
will be developed, and the PPFNN-AMF will be adopted to learn the inductance differences
in the constant torque region.

2.2. Estimation of Permanent-Magnet Flux Linkage

Owing to the magnetic saturation of the rotor core, the value of the q-axis inductance
Lq is mainly affected by the changing of the air gap flux. Therefore, the value of Lq should
be estimated online in order to accomplish the desired MTPA control performance. In
this study, the inductance difference Ld − Lq is estimated online instead of the Lq and
the PPFNN-AMF will be adopted to learn the inductance differences. Before measuring
Ld − Lq, it is necessary to estimate the value of the permanent-magnet flux linkage λm first.
Since the measuring methods of Ld, Lq and λm are usually very complex [31,32], a heuristic
method is developed in this section to generate the training data for the offline training of
the PPFNN-AMF.

Let id be zero first, then (1) can be simplified as:

Te =
3P
4

λmiq (5)

Add two different load torques TL1 and TL2 to IPMSM, respectively, then (5) can be
expressed as:

Tf + TL1 =
3P
4

λ̂miq1 (6)

Tf + TL2 =
3P
4

λ̂miq2 (7)

where Tf is the friction torque; iq1 is the q-axis current when TL1 is added; iq2 is the q-axis
current when TL2 is added; λ̂m is the estimated permanent-magnet flux linkage. Then,
subtract (6) from (7), and one can get

TL2 − TL1 =
3P
4

λ̂m(iq2 − iq1) (8)
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According to (8), the λ̂m can be obtained as follows under any load torque conditions:

λ̂m =
4(TL2 − TL1)

3P(iq2 − iq1)
(9)

After λ̂m is obtained, the measuring method of the Ld − Lq will be illustrated in detail
in the next section.

2.3. Measuring Method of dq-Axis Inductance Differences

Let id be zero again, and define a new operating condition as follows:

Te3 =
3P
4

λmiq3 (10)

where Te3 and iq3 are the electromagnetic torque and q-axis current of the new operating
condition when id = 0. Then, without changing the load torque and the motor speed,
define id = −iq/3 to generate reluctance torque of IPMSM and (1) can be rewritten as:

Te3 =
3P
4

[
λmiq4 + (Ld − Lq)

(−iq4

3

)
iq4

]
(11)

where iq4 is the q-axis current when id = −iq/3. Since the operating conditions are the
same, (10) and (11) are equal and can be expressed as:

3P
4

λmiq3 =
3P
4

[
λmiq4 + (Ld − Lq)

(−iq4

3

)
iq4

]
(12)

According to (12), the dq-axis inductance differences Ld− Lq can be obtained as follows
using the estimated permanent-magnet flux linkage λ̂m under any operating condition:

Ld − Lq =
3λ̂m

iq4

(
1−

iq3

iq4

)
(13)

The PPFNN-AMF is utilized in this study to learn the difference value of the dq-axis
inductance of the IPMSM. Therefore, to ensure effective offline training under different
operating conditions, the q-axis current command i∗q and mechanical speed command ω∗rm
are the input data, and the corresponding Ld − Lq is the desired output for the offline
training of the PPFNN-AMF. Then, under the real-time motor operation, the output of
the trained PPFNN-AMF, which is the estimated dq-axis inductance difference L̂d − L̂q, is
substituted into (4) to derive the d-axis current command i∗d,MTPA for the MTPA control in
the constant torque region.

2.4. FW Control

The voltage model of an IPMSM in the dq synchronous frame can be written as [5]:

vd = Rsid + Ld
did
dt
−ωreLqiq (14)

vq = Rsiq + Lq
diq
dt

+ ωre(Ldid + λm) (15)

When the IPMSM is operated in the FW region at the steady-state condition, the
voltage drop caused by the stator resistance in (14) can be neglected. Then, the dq voltage
model of an IPMSM can be rewritten as follows:

vd = −ωreLqiq (16)

vq = ωre(Ldid + λm) (17)
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Moreover, the flux model of an IPMSM in the dq synchronous frame can be described
by [5]:

λd = Ldid + λm (18)

λq = Lqiq (19)

