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Abstract: In this work, we investigate a probabilistic method for electricity price forecasting, which
overcomes traditional ones. We start considering statistical methods for point forecast, comparing
their performance in terms of efficiency, accuracy, and reliability, and we then exploit Neural Net-
works approaches to derive a hybrid model for probabilistic type forecasting. We show that our
solution reaches the highest standard both in terms of efficiency and precision by testing its output
on German electricity prices data.

Keywords: electricity price; statistical method; autoregressive; probabilistic forecast; neural network

1. Introduction

The electricity market has always aroused the interest of many people due to the
importance of its product. One can find the beginnings of electricity price prediction in
the early 90s. It should be remembered that electricity is a specific commodity. It cannot
be stored economically and, therefore, necessitates a continuous balancing of production
and consumption; it depends on weather conditions, the season and the nature of human
activity. These characteristics are unique and they lead to a price dynamic that is not found
on any other market. It is often possible to recognize a day, weekly, or yearly seasonality and
possible sudden, short-term, and generally unforeseen price peaks. Moreover, the presence
of possible cycles characterizing this product can be characterized by irregularities, which
is then difficult to properly model.

Electricity Price Forecasting (EPF) is a field of energy prediction that is focused on
forecasting spot and forward prices on the wholesale power markets. It has become a
significant element for power companies in their decision-making and investment process.
Therefore, as usually happens within financially related areas, a number of EPF-related
questions have to consider specific time horizon constraints. Within standard literature, it
is customary to identify three types of forecasting horizons, namely: short, medium, and
long-term, which are then better specified accordingly to the particular financial problem.
As a general rule, one can consider: Short-term: a period of time ranging from few minutes
to few days in advance; medium-term: a period of time that ranges from a few days to a
few months; and, long-term: a period of time that ranges from some months to years. In
most cases, the forecast horizons are of the first two types, with particular emphasis on day
ahead previsions. Nevertheless, it is worth underlying that each of the above-mentioned
horizons has its own importance, indeed a company is typically obliged to program its
activities at different time scales. According to the particular time scale of interest, different
modeling approaches can be exploited. In particular, most of the used techniques belong to
the following five groups: statistical models, intelligent computing models, reduced form,
fundamental, and multi-agent models. In this paper, we will start focusing on the first two

Energies 2021, 14, 364. https://doi.org/10.3390/en14020364 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0317-4351
https://orcid.org/0000-0003-2561-8854
https://doi.org/10.3390/en14020364
https://doi.org/10.3390/en14020364
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14020364
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/2/364?type=check_update&version=2


Energies 2021, 14, 364 2 of 33

families, and then we combine them as to end up with a hybrid proposal representing the
major novelty of the present paper.

As to proceed further, let us first classify the possible predictions type. For point
forecasts, the goal is to predict the energy price at a given hour or day, usually within the
short time horizon framework. To this end, a high accuracy level is mandatory. During
recent years, a previous task lost in relevance in favour of so-called probabilistic predictions
based on intervals forecasting w.r.t. the determination of 38 related quantiles or even
aiming at predicting the characterizing entire probability distribution, see, e.g., [1] and the
references therein. Next, we will look, in more detail, at all of the above aspects of EPF by
applying specific models that were fed by average daily prices of the German electricity
market, from 2016 to 2018. For more recent references regarding statistical methods for
electricity forecasting, we refer the interested reader to e.g., [2–7].

This paper is structured, as follows: Section 2 briefly describes the possible types
of forecasts and the main characteristics of the German electricity market. Section 3
explains the special case of a probabilistic forecast. Section 4 presents, in detail, the models
that we will use for data analysis, especially regarding the SARIMA model (Seasonality
AutoRegressive Integrate Moving Average) and the methods of artificial neural networks
(ANN). The last section deals with the implementation of the aforementioned models on
the basis of the German-data set already mentioned. We conclude with a brief recap that
also provides critical remarks.

2. General Overview

Price forecasting constitutes a milestone in decisions making as to optimize market
industries’ strategies. In electricity price forecasting EPF related literature, we can distin-
guish three main types of predictions, according to requested previsions’ time lengths.
First, we can speak of short-term horizons, ranging from minutes to days, namely those for
which reliable forecasts for meteorological variables, e.g., wind speed, temperature, cloud
cover, etc., are available with sufficient accuracy grade. Short-term forecasts are mainly
appropriate for market operations, intraday trading, and system stability, see [8].

Medium-term forecasts cover horizons beyond reliable weather predictions, with-
out considering the large impact of technological and political uncertainty, with lead times
being measured in weeks, months, or longer periods. Such a type of forecasts is mainly
exploited for maintenance planning, reallocation of resources, bilateral contracts, valuation
of derivatives, risk management, and budgeting. In the end, we have long-term horizons
previsions, referring to everything from a few years to several decades. This type of fore-
casting is needed, for example, in order to address problems relating to long term future
investment, global planning for large companies or cities, particularly when the behaviour
of socio-economical conditions have to be taken into account, see, e.g., [9].

Price forecasting is essential for the energy market, with the latter typically being a
day-ahead market that does not permit continuous trading. Agents have to place their
offers and bids for electricity deliveries during each hour of the following day before a
specific market close time. Subsequently, prices are determined simultaneously during a
unit price auction for all load periods of the next days [8]. In electricity frameworks with
zonal price formation, as in Europe, there are day-ahead markets and intraday markets.
They begin to operate after the announcement of the results of the day-ahead auction and
run until a few minutes before delivery, trying to compensate for differences that result
from unexpected variations in demand or supply and positions in day-ahead contracts.

2.1. Type of Forecasts

Time series forecasting is the prediction of system changes in the future and, in general,
it is based on information regarding the past and current state of the phenomena we observe.
There are different types of forecasting approaches, and the right choice depends on the
goal that is to be achieved.
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2.1.1. Point Forecast

The series for the day-ahead price is usually obtained from an auction held once a
day, where each hourly price for the next day is announced at once. Load periods can last
less than one hour in the intraday markets, e.g., at the European Power Exchange (EPEX),
and half-hourly or quarter-hourly products are also traded. The day can be partitioned
in both cases into a finite number of load periods h = 1, . . . , H. Therefore, it is common
to indicate, with Pd,h, the price referring to day d, with load period h. A point forecast of
Pd,h, expressed by P̂d,h, is usually understood in the EPF literature as the expected value of
random variable indicating the price, i.e., E(Pd,h). One could extend this term to quantile
forecasts that are a reasonable starting point for probabilistic predictions.