It is known from (18) that the principle of FW control is to let id negative to generate
the flux in the opposite direction of the PM to reduce λd and decrease the back EMF of an
IPMSM in the constant power region. This allows IPMSM to continue to increase the rotor
speed above the rated speed until the stator voltage command V∗s reaches the voltage limit
Vs_max of the inverter. To make sure that the inverter output voltage V∗s will not exceed the
maximum output voltage Vs_max of the inverter Vs_max −V∗s is inputted into a PI controller
to generate the variation of d-axis current command ∆i∗d , which is a negative value. On
the other hand, the output of the limiter is zero when the input of the limiter is positive.
After this, ∆i∗d is added to i∗d,MTPA to make the i∗d more negative to ensure that V∗s is less
than Vs_max as shown in Figure 1.

3. ACSM Speed Controller

The block diagram of the proposed ACSM speed controller, where the d-axis current
is nonzero, is also shown in Figure 1. The mechanical dynamic equation of an IPMSM can
be expressed as follows:

Te = J
.

ωrm + Bωrm + TL (20)

where J is the moment of inertia of the IPMSM; B is the damping coefficient; TL is the load
torque. By neglecting the load torque, (20) can be modified as:

.
ωrm = −B

J
ωrm +

Te

J
(21)

The dynamic of an IPMSM drive system can be formulated by using (1) and (21)
as follows:

.
ωrm = − B

J
ωrm + 3Pλm

4J
i∗q +

3P(Ld−Lq)

4J
idi∗q

= Armωrm + Brmi∗q + Crmidi∗q
(22)

where Arm = − B
J
; Brm = 3Pλm

4J
; Crm = 3P(Ld−Ld)

4J
; B, J, λm, Ld and Lq are the nominal

values of damping coefficient, moment of inertia, PM flux linkage, d-axis inductance and
q-axis inductance, respectively. By considering the uncertainty, including the existence of
parameter variations and external disturbances of the IPMSM drive system, (22) can be
rewritten as: .

ωrm = (Arm + ∆Arm)ωrm + (Brm + ∆Brm)i∗q
+(Crm + ∆Crm)idi∗q + (Drm + ∆Drm)TL
= Armωrm + Brmi∗q + Crmidi∗q + Erm

(23)

where Drm = − 1
J
; ∆Arm, ∆Brm, ∆Crm and ∆Drm are the time-varying parameter variations;

Erm is the lumped uncertainty and defined as:

Erm = ∆Armωrm + ∆Brmi∗q + ∆Crmidi∗q + (Drm + ∆Drm)TL (24)

Erm is assumed to be bounded
|Erm| ≤ ρ (25)

where ρ is a given positive constant. Define the speed tracking error as follows:

erm = ω∗rm −ωrm (26)
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Then, one can define the generalized sliding surface as follows:

S = erm + k
∫ t

0
ermdτ (27)

where k is a positive constant. From (27) and (23), the following equation can be obtained:

.
S =

.
erm + kerm

=
.

ω
∗
rm − Armωrm − Brmi∗q − Crmidi∗q − Erm + kerm

(28)

Next, a second sliding surface, known as complementary sliding surface, is designed
as follows [27]:

Sc = erm − k
∫ t

0
ermdτ (29)

With the same positive constant k, an important result concerning the relationship
between S and Sc can be obtained in the following [27]:

.
Sc + k(S + Sc) =

.
S (30)

Theorem 1. For the system dynamic equation represented by (24), the stability of the proposed
ACSM control system can be guaranteed, and the tracking error will reach and converge to a
neighborhood of zero in finite time by using the proposed ACSM control law designed as (31).
Moreover, the control law shown in (31) is a combination of an equivalent control law designed as
(32) and a hitting control law designed as (33),

i∗q = ieq + ihit (31)

ieq =

.
ω
∗
rm − Armωrm + k(erm + S)

Brm + Crmid
(32)

ihit =
1

Brm + Crmid

[
ρsat

(
S + Sc

Φ

)]
(33)

where sat is the saturation function with the boundary layer thickness Φ [33] and is designed to
reduce the chattering phenomena. The saturation function is defined as follows:

sat
(

S + Sc

Φ

)
=


1, if S + Sc ≥ Φ
S+Sc

Φ , if −Φ < S + Sc < Φ
−1, if S + Sc ≤ Φ

(34)