2.1.2. Probabilistic Forecast

There exist two fundamental approaches for probabilistic predictions. The most
popular one is based on point prediction and the associated error distribution. A different
choice is to consider the distribution of the spot price as, e.g., in Quantile Regression
Average (QRA), see Nowotarski and Weron [10]. The focus can be on selected quantiles,
prediction intervals, or the overall predictive distribution. Let us consider the average
price at a future point in time, i.e., P̂d,h = E(Pd,h), as a “point prediction”. We can write
Pd,h = P̂d,h + εd,h, which means:

FP(x) = Fε(x− P̂d,h), (1)

where, with Fε, we refer to the distribution of errors that are associated with P̂d,h. Hence,
the distribution of errors has the same form as the distribution of prices. Indeed, it
is only shifted to the left by P̂d,h on the horizontal axis. The corresponding quantile
function q̂α,ε is likewise shifted concerning q̂α,P. Equivalently, in the sense of the inverse
empirical cumulative distribution function (CDF), we have: F̂−1

P (α) = P̂d,h + F̂−1
ε (α),

therefore obtaining the basic framework for the generation of probabilistic predictions from
distributions of prediction errors. Let us underline that probabilistic predictions can be
useful, e.g., when one needs information regarding huge future investments.

2.1.3. Ensemble Forecast

The probabilistic prediction concept is very general. Hence, it can happen that it
is not enough to solve many energy prediction problems and it might be difficult to
verify its validity. Indeed, P̂d,h is considered alone, independent of the predictions for the
adjacent hours. Nevertheless, rather than considering theH univariate price distributions,
we can focus on the H-dimensional distribution FP of the H-dimensional price vector
Pd = (Pd,1, . . . , Pd,H). Therefore, we need a prediction for the multivariate distribution,
but many models cannot supply such a direct distribution prediction. The latter problem
can be overcome while computing an ensemble forecast. We can define an ensemble as a
set of M paths EM(P̂d,h) = (P̂1

d , . . . , P̂M
d ) simulated from a forecast model, which is typically

obtained by Monte Carlo methods.

2.2. Modelling Approaches

Usually the techniques for electricity price forecasting (EPF) are divided into five
groups of models: statistically, computationally intelligent, reduced form, fundamental
and multi-agent. We will focus on statistical and computational intelligent (CI) models.

2.2.1. Statistical Approaches

Statistical approaches are used in order to predict the actual price through a weighted
combination of past prices and any current values of exogenous variables that could
be associated with electricity, such as weather forecasts or demand, usually via a linear
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regression. Autoregressive terms take into account the dependencies between prices of
today and those of the days before, e.g., a possible structure could be:

Pd,h = βh,0 + βh,1Pd−1,h + βh,2Pd−2,h + βh,3Pd−7,h

+ βh,4Pd−1,min + βh,5Ld,h

+ βh,6Dsat + βh,7Dsun + βh,8Dmon + εd,h,

(2)

where Pd,h denotes the price for day d and hour h, Pd−1,min represents the minimum of
the 24-h prices of the previous day (example of a non-linear component), Ld,h is the load
prediction for day d and hour h (known on day d−1), and (Dsat, Dsun, Dmon) are three
dummies for modelling the weekly seasonality. Some authors call expert models previous,
parsimonious structures, because they exploit a certain amount of experts’ prior knowledge.

The standard approach for estimating the model (2) is Ordinary Least Squares (OLS),
implemented by exploiting the electricity prices of the past D days in order to predict
prices for the next day(s). The optimal value D is not given a priori, instead it should be
chosen as to have a long enough estimation sample from which to extract samples, but not
too long as to avoid to give an exaggerate of weight to events far in the past. Overall, there
are no standard parameters. Many studies assume one or two years with hourly prices, but
some use just 10–13 days as short time windows, while others are up to four years long,
see, e.g., Marcjasz et al. [11].

Autoregression models represent the largest subset of statistical models, including

• similar-day methods, such as the naive method, which sets P̂d,h = Pd−7,h for Monday,
Saturday, or Sunday, and P̂d,h = Pd−1,h, otherwise,

• the generalized autoregressive conditional heteroskedasticity (GARCH) models, typi-
cally in connection with volatility forecasting, and

• shrinkage techniques, such as the least absolute shrinkage and selection operator
(LASSO), but also Ridge regression and elastic nets.

Statistical models are attractive, because one can add physical interpretations to
the regressors, being then useful to identify significant variables. Moreover, they allow
for operators to better understand models’ behaviors as to finally obtain models with a
meaningful structure. A well-known disadvantage of statistical models is the representation
of nonlinear factors, even if they can be approximated while using linear terms under
certain circumstances. However, non-linear dependencies can be explicitly included by non-
linear variables, like Pd−1,min in (2). Otherwise, spot electricity prices, as well as exogenous
variables, can be transformed by nonlinear functions before fitting a statistical model.

2.2.2. Computational Intelligence Methods (CI)

CI methods have been developed to solve problems that cannot be treated effi-
ciently with statistical methods, such as, e.g., the presence of non-linear terms, or when
a distribution-free approach is required. They combine different elements to create ap-
proaches that are able to analyze complex dynamic systems. In particular, they do not
need exact knowledge, but they can also be confronted with incompleteness. CI models are
flexible, and they are used for short-term predictions, being able to deal with different types
of non-linearities, but at the cost of high computational complexity. It is worth mentioning
that Statistics is more concerned with the analysis of finite samples, misspecification of
models, and computational considerations, while probabilistic modeling is inherent in
computational intelligence. Regarding Artificial Neural Networks (ANN) alternatives,
different options are effectively used. In general, one can mainly focus on three aspects to
identify a specific ANN algorithm for a prediction problem: data characteristics, solution
complexity, and desired prediction accuracy, see [12].