A Lyapunov function is chosen as

V =
1
2
(S2 + S2

c ) +
1

2γ

∣∣∣Ẽrm

∣∣∣2 > 0 (35)

where V is a positive definite function; Ẽrm = Erm − Êrm; Êrm is the estimated value of the Erm; γ
is a positive constant. Taking the time derivative of the Lyapunov function and using (29) and (30),
one can obtain
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.
V = S

.
S + Sc

.
Sc +

1
γ Ẽrm

.
Ẽrm

= S
.
S + Sc[

.
S− k(S + Sc)]− 1

γ Ẽrm

.
Êrm

= S
.
S + Sc

.
S− Sck(S + Sc)− 1

γ Ẽrm

.
Êrm

= (S + Sc)(
.
S + Sck)− 1

γ Ẽrm

.
Êrm

= (S + Sc)[
.

ω
∗
rm − Armωrm − Brmi∗q − Crmidi∗q

−Erm + kerm − Sck]− 1
γ Ẽrm

.
Êrm

= (S + Sc)[
.

ω
∗
rm − Armωrm − Brmi∗q − Crmidi∗q

+k(erm − Sc)− (Ẽrm + Êrm)]− 1
γ Ẽrm

.
Êrm

= (S + Sc)[
.

ω
∗
rm − Armωrm − Brmi∗q − Crmidi∗q

+k(erm − Sc)− Êrm]− 1
γ Ẽrm[γ(S + Sc) +

.
Êrm]

(36)

Therefore, according to (36), the ACSM control law UACSM and adaptive law
.
Êrm are designed

as follows:

UACSM = i∗q =

.
ω
∗
rm − Armωrm + k(erm + S)− Êrm

Brm + Crmid
(37)

.
Êrm = −γ(S + Sc) (38)

The time derivative of the Lyapunov function can be formulated by (36) and (38) as follows:

.
V = (S + Sc)[

.
ω
∗
rm − Armωrm − Brmi∗q − Crmidi∗q

+k(erm − Sc)− Êrm]
(39)

Using (31)–(33) and (39), one can obtain

.
V = −k(S + Sc)

2 + (S + Sc)(−Brm − Crmid)ihit
+(S + Sc)(−Êrm)

≤ −k(S + Sc)
2 + (S + Sc)(−ρ) + |S + Sc|

∣∣−Êrm
∣∣

≤ −k(S + Sc)
2 + |S + Sc|

(∣∣−Êrm
∣∣− ρ

)
= −k(S + Sc)

2 ≤ 0

(40)

Since
.

V(S, Sc) ≤ 0;
.

V is negative semidefinite, i.e., V(S(t), Sc(t)) ≤ V(S(0), Sc(0)),
which means that S(t) and Sc(t) are bounded. Now, one can define the following term:

P(t) = k(S + Sc)
2 ≤ −

.
V(S(t), Sc(t)) (41)

then ∫ t

0
P(τ)dτ ≤ V(S(0), Sc(0))−V(S(t), Sc(t)) (42)

Furthermore, because V(S(0), Sc(0)) is bounded and V(S(t), Sc(t)) is nonincreasing and
bounded, the following result can be obtained:

lim
t→∞

∫ t

0
P(τ)dτ < ∞ (43)

In addition,
.
P(t) is also bounded. Then, P(t) is uniformly continuous. Using Barbalat’s

lemma [33], the following result can be derived:

lim
t→∞

P(t) = 0 (44)
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Thus, (44) means that S(t) and Sc(t) will converge to zero as t→ ∞ . Moreover, lim
t→∞

erm(t) =

0 and lim
t→∞

.
erm(t) = 0. Therefore, the ACSM system guarantees the asymptotic stability of the speed

tracking error erm, even if the parameter variations, external disturbances, and friction force exist.

4. PPFNN-AMF

The PPFNN-AMF proposed in [23] was utilized in this study to estimate the differ-
ence value of the dq-axis inductance of the IPMSM. The network structure and learning
algorithms are presented in the following paragraphs.

4.1. Network Structure

There are six layers, which consist of the input, membership, Petri, probabilistic, rule
and output layers with two inputs and one output in the network structure of the PPFNN-
AMF shown in Figure 2a. The signal propagation of each layer is described in detail in
the following:

Input layer:
The input and the output of the node of the input layer are represented as follows:

xi(N) = ei(N), i = 1, 2 (45)

where xi denotes the ith input to the input layer; N denotes the Nth iteration. The inputs of
the PPFNN-AMF are e1(N) = ω∗rm and e2(N) = i∗q , which are the mechanical speed and
the q-axis current command, respectively.
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Figure 2. Petri probabilistic fuzzy neural network with an asymmetric membership function (PPFNN-AMF): (a) Network
structure; (b) asymmetric Gaussian function in the membership layer.

4.1.1. Membership Layer

The asymmetric Gaussian functions were adopted as the membership function in each
node of this layer to implement the fuzzification operation shown in Figure 2b. In addition,
the input and output of the node are expressed in the following:

netj(N) =


netl j(N) = − (xi−mj)

2

(σl j)
2 ,−∞ < xi ≤ mj

netrj(N) = − (xi−mj)
2

(σrj)
2 , mj < xi ≤ ∞

(46)

µj(N) = f j
(
netj(N)

)
= exp

(
netj(N)

)
, j = 1, 2, . . . , 10 (47)
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In (46) and (47), netj(N) and µj(N) represent the input and the output of the mem-
bership layer. Moreover, mj denotes the mean of the asymmetric Gaussian function in
the jth term associated with the ith input variable. Furthermore, σl j and σrj represent
the left-hand-side and right-hand-side standard deviations of the asymmetric Gaussian
function in the jth term associated with the ith input variable.

4.1.2. Petri Layer

In this layer, the transition is fired or unfired by the following equations:

tp(N) =

{
1, µj(N) ≥ dth
0, µj(N) < dth

th = 1, 2, . . . , 10 (48)

dth =
α exp(−βV)

1 + exp(−βV)
(49)

where tp is the transition, dth is a threshold value, and is varied by the function
V = (ω∗rm + i∗q )/2; α and β are positive constants. The relationship between the input and
output of the Petri layer is presented as follows:

netp(N) =

{
µj(N), tp(N) = 1

0, tp(N) = 0
(50)

µp(N) = fp
(
netp(N)

)
= netp(N), p = 1, 2, . . . , 10 (51)

4.1.3. Probabilistic Layer

The receptive field function is a Gaussian function in the probabilistic layer and
described as follows:

fk(µp) = exp

[
−
(µp −mk)

2

(σk)
2

]
, k = 1, 2, . . . , 30 (52)

Pk(µp) =

{
fk
(
µp), tp(N) = 1

0, tp(N) = 0
(53)

In (52) and (53), mk and σk denote the mean and standard deviation of the Gaussian
function, and Pk(µp) denotes its output.

4.1.4. Rule Layer

The node input and the node output of the rule layer are described as:

µI
l = ∏

j
wjlµj (54)

PI
l = ∏

k
wkl Pk (55)

µo
l = µI

l PI
l , l = 1, 2, . . . , 25 (56)

In (54)–(56), superscript I denotes the input, subscript l denotes the node number, and
superscript o indicates the output. Moreover, µI

l and PI
l represent the inputs of rule layer;

wjl , which is set to 1, represents the connective weight between the membership layer and
the rule layer; wkl , which is also set to 1, represents the connective weight between the
probabilistic layer and the rule layer; µo

l represents the output of the rule layer.



Energies 2021, 14, 346 11 of 24

4.1.5. Output Layer

In the output layer, the node is denoted by Σ performing the summation operation.
Hence, the output of this layer, which is the estimated dq-axis inductance difference L̂d− L̂q,
is given as follows:

y(N) =
25

∑
l=1

wlµ
o
l (57)

4.2. Learning Algorithms

In order to illustrate the learning algorithms of the PPFNN-AMF, first, the energy
function E is defined as:

E =
1
2
(yd − y(N))2 =

1
2

e2 (58)

where yd is the desired output.
Then, the learning algorithms are explained as follows:

4.2.1. Output Layer

The error term, which is propagated back from the output layer, is computed as:

δo = −
∂E

∂y(N)
(59)