In order to summarize the conceptual difference between these two approaches, we
can observe Figure 1. Computational intelligence works more like a “black box”, in which
we can only decide a few parameters; each time that we train a network, we can get similar
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but slightly different results; the statistical approach models a certain relationship between
the data.

Figure 1. The computational intelligent (CI) method and statistical approaches.

2.3. The German Electricity Market

We will use price data from the German electricity market. The EPEX is the most
relevant trading platform for electricity prices in Europe, also being the most important in
terms of volume. It is also relevant from a policy point of view, since, for example, several
regulatory calculations are based on the day-ahead EPEX price, such as the feed-in tariffs
for renewable energies. It offers trading, clearing, and settlement in both the day-ahead
and intraday market. Day-ahead hourly prices in Germany are traded on EPEX and they
are referred to as “Phelix”, Physical electricity index. This index is the daily mean value
of the system price for electricity traded on the spot market, which is calculated as the
arithmetic mean of the 24-h market clearing price.

The day-ahead market is the primary market for electricity trading. Here, buyers
and sellers set up hourly contracts for the delivery of electricity the following day. This is
done through a daily auction, usually at 12:00, where the market clearing price, which is
commonly known as the spot price, is determined by matching supply and demand. Most
market designs choose a uniform-price auction market (see [13]): buyers with bids that are
above the clearing price pay that price, and suppliers with bids below that price receive
the same price.

The demand for electricity is a function of temperature, seasonality, and consumption
patterns, from which the periodic character of electricity prices is derived. Demand is very
price inelastic in the short term because consumers have few options available to them
in response to price changes. Positive price peaks are often caused by high (unexpected)
demand, cf. Figure 2. On the other hand, the merit-order curve plays a decisive role in the
electricity price formation process. It is derived by arranging the suppliers’ offers according
to rising marginal costs. The point of intersection of the demand curve with the merit order
curve, also called supply curve, determines the market clearing price, i.e., the electricity
spot market price.
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Figure 2. Electricity generation and consumption in August and September 2019. We can see the
total electricity generation and consumption every day of the period, see [14] (CC BY 4.0 license).

In times of low demand, base load power plants, such as nuclear power plants and
coal-fired power plants, generally serve as price-determining technologies. These plants
are inflexible, due to their high costs. In contrast, in times of high demand, the prices are set
by expensive peak load power plants, such as gas and oil-fired power plants. These plants
have high flexibility, high marginal costs, and they lead to a convex shape of the merit
order curve. With the lowest marginal costs, renewable energy sources are at the lower
end of the merit order curve. Wind and solar energy have attracted the most attention in
Germany, and regulatory changes are also the main driver for the growth of renewable
energies, as several subsidies and political measures have been recently introduced. There
is a large share of intermittent renewable energy sources, which makes the difficult task
of forecasting and describing prices of changing energy markets. The hours of increased
renewable energy supply are causing difficulties for inflexible plants that should be running
continuously. This is because inflexible base-load plants have shutdown and start-up costs
that force them to accept negative marginal returns in order to continuously generate
electricity. This has a lowering effect on electricity prices. Negative prices are mainly
caused by high wind production in times of low demand. Therefore negative price peaks
mainly occur at night. For further details, we refer the reader to [15].

3. The Probabilistic Approach

The probabilistic approach is based on a prediction that takes the form of a probability
distribution of future quantities or events. It allows for treating different types of problems,
also extending the spectrum of the point estimation approach, e.g., long-term forecast
becomes feasible.

3.1. The Problem

We can use a point forecast of the electricity spot price for the definition of the
probabilistic forecasting problem, i.e., the “best estimate” or expected value of the spot
price, see [16]. Notice that the actual price at t, Pt can be expressed as:

Pt = P̂t + εt, (3)

where P̂t refers to the point forecast of the spot price at time t, made at a previous time,
and εt is the corresponding error. In most of the EPF papers, the analysis stops here,
because the authors are only primarily interested in point forecasts, see [8].

The construction of prediction intervals (PI) is a very natural extension from point to
probabilistic forecasts. Several methods can be used for this purpose and a popular one
considerd both the point prediction and the corresponding error: at the (1− α) confidence
level, the center of the PI is set equal to P̂t and its bounds are determined by the α

2 th and
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1− α
2 th quantile of the CDF of εt. As to provide an example, for the 90% PIs, the 5% and

95% quantiles of the error term are requested.
A forecaster can further expand such an approach by considering multiple PIs. As a

finale result, we obtain a series of quantiles at many levels.
An appropriate discretization of the price distribution is also a set of 99 quantiles

(q = 1%, 2%, . . . , 99%). Generally, a density prediction that corresponds to (3) can be
referred to as a set of PIs for all α ∈ (0, 1). The calculation of a probabilistic prediction
requires an estimate of P̂t and the distribution of εt. Analogously, we reformulate it
inverting the CDF of Pt and εt, namely:

F−1
Pt

(q) = P̂t + F−1
εt (q). (4)

The probability forecast can be then defined as a probability distribution w.r.t. future
quantities. Such an identification can be then carried on while using random variables.
For our purposes, the latter implies the distribution of F̂Pt itself, which is the way that
is implied by the QRA method. It is worth mentioning that we are not considering the
Probability Density Function (PDF) of εt; moreover, since 24-h prediction distributions have
to be created in a single step, their interconnected probability properties have to be taken
into account all at once. Following [16], we can either try to model the correlation between
boundary distributions or we can simulate the 24-h paths characterizing the day-ahead
dynamics; hence, using a multivariate model.

3.2. Construction of Probabilistic Forecasts

There are several ways to construct a probabilistic interval. We report four of them,
mainly following [16].

3.2.1. Historical Simulation

We can use a historical simulation approach to compute the PIs. The latter is a path-
dependent approach that consists of evaluating sample quantiles out of the empirical
distribution for the εt errors’ quantities.

3.2.2. Distribution-Based Probabilistic Predictions

When the models used for time series are driven by noises of the Gaussian type,
which is the case, e.g., for the AR, ARMA, ARIMA, etc., methods, we directly use the
Normal distribution to model the density forecasts, while computing the PIs accordingly
via analytical tools. The latter differs from historical simulation because of the standard
deviation of the error that we are considering in modelling the density, let us indicate it by
σ̂, which is first calculated, then one considers the lower, resp. upper, bound of the PIs to
be set according to a N (0, σ̂2).

3.2.3. Bootstrapped PIs

An alternative method is the bootstrap one, which is often used within the NNs
scenario. When considered to produce step-ahead forecast, the bootstrap approach works,
as follows:

1. Provide an estimate for the parameters θ̂ characterizing the model and obtaining a fit
with corresponding set of residuals εt.

2. Provide a set of (simulated) data, which are then not real world based, with distribu-
tion that is steered by the parameters’ set θ̂ and normalized residuals ε∗t . The latter
means that, for a general autoregressive model of order r, w.r.t. variables (that consti-
tute the external sources of noise) P?

2 = P1, . . . , P?
r = Pr, we recursively define:

P∗t = β̂1P∗t−1 + · · ·+ β̂rP∗t−r + f̂ (Xt) + ε∗t , for all t ∈ {r + 1, . . . , T}. (5)

3. Provide a new estimation for the model to then compute the bootstrap one step-ahead
forecast for the new time step t = T + 1.
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4. Starting from the the bottom, repeat both step 2 and 3, N times to obtain the (boot-
strapped) price predictions: {P̂i

T+1}N
t=1.

5. Calculate the previously (step 4) quantities in order to provide the requested PIs

This type of construction is more accurate, because it takes both historical forecast
errors and parameter uncertainty into account. However, it is computationally heavier.

3.2.4. Quantile Regression Averaging

The method that was proposed by Nowotarski and Weron in [10] is called QRA and
it involves quantile regression for a group of point forecasts from individual forecasting
models. It is not necessary to split the probabilistic forecast into point forecast and error
term distribution, because it works directly with the electricity spot price distribution.
The quantile regression problem can be expressed as

QPt(q|Xt) = Xt βq, (6)

where QPt(q|Xt) represents the conditional q-th quantile of the electricity price distribution,
Xt are the explanatory variables, also called regressors, and βq is a vector of parameters
for the q quantile. Subsequently, minimizing the loss function for a given q-th quantile,
the parameters can be estimated. There is no limitation of the components of Xt. Until it
contains predictions from individual models, it is considered to be QRA.

3.3. Validity

In the case of a probabilistic forecast, the most important problem is that we do not
know the actual distribution of the underlying process. It is not possible to compare the
predicted distribution and the true distribution of the spot price of electricity with just the
values of prices that were observed in the past. Probabilistic forecasting can be evaluated
in several ways and the chosen method also depends on final goal that we aim to reach.
Of course, we can rely on tests and parameters to check the validity of the model and to
have criteria for choosing the optimal model. An evaluation is usually based on reliability,
sharpness, and resolution.

Statistical consistency between distributional forecasts and observations is called
reliability (or also calibration or unbiasedness). For example, if a 90% PI covers 90% of
observed prices, then this PI is considered to be reliable, well-calibrated, or unbiased.
The sharpness means how closely the predicted distribution covers the true distribution,
i.e., the concentration of predicted distributions. This is a property only of forecasts,
in contrast to reliability, which is a joint property of predictions and observations. Finally,
resolution represents how strongly the predicted density changes over time, in other words,
the ability to provide probabilistic predictions (e.g., wind power) depending on the forecast
conditions, e.g., wind direction.

To formally check whether there is an “unconditional coverage” (UC), i.e., whether
P(Id,h = 1) = (1− α) where Id,h = 1 if Pd,h is in the interval, we can use the approach
of Kupiec (1995), which allows for knowing whether Id,h, also known as an indicator for
“hits and misses”, is determined as a i.i.d. Bernoulli series, with an average of (1− α), i.e.,
violations are assumed to be independent. Because the Kupiec test is not based on the
order of the PI violations, but only on the total number of violations, Christoffersen (1998)
introduced the independence test and the conditional coverage test (CC).

It is generally more difficult to test the goodness-of-fit of a predictive distribution than
it is to assess the reliability of a PI. A very common method is to use the probability integral
transform (PIT)

PITd,h = F̂P(Pd,h). (7)

If the distribution forecast matches the actual distribution of the spot price process,
then PITd,h is uniformly distributed and independent, which can be verified by a statistical
test, see [17].
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In contrast to reliability, which is a joint property of observations and predictions,
sharpness is only a property of predictions. Sharpness is strongly related to the notion
of correct scoring rules. Indeed, scoring rules simultaneously evaluate the reliability and
sharpness [17]. The pinball loss (PL) and the continuous ranked probability score (CRPS)
are the two most popular correct valuation rules for energy forecasting: the former for
quantile predictions and the latter for distribution predictions. The pinball loss (PL) is a
particular case of an asymmetric piece-wise linear loss function:

PL(Q̂Pd,h(α), Pd,h, α) =

{
(1− α) (Q̂Pd,h(α)− Pd,h) for Pd,h < Q̂Pd,h(α)

α (Q̂Pd,h(α)− Pd,h) for Pd,h > Q̂Pd,h(α)
(8)

so PL depends on the quantile function and the actually observed price. The PL is a strictly
correct score for the α-th quantile. In order to obtain an aggregated score, the PL can be
averaged over different quantiles.