According to the chain rule, the connective weight wl is updated by the amount:

∆wl = −η1
∂E
∂wl

= −η1
∂E

∂y(N)

∂y(N)

∂wl
= η1δoµo

l (60)

where η1 is the learning rate and the connective weight wl is updated as follows:

wl(N + 1) = wl(N) + ∆wl (61)

The error term to be propagated is calculated as follows:

δl = −
∂E
∂µo

l
= − ∂E

∂y(N)

∂y(N)

∂µo
l

= δowl (62)

4.2.2. Membership Layer

In this layer, the error term needs to be calculated and propagated as follows:

δj = −
∂E
∂µj

= − ∂E
∂y(N)

∂y(N)

∂µo
l

∂µo
l

∂µI
l

∂µI
l

∂µj
= ∑

l
δl pI

l (63)

The mean of the asymmetric Gaussian function mj is defined and calculated as follows:

∆mj = −η2
∂E
∂mj

= −η2
∂E

∂netj

∂netj
∂mj

=


η2δj

2(xi−mj)

(σl j)
2 ,−∞ < xi ≤ mj

η2δj
2(xi−mj)

(σrj)
2 , mj < xi ≤ ∞

(64)

where η2 denotes the learning rate of the mean of the asymmetric Gaussian function.
Moreover, the left-hand-side and right-hand-side standard deviations of the asymmetric
Gaussian function are calculated in the following:
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∆σl j = −η3
∂E
∂σl j

= −η3
∂E

∂netl j

∂netl j

∂σl j
= η3δj

2(xi −mj)
2

(σl j)
3 (65)

∆σrj = −η4
∂E
∂σrj

= −η4
∂E

∂netrj

∂netrj

∂σrj
= η4δj

2(xi −mj)
2

(σrj)
3 (66)

where η3, η4 represent the learning rates of the left-hand-side σl j and right-hand-side σrj
standard deviations of the asymmetric Gaussian function, respectively. Therefore, the
mean and the left-hand-side and right-hand-side standard deviations of the asymmetric
Gaussian function are updated according to the following equations:

mj(N + 1) = mj(N) + ∆mj (67)

σl j(N + 1) = σl j(N) + ∆σl j (68)

σrj(N + 1) = σrj(N) + ∆σrj (69)

The exact calculation of the Jacobian of the system, which is contained in ∂E/∂y(N),
is very difficult in practical applications. Thus, a delta adaptation law is proposed in
the following

δo ∼= ω∗rm + i∗q (70)

The detailed convergence analysis of the PPFNN-AMF can be referred to [23].

5. Experimental Results

To facilitate the verification of the proposed control strategies, the IPMSM test plat-
form and the experimental drive system are shown in Figure 3. The IPMSM test plat-
form comprised the IPMSM, the gearbox (with gear ratio 4:1), the torque meter and the
magnetic powder brake. The total moment of inertia of the motor test platform was
1.4010737× 10−2 Nm/(rad/s2). The detailed information of the magnetic powder brake
and IPMSM is listed in Tables 1 and 2. The DSP -based motor drive included the DSP
control boards, and PWM VSI are also shown in Figure 3. A torque meter with 100 Nm/
7000 rpm was utilized for the measurement of the load torque. The resolution of the
adopted encoder is only 8000 pulsed/rotation. Moreover, the maximum speed of the
IPMSM in the experimentation was 3750 rpm in the constant power region. By using the
gearbox with a gear ratio of 4:1 to reduce the speed, the maximum speed of the magnetic
powder brake 937.5 rpm was smaller than the rated speed of the magnetic powder brake
1800 rpm. Furthermore, the ratings of the VSI using IGBTs was 5 kW/220 V/14 A. The
switching frequency of 10 kHz was controlled by using SVPWM technology. The DC link
voltage provided by an adjustable DC power supply was set at 311 V. According to the
SVPWM, the inverter maximum output voltage Vs_max was set to 311/

√
3 ≈ 179 V. In

addition, the experimental cutoff frequency of the IPMSM drive system, including the
motor test platform with ACSM speed controller, was about 30 Hz, which could be obtained
by using an Agilent 35670A dynamic signal analyzer. The low bandwidth was due to the
large inertial of the motor test platform, which includes IPMSM, gear, torque meter and
magnetic powder brake, and the low-resolution of the adopted encoder. Since the moment
of inertia of the IPMSM was 4.07473× 10−3 Nm/(rad/s2), the resultant load moment of
inertia ratio was 2.44:1.
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Table 1. Parameters of magnetic powder brake.