It is also necessary to have statistically significant conclusions regarding the out-
performance of the forecasts of one model by those of another model. For this purpose, we
use the Diebold Mariano (DM) test, which is an asymptotic z-test of the hypothesis that the
mean value of the loss differential series:

δd,h = S1(F̂Pt , Pt)− S2(F̂Pt , Pt) (9)

is zero, where Si(∗, ∗) is the score of the forecasts of the model (i = 1, 2). In the context of
probabilistic or ensemble forecasts, any strictly correct scoring rule can be used, for example,
the pinball loss. Given the loss difference series, we calculate the statistics:

DM =
√

T
µ̂(δd,h)

σ̂(δd,h)
, (10)

where µ̂(δd,h) and σ̂(δd,h) are the sample mean or standard deviation of δd,h and T represents
the length of the test period outside the sample. The fundamental hypothesis of equal
predictive accuracy, i.e., equal expected loss, corresponds to E(δd,h) = 0, in which case,
while assuming a steady-state covariance of δd,h, the DM statistic is asymptotically standard
normal and one- or two-sided asymptotic tail probabilities are easily computed. The
DM test makes a comparison between the forecasts of two models and not the models
themselves. In day-ahead power markets, the forecasts for all hours of the next day are
simultaneously made with the same set of information, implying that forecast errors for
a given day usually have a high serial correlation. Therefore, it is recommended to run
the DM tests separately for every load period considered, for example, at each hour of
the day. [18]. It is also worth mentioning that probabilistic forecast performance can
be improved, exploiting approaches that are related to regime-switching models, see,
e.g., [19,20].

4. Models

We now present the theory behind some possible models for forecasting the energy price.
We will see two statistical models and then one from the group of computational intelligence.

4.1. (S)ARIMA Models

Auto Regressive Moving Average (ARMA) models represent an important class of
statistical models for analyzing and forecasting time series data. The autoregressive
component uses the dependencies between observations and a given number of delayed
observations; the moving average component uses the dependency between an observation
and the corresponding residual error from a moving average model that is applied to
delayed observations. This type of model relates the signal to its own past and does
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not explicitly use information from other possible related time series. An ARMA(p, q) is
defined as

φ(B) Xt = θ(B) εt, (11)

where B denotes the backward shift operator, i.e., Bh = xt−h, φ(B) is the notation for the
polynomial of the autoregressive component

φ(B) = 1− φ1B− · · · − φpBp,

θ(B) for the polynomial of the moving average component

θ(B) = 1 + θ1B + · · ·+ θpBp,

and εt denotes a white noise WN(0, σ2). Thus, p and q are the orders of the two polynomials.
The observed time series is considered as a realization of a stochastic process, whose
parameters are the coefficients of the polynomials of the operator B, which determine the
properties of persistence (and also the variance of the white noise). This kind of model
assumes that the time series is stationary, i.e., mean and covariance of the time series shall
be time independent. Usually, the series has to be transformed into the stationary form
by differentiation. A model that explicitly includes differentiation is a generalization of
the ARMA model for non-stationary time series: the “Auto Regressive Integrated Moving
Average” (ARIMA) models. The equation of a ARIMA(p, d, q) is given by

φ(B)∇dXt = θ(B) εt, (12)

where ∇xt ≡ (1− B)xt is the lag-1 differencing operator, a particular case of the general
lag-h differencing operator that is given by

∇h xt ≡ (1− B)h xt. (13)

If d = 0, ARIMA(p, 0, q) ≡ ARMA(p, q), i.e., ARIMA processes reduce to ARMA
processes when differenced finitely many times.

Seasonality fluctuations are indeed caused by changing climatic conditions that in-
fluence demand and supply. For this reason, we introduce a model that can handle this
behavior: the Seasonal Autoregressive Integrated Moving Average (SARIMA) process.
The notation for a SARIMA model with both seasonal and non-seasonal parameters is
SARIMA(p, d, q)× (P, D, Q)s. Here, (p, d, q) indicates the order of the non-seasonal part,
while (P, D, Q)s is the seasonal part. The parameter s represents the number of observa-
tions in the seasonal pattern, e.g., for monthly data, we would have s = 12, for quarterly
observations s = 4, etc. The SARIMA model is defined by the following formula:

φ(B)Φ(Bs)∇d∇D
s Xt = θ(B)Θ(Bs)εt. (14)

Any SARIMA model can be converted to an ordinary ARMA model in the variable
B̃ = ∇d∇D

s B. Consequently, the estimation of the parameters of ARIMA and SARIMA
models is analogous to that for the ARMA processes.

Time Series Analysis in the Simple Case of an ARMA Model

In what follows, we recall basic steps of time series analysis via the ARMA model, we
refer to [21] for more details. This approach is also known as Box and Jenkins method, by the
name of its authors, namely George Box and Gwilym Jenkins. The main methodological
assumption here is to consider data as drivers of the model and not vice versa, so that the
time series can “speak for itself”. The ARMA scheme can be summarized, as follows:

1. Preliminary analysis: it is necessary to know the main features of the series such,
e.g., its stationarity. To this aim, so-called “unit roots tests” are often used as well as
the Dickey–Fuller test, see [22].



Energies 2021, 14, 364 11 of 33

2. Order selection or identification: It is important to select appropriate values for
the orders p and q. One can start by analyzing the total Autocorrelation Function
(ACF) and Partial Autocorrelation Function (PACF), and then make some initial
guesses based on their characteristics, see [21]. From these, one can obtain more
reliable results while using various “Information Criteria” (IC), such as Akaike In-
formation Criteria (AIC) and Baesyan Information Criteria (BIC). ICs are indexes
trying to find a balance between the goodness of fit and the number of parameters.
A “penalty factor” is included in the ICs to discourage the fitting of models with too
many parameters. Hence, the preferred model is the one that minimizes the specific
IC considered.

3. Estimation of the coefficients: once p and q are known, then the coefficients of the
polynomials can be estimated, e.g., by a least squares regression or with a maximum
likelihood method. In most cases, this problem can be solved with numerical methods.

4. Diagnostic check: to check whether the residuals, follow a random process. If the fitted
model is suitable, the rescaled residuals should have similar properties to a “white
noise” WN(0, 1) sequence. One can observe the sample “autocorrelation function”
(ACF) of the residuals and perform tests for randomness, e.g., the Ljung–Box test, see,
e.g., ([21](Chapter 1)).

If the results are not satisfactory, the above described procedure can be restarted with
a different order selection. Once the model has successfully passed the verification phase,
then it can be used for forecasting.

4.2. Seasonality and Its Decomposition

There are different ways to deal with seasonality. An option consists in trying to find
out what kind of seasonality we have and see whether it is possible to include it in the
model, e.g., by using the SARIMA model. Otherwise, one can remove the seasonality at all.