Items Units Quantities

Torque Nm 50
Rated current A 2.15
Coil resistance ohm 11.14

Mass of powder g 60
Maximum rotating speed rpm 1800

Table 2. Parameters of IPMSM.

Items Units Quantities

Pole number – 8
Rated power W 2000

Rated line voltage V(rms) 220
Rated current A(rms) 10.6
Rated torque Nm 9.5
Rated speed rpm 2000

d-axis inductance mH 3.48
q-axis inductance mH 6.16

Magnetic flux Wb 0.143
Resistance ohm 0.57

Viscous damping Nm/(rad/sec) 2.69× 10−3

Inertia Nm/(rad/sec2) 4.07473× 10−3

The controllers were implemented with a 120 MHz TMS320F28075 32-bit floating-
point DSP to enhance computation performance of the proposed intelligent MTPA and
FW control with ACSM speed control system. The flowcharts of the proposed ACSM
controller and PPFNN-AMF are provided in Figure 4. Since the PPFNN-AMF was trained
offline, the complexity was much reduced for the real-time implementation in the DSP.
By using the clock tool of the Texas Instruments Code Composer Studio v6.2 program
editing interface, the execution time of the “C” program could be obtained. The operation
cycles and execution time for the proposed ACSM controller and PPFNN-AMF were
40 cycles (0.00033 ms) and 5252 cycles (0.0437 ms), respectively. Although the implemented
complexity of the proposed ACSM controller and PPFNN-AMF were higher than that of
the traditional PI controller and MTPA control, the execution time of the proposed ACSM
controller was much less than the outer speed control loop time 1 ms (speed sampling
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time). Moreover, the execution time of the PPFNN-AMF was still less than the inner current
control loop time of 0.1 ms (current sampling time).
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5.1. ACSM Speed Controller

Four cases of different parameters of the proposed ACSM speed controller shown
in (31), (32) and (38) were tested from standstill to 500 rpm in order to verify the control
performance. Case 1 was with k = 15, γ = 1; Case 2 was with k = 15, γ = 10; Case 3 was with
k = 18, γ = 10; Case 4 was with k = 24, γ = 10.

The mechanical speed command ω∗rm, the mechanical speed ωrm, the mechanical
speed error erm, and the q-axis current command i∗q in Cases 1 to 4 are shown in Figures 5–8,
respectively.

According to Figures 5 and 6, the parameter γ had little effect on the speed responses
of the system. On the other hand, based on Figures 6–8, the parameter k had a greater
influence on the speed responses than the parameter γ. A larger k will make the mechanical
speed error smaller, but it will cause larger q-axis current command. Therefore, the selection
of the value of k was a tradeoff between speed response and starting current. In this study,
in order to achieve the best control performance with the consideration of stability, the
parameters of the ACSM speed controller were set to be k = 24, γ = 10 by trial and error.
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5.2. PPFNN-AMF Estimator

As mentioned in Section 2.3, to ensure effective offline training under different operat-
ing conditions of load torque and speed, the q-axis current command i∗q and mechanical
speed command ω∗rm were the input data, and the measured dq-axis inductance difference
Ld − Lq was the desired output for the offline training of the PPFNN-AMF. The training
data, including 39 different i∗q , 13 different ω∗rm and 507 measured, Ld − Lq are shown
in Figure 9, and the training result after 10,000 epochs training of the PPFNN-AMF is
shown in Figure 10. Since the measuring of all the training data was performed under
nominal motor operating conditions, the temperature condition of all the obtained training
data were the same as the experimentation shown in Figures 11–15. In order to verify the
training accuracy of PPFNN-AMF at different operating speed and load torque conditions,
the training errors of five conditions are shown in Table 3. According to Table 3, the biggest
training error was 1.689%. The rest training errors were all smaller than 1%, which could
demonstrate that the PPFNN-AMF was well trained.
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Table 3. Training errors of PPFNN-AMF.