In order to deseasonalize our series, we will use the MATLAB function deseasonalize
written by Rafał Weron, see [13], and whose mathematical basis are described in what
follows. In particular, such a function returns the deseasonalized data, the Short-Term Sea-
sonal Component (STSC) and the Long-Term Seasonal Component (LTSC) obtained from
the original data series. It also creates the periodograms of the original and deseasonalized
data. With more detail, spectral analysis involves identifying possible cyclical patterns of
data, so as to break down a seasonal time series into a few underlying periodic (sine and
cosine) functions of certain wavelengths. It is known that the variability of many physical
phenomena can depend on frequency. Therefore, the information regarding frequency
dependence could lead to a better knowledge of the true mechanisms. Spectral analysis
and its basic tools, such as the periodogram, can be useful in this direction. Let us recall
that, for an observation vector x1, . . . , xn, the associated periodogram (or the pattern analog
of spectral density) is defined as:

In(ωk) =
1
n

∣∣∣
n

∑
t=1

xt e−i(t−1)ωk
∣∣∣
2
, (15)

where ωk = 2π(k/n) represents the Fourier frequencies that are expressed in radians per
unit time, k = 1, . . . , [n/2], while [x] means the largest integer that is less than or equal to
x, see, e.g., [23] for further details.

This function implements a simple but quite efficient method for eliminating the
short-term seasonal component. The concept is to divide data into a matrix with rows of
length T and then to take the average or median of the data in every column. In order to
provide an example, we can think about seven element rows for a week period, calculated
in average daily data. The obtained row vector, again of length T, constitutes the estimate
of the seasonal component and it is the part to subtract from the original series.
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The Wavelet Decomposition for the Long-Term Seasonal Component

After removing the weekly or daily seasonality from the data, one is often faced with
the annual cycle. Even if a sine function is often a natural and good first approximation
of the annual cycle, there are markets where it is revealed to not be the right choice, as in
the case of the German market. Indeed, the latter has no recognizable annual seasonality
and one can notice that spot prices behave similarly across the year, with peaks occurring
in both winter and summer, as can be seen in Figure 3. One possible option is to use a
wavelet decomposition, as suggested by Weron in [13].

A wavelet family consists of pairs of “father” (ϕ) and “mother” (ψ) wavelet. The
former is the “low-frequency” smooth components: those that require wavelets with the
greatest support, while the latter intercepts the “higher-frequency” detail components. In
other words, father wavelets are used for trends or cycle components, and parent wavelets
are used for any deviation from the trend, see [13,24]. More specifically, a signal wavelet
decomposition uses one father wavelet and a sequence of mother wavelets:

f (t) = SJ + DJ + · · ·+ D1, (16)

where SJ = ∑k sJ,k ϕJ,k(t) and Dj = ∑k dj,kψj,k(t). The coefficients sJ,k, dJ,k, and dJ−1,k, . . . , d1,k
represent the wavelet transform coefficients that quantify the contribution of the corre-
sponding wavelet function to the approximating sum, while ϕJ,k and ψj,k(t) are the ap-
proximating father and mother wavelet functions, respectively. As soon as the signal is
decomposed with (16), the procedure can be inverted to obtain an approximation to the
original signal. If you want to use an unrefined scale, f (t) can be estimated by SJ . The
signal can be estimated by SJ−1 = SJ + DJ for a higher degree of refinement. At each step,
we obtain a better estimate of the original signal by adding a mother wavelet Dj to a lower
scale j = J − 1, J − 2, . . . . The reconstruction process can always be interrupted, especially
when we reach the desired accuracy. The resulting signal can be seen as a de-noised (or
filtered or smoothed) time series. Figure 3 shows both the deseasonalization results and
the periodogram.

(a) Deseasonalization (b) Periodogram

Figure 3. Example of results of “deseasonalize” on the three years.
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4.3. Expert Models

The basic structure of an expert model is an autoregressive model, but other exogenous
or input variables can be, and, in fact, are, also introduced. The latter is due to the fact
that electricity prices are not only connected to their own past, but they are also influenced
by the current and past values of different exogenous variables, such as energy loads and
weather changes.

4.3.1. The ARX MODEL

Within this expert model, the centred log-price on day d and hour h is determined by:

Pd,h = βh,1Pd−1,h + βh,2Pd−2,h + βh,3Pd−7,h + βh,4Pd−1,min + βh,5Ld,h

+ βh,6Dsat + βh,7Dsun + βh,8Dmon + εd,h
(17)

where we assume the εd,h to be independent and identically distributed normal random
variables. We define this autoregressive benchmark with ARX in order to underline that,
in (17), the (zonal) load forecast is used as an exogenous variable. In contrast to naive
models, which did not require parameter estimation, we have to estimate the model
characterizing parameters.

4.3.2. The mARX Model

It can be advantageous to use not only different parameter sets, but also other model
structures for each day of the week, see [18]. For example, the multi-day ARX model or
mARX approach, defined, as follows

Pd,h =
(
∑
i∈I

βh,1,iDi

)
Pd−1,h + βh,2Pd−2,h + βh,3Pd−7,h + βh,4Pd−1,min + βh,5Ld,h

+ βh,6Dsat + βh,7Dsun + βh,8Dmon + βh,11DmonPd−3,h + εd,h

(18)

where I ≡ {0, Sat, Sun, Mon}, D0 ≡ 1 and the term DmonPd−3,h explain the autoregressive
effect of Friday’s prices on Monday’s prices for the same hour. Notice that this structure
is similar to periodic autoregressive models to a certain extent (i.e., PAR, PARMA). We
could estimate both autoregressive models, hence ARX and mARX, exploiting least squares
(LS) methods.

4.4. Artificial Neural Networks (ANNs)

The basic idea behind ANNs methods is to build algorithms that gradually learn
from input data. They are mainly inspired by the structure and functioning of the human
brain, which justifies the name: Artificial Neural Networks, or simply NNs. A remarkable
property of NNs, which is also the main point distinguishing them from statistical methods,
relies on the fact that they are trained from data through a “learning process”.