Operating
Speed Load Torque Training Data Output of

PPFNN-AMF Error

500 rpm 6 Nm 2.8876 mH 2.8945 mH 0.239%
9 Nm 2.7611 mH 2.7688 mH 0.279%

1500 rpm 6 Nm 2.4563 mH 2.4148 mH 1.689%
9 Nm 2.3204 mH 2.3258 mH 0.233%

2000 rpm 9.5 Nm 2.0977 mH 2.1034 mH 0.272%

5.3. MTPA Control

After the PPFNN-AMF having been well trained offline, the output of the PPFNN-
AMF L̂d− L̂q could be substituted into the MTPA formula to get the d-axis current command
of the MTPA under different operating conditions. Five test cases with different operating
speed and load torque shown in Table 3 were selected to test the validity of the proposed
intelligent MTPA control. The IPMSM was first operated with i∗d = 0, and then the proposed
MTPA control was performed at time t = 10 s.

The experimental results of the MTPA control at (1) 500 rpm operating speed with 6
Nm and 9 Nm load torque; (2) 1500 rpm operating speed with 6 Nm and 9 Nm load torque;
(3) rated speed 2000 rpm with rated torque 9.5 Nm, which was the rated output power 2
kW condition, were illustrated in Figures 11–15, respectively. Figures 11a, 12a, 13a, 14a
and 15a present the mechanical speed command ω∗rm, the mechanical speed ωrm and the
mechanical speed error erm. The q-axis current command i∗q , the d-axis current command i∗d
and the amplitude of stator current Is are shown in Figures 11b, 12b, 13b, 14b and 15b. In
all test cased observed from Figures 11–15, the intelligent MTPA control could effectively
reduce the stator current Is with negative d-axis current command i∗d according to (4).
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It was very difficult to verify the accuracy of the training data L̂d − L̂q with the real
data Ld − Lq. Nevertheless, to verify the effectiveness of the proposed intelligent MTPA
control at different operating conditions in Table 3, the d-axis current command i∗d was
gradually changed from 0 A to −8 A to find out the lowest value of the stator current Is
via experimentation [34]. The lowest value of the stator current, which could satisfy the
specific operating condition in terms of speed and load torque, i.e., the MTPA operating
point at that specific operating condition, could be obtained by varying the d-axis current
command gradually as shown in Figures 16–20. The experimental results of finding the
lowest stator current at (1) 500 rpm operating speed with 6 Nm and 9 Nm load torque;
(2) 1500 rpm operating speed with 6 Nm and 9 Nm load torque; (3). 2000 rpm with rated
torque 9.5 Nm are illustrated in Figures 16–20, respectively. The mechanical speed ωrm,
the q-axis current command i∗q , the d-axis current command i∗d and the stator current Is
are all presented in Figures 16–20. Moreover, the experimental results of Figures 11–20
are compared in Table 4. The stator currents of the proposed intelligent MTPA control
shown in Figures 11–15 were quite close to the lowest values at all test cases shown in
Figures 16–20, which could verify that the proposed IPMSM drive system could achieve
effective MTPA control.
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Table 4. Comparison of stator current amplitude.

Operating Speed Load Torque Method Stator Current

500 rpm
6 Nm

i∗d gradually changed 8.290 A
Proposed MTPA scheme 8.222 A

9 Nm
i∗d gradually changed 11.973 A

Proposed MTPA scheme 11.964 A

1500 rpm
6 Nm

i∗d gradually changed 8.291 A
Proposed MTPA scheme 8.283 A

9 Nm
i∗d gradually changed 11.873 A

Proposed MTPA scheme 11.875 A

2000 rpm 9.5 Nm
i∗d gradually changed 12.377 A

Proposed MTPA scheme 12.427 A
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5.4. FW Control

Some experimental results are provided to verify the effectiveness of the designed FW
control for the operating speed above the rated speed. The parameters of the PI controller
of the stator voltage controller are given as KP,FW = 0.0015 and KI,FW = 5 where KP,FW and
KI,FW represent the proportional and integral gains. These gains were tuned by trial and
error to achieve the best transient response performance. Moreover, three FW operating
conditions to achieve the constant power control, which were 3250 rpm under 5.85 Nm
load torque, 3500 rpm under 5.43 Nm load torque and 3750 rpm under 5.07 Nm load torque,
all at rated output power 2 kW, were tested. The IPMSM was first operated at 2000 rpm,
and then the mechanical speed command was increased above the rated speed at time
t = 6 s. Figures 21–23 depict the experimental resulted of the FW control for the mechanical
speed command from 2000 rpm to 3250 rpm under 5.85 Nm load torque, 2000 rpm to
3500 rpm under 5.43 Nm load torque and 2000 rpm to 3750 rpm under 5.07 Nm load
torque, respectively. Figures 21a, 22a and 23a present the mechanical speed command
ω∗rm, the mechanical speed ωrm, the stator current Is and the stator voltage command V∗s .
Furthermore, the q-axis current command i∗q , the d-axis current command i∗d,MTPA of MTPA,
the d-axis current command i∗d and the variation of d-axis current command ∆i∗d are shown
in Figures 21b, 22b and 23b. From the experimental resulted, once the inverter output
voltage V∗s exceeds the maximum output voltage Vs_max of the inverter, the output of the
PI controller were negative. Then the output of the limiter, which was the variation of the
d-axis current command ∆i∗d , was added to i∗d,MTPA to made the i∗d more negative to ensure
that V∗s was less than Vs_max. The resultant ∆i∗d were −2.215 A, −5.313 A and −9.188 A
for 3250 rpm, 3500 rpm and 3750 rpm, respectively. Therefore, the FW control with rated
output power could be achieved at high-speed by increasing the negative d-axis current
according to the designed voltage control loop for the FW control.
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command of MTPA, d-axis current command and variation of d-axis current command.
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6. Conclusions

An IPMSM drive system with machine learning-based MTPA control in the constant
torque region and an FW control in the constant power region was successfully developed
in this study.

Moreover, an ACSM speed controller was developed to improve the transient response
of the speed control. In the intelligent MTPA control, first, the d-axis current command
which can achieve the MTPA control was derived. Then, the difference value of the dq-axis
inductance of the IPMSM was obtained by a well-trained PPFNN-AMF and substituted into
the formula of d-axis current command to achieve the MTPA control and to alleviate the
effect of the magnetic saturation. In the FW control, a voltage control loop was designed
to limit the inverter output voltage to the maximum output voltage of the inverter by
increasing the negative d-axis current at high-speed. Finally, some experimental results
were provided to demonstrate the validity of the proposed high-performance control
strategies of the IPMSM drive system, including the ACSM speed control, the intelligent
MTPA control and the FW control.

The main contributions of this study are listed as follows: (1) An ACSM speed con-
troller considering nonzero d-axis current was proposed to improve the robustness of the
speed control. Moreover, the Lyapunov stability theorem was used to derive the adaptive
law, which was used for online estimation of the lumped uncertainty. (2) The PPFNN-AMF
was adopted in this study to learn the difference value of the dq-axis inductance of the
IPMSM offline. After the PPFNN-AMF was well-trained, the difference value of the dq-axis
inductance of the IPMSM was obtained by the PPFNN-AMF and substituted into the d-axis
current command of the MTPA to alleviate the saturation effect in the constant torque
region. (3) The successful implementation of the intelligent MTPA and FW control with the
proposed ACSM speed controller in a 32-bit floating-point DSP was built to achieve the
MTPA and FW control at different speeds and load torque conditions for an IPMSM drive.
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Abbreviations

IPMSMs Interior permanent magnet synchronous motors
MTPA Maximum torque per ampere
FW Flux-weakening
PNN Probabilistic neural network
PFNN Probabilistic fuzzy neural network
PN Petri net
AMFs Asymmetric membership functions
PPFNN-AMF Petri probabilistic fuzzy neural network with an asymmetric membership function
SMC Sliding mode control
CSMC Complementary sliding mode control
ACSM Adaptive complementary sliding mode
VSI Voltage source inverter
IGBTs Insulated-gate bipolar transistors
SVPWM Space vector pulse width modulation
PM Permanent-magnet
PI Proportional-integral
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