Indeed, a NN is based on a structure of interconnected nodes, called artificial neurons
and organized in layers. As it happens in a human brain via synapses, such components
can transmit signals to other neurons. To be more precise, there is an input layer of source
nodes that projects onto an output layer of neurons, possible intermediate steps being
possible according with the presence of one or more hidden layers whose function is to
mediate between the external input and the network output Figure 4. The more hidden
layers we consider, the more higher order statistics are accessible, see, e.g., [25] for details.

Many different types of NNs have been considered over the years, each of which with
own properties and possible applications. A key distinction is made between NNs whose
compounds form “cycles” and those whose compounds are “acyclic”. NNs with cycles
are called recursive, feedback, or recurrent neural networks, while NNs without cycles are
called feedforward neural network (FNN). However, both of them have the three basic
components in common: a set of synapses, each of which is characterized by a weight
representing the relevance of the connection it realizes between neurons, an adder allowing



Energies 2021, 14, 364 14 of 33

to sum input signals and an activation function in order to both limit the amplitude of
neurons’ spikes and introduce possible nonlinearities into the neurons’ output.

Figure 4. Example of a structure of a simple Neural Network (NN).

In mathematical terms, we can describe a neuron k by writing the following:

vk =
m

∑
j=1

wkj xj and yk = ϕ(vk), (19)

where xj are the signals, wj are the synaptic weights of a neuron k, ϕ is the activation
function, which maps a node’s inputs to its corresponding output, and yk the output signal
of the neuron.

There exist different activation functions, such as, e.g., the logistic sigmoid function,
or the tanh function:

σ(x) =
1

1 + exp(−x)
, or tanh(x) =

e2x − 1
e2x + 1

. (20)

Previous functions are linked by the following linear transformation:

tanh(x) = 2σ(2x)− 1 , (21)

implying that any function that is computed by a neural network with a hidden layer
of tanh units can also be computed by another network with logistic sigmoid units
and vice-versa.

Weights are calibrated while using an optimization algorithm minimizing a given loss
function. The standard choice in this context is to consider the Stochastic Gradient Descent
(SGD) optimizer, along with the Root Mean Squared Error (RMSE) as a loss function. The
basic idea of gradient descent consists in finding the derivative of the loss function w.r.t.
each of the network weights, then adjusting them along the negative slope direction. The
“back-propagation” technique provides an efficient method for computing such a gradient,
see, e.g., [26,27].

Once all of the data points have passed through the network, we say that an epoch is
complete, i.e., an epoch refers to a single pass of the entire data set through the network
during training. This procedure is repeated several times: this is what “training the
network” means. At the end of each epoch, the loss of a single output is evaluated and
it is possible to calculate the gradient of this loss in relation to the selected weight. The
path to this minimized loss occurs in several stages, with its magnitude depending on the
learning rate, which is typically between 0.01 and 0.0001. Therefore, the new weight is the
old weight minus the learning rate times the gradient.
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In summary, the workflow for the general NN design process comprises six primary
steps: creating the network, configuring the network, initializing the structure, training the
network, validating the network (post-training analysis), and using the network, see [25].
For our data analysis, we will use a special category of Recurrent Neural Network (RNN),
called Long Short Term Memory (LSTM).

Recurrent and Long-Short Term Memory Networks

RNNs allow for cyclic connections, i.e., when time series are involved and we do not
want to lose information regarding past relationships between data. In fact, an RNN with
enough hidden units can approximate any measurable sequence-to-sequence mapping with
any degree of accuracy, see, e.g., [28] for details. This allows for the network to remember
earlier inputs. Indeed, the output at time t is not only connected to the input at time t,
but additionally to recursive signals before that time. A problem arises when the gradient
becomes too small, hence preventing the weight from changing its value, potentially
inhibiting the neural network from further training, see [29]. For such a reason, RNNs are
not suitable to provide time series predictions when, e.g., learning of dependencies over
long distances or long-term storage of contexts are required. This problem can be solved
by a variant of the RNN: the long-term short-term memory (LSTM) architecture [29].

We will now briefly review how LSTM-based architectures work, see, e.g., [29,30],
Figure 5 for more details. In what follows, σ and tanh from (20) are used as activation
functions, with other choices being possible according to specific purposes.

• We define an input at time t as (Xt) and the hidden state from the previous time step
as (St−1), which is inserted into the LSTM block. Subsequently, we have to calculate
the hidden state (St).

• It is important to decide which information from the cell state should be discarded.
This is decided by the following “forget gate”:

ft = σ(Xt U f + St−1 W f + b f ). (22)

• Then you must determine which new information should be saved in the cell state.
This part consists of two steps: firstly, the “Input-Gate” layer (it) determines which
values are updated. Secondly, a tanh layer creates a vector of new candidate values C̃t.
These two can be written as

it = σ(Xt Ui + St−1 Wi + bi), C̃t = tanh(Xt Uc + St−1 Wc + bc). (23)

• We can obtain the new cell state Ct updating the old cell state, Ct−1, as:

Ct = Ct−1 ⊗ ft ⊕ it ⊗ C̃t. (24)

• Finally, the chosen output will be based on the cell state, but it will be a sort of filtered
version. At this point, the output gate (ot) determines which parts of the cell state
should be computed as output. Subsequently, the cell state passes through the tanh
layer and it is multiplied by the output gate

ot = σ(Xt Uo + St−1 Wo + bo), St = ot ⊗ tanh(Ct). (25)
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Ct−1
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Figure 5. Example of a LSTM’s memory block, where ft, it, ot mean forget, input, and output gates,
respectively; τ and σ represent the tanh and sigma activation functions of [30].

5. Data Analysis

Our analysis is based on three years of hourly energy prices data for the German
electricity market, i.e.: from 01.01.2016 to 31.12.2018. We will consider the daily average for
each day, for a total of 1096 observations. We use historical observations, our endogenous
variable, as input, aiming at forecasting the related future values as output. Subsequently,
we are considering a regression type problem. Indeed, we want to create a multilevel
forecast of a numerical quantity. Our time series is coherent, because the observations are
collected and structured uniformly over time, e.g., we have a seasonal pattern.

First of all, it is important to have a general idea of the behavior of the data. As an
example, we record the data for the year 2016 and, additionally, their monthly average as
well as two weeks in May. We can see the pattern of weekly seasonality, see Figure 6b: we
can clearly see the weak seasonality and the difference between Mon–Fri and the weekend.
This example proves the dependence of the price on external factors, like business activities,
etc. There are some outliers and, on average, the same days show a negative price. For more
details on how peaks are handled in the energy market, see, e.g., [31].

(a) Plot of daily (blue) and monthly (red) average
for the year 2016

(b) Two "ordinary" working weeks in May

Figure 6. Data visualization.

5.1. From the Probability Density Function to a Possible Realization of the Stochastic Process

There are some interesting questions that we would like to answer, for example:
whether it is possible to estimate a stochastic process that obeys a certain PDF; whether
we can create a kind of forecast from it; and, whether it could be a suitable starting point
for more structured forecasts. This approach could help a user to have a better knowledge
of his future probable data for a mid-term period. We start by describing the general idea
from a mathematical point of view, and we see how we can try to apply it. We introduce
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the rejection method and one of its improvements, for more details, see, e.g., [32]. They
generate random variables with the non-uniform distribution.

The Rejection Method

The rejection method creates a random variable with a given PDF f by using two
independent generators U(0, 1). The idea of John von Neumann is to create a box [a, b]×
[0, c] containing the graph of f . Subsequently, a random point (U, Y) in the box and U is
accepted if the point is below the graph. This is a simple rejection algorithm that can be
generalized for a d-dimensional PDF:

1. Generate U ∼ U(a, b) from U = a + (b− a)U1 with U1 ∼ U(0, 1).
2. Generate Y ∼ U(0, c) from Y = cU2 with U2 ∼ U(0, 1).
3. If Y ≤ f (U), then accept X = U, or else reject U and return to step 1.

Subsequently, we know from the Fundamental Theorem of Simulation that the random
variable X that is generated by the general rejection algorithm has the PDF f .

5.1.1. Marsaglia’s Ziggurat Method

The Marsaglia’s Ziggurat method Figure 7 is a highly efficient rejection method [33],
which can be implemented, e.g., in MATLAB while using the function randn. It is based on
an underlying source of uniformly distributed random numbers, but it can also be applied
to symmetric unimodal distributions, such as the normal one. An additional random sign
± is generated for the value that is determined by the Ziggurat method applied to the
distribution in [0, ∞). Instead of covering the graph of a given PDF f with a box, the idea
now is to use a “ziggurat of rectangles”, a cap and a tail, which all have the same area.
These sections are selected, so that it is easy to choose uniform points and determine
whether to accept or reject them.

Figure 7. The Ziggurat basic idea.

For the sake of simplicity, we assume that f has support in [0, ∞) and decreases
monotonously. For a given number M, we ask for the nodes 0 = x0 < · · · < xM < ∞,
so that the ziggurat rectangles Zi and the tail Z0 have the same area. Subsequently, the
Ziggurat method reads:

1. Choose i ∈ 0, . . . , M at random, uniformly distributed. Generate U ∼ U(0, 1).
2. If i ≥ 1, then

• Let X = Uxi.
• If X < xi−1 then return X,

else generate Y ∼ U(0, 1) independent of U.
If f (xi) + Y

(
f (xi−1)− f (xi)

)
< f (X), then accept X, otherwise reject.
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3. If i = 0 then
• Set X = (νU)/ f (xM)
• If X < xM, accept X,

or else generate a random value X ∈ [xM, ∞) from the tail.

It is important to realize that the resulting distribution is exact, even if the ziggurat
step function is only an approximation of the probability density function.

5.1.2. The Function Randn and Its Possible Application

Let us consider the summer season (01/06–31/08) of the average daily price for the
two years 2016 and 2017 in order to obtain similar data. A natural question arises: whether
it is possible to create a probable realization for the summer of 2018 (or only for one period),
while taking the probability density functions of the previous data into account. Before
continuing, we first standardize the data so that they have a normal distribution in the
mean. In the following figure, we can observe the behavior of our data for this particular
period. In Figure 8a, we can observe that 2016 and 2017 are very similar, while the 2018
data are much higher on average.

Afterwards, we use the MATLAB function randn, implemented with the Ziggurat’s
algorithm with the options: X = randn(_,′ like′, p) returns an array of random numbers
like p. X will be our possible realization for summer 2018. For example, if we generate
1000 paths and evaluate the RMSE, we get, in Figure 9, the following histogram, where we
can check that the values are mainly in the range [1.35,1.46]. As an example, we could get
with RMSE = 1.33:

(a) Original data (b) Standardised data

(c) Densities

Figure 8. Behaviour of data and their densities.
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(a) Example (b) Histogram of RMSE

Figure 9. Example of a possible realisation with standardised data.

It is important to see what could happen if we perform the inverse standardization
procedure; Figures 9 and 10 show the results. We conclude that such a big difference
could be due to the fact that summer 2018 was quite different from the last two summer
times. Additionally, the data densities are not completely unimodal and symmetric, so the
algorithm may not work properly. Therefore, one can say that this first approach gives
better results if the situation is regular over time and always follows the same “trend”, or
if one has access to additional information and variables that can improve performance.
Indeed, applying the same procedure, but only considering 2016 to provide a forecast for
2017, we obtain Figure 11. We can also note that any possible realization never reaches an
“outlier” or a particularly high spike.

Finally, our opinion is that this approach cannot be very useful from a practical point
of view. In fact, even if it can be used to get a general idea of the medium and long term, it
does not provide an adequate level of accuracy for the required forecasts.

(a) Example (b) Histogram of RMSE

Figure 10. Use of summer of 2016 and 2017 for possible data of summer in 2018.
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(a) Example (b) Histogram of RMSE

Figure 11. Use of only the summer of 2016 for possible data of summer in 2017.

5.2. Example with SARIMA Model

In this section, we present the results of a forecast that was obtained by implementing
a SARIMA model. We use the Matlab model sarima with the parameters while using the
estimator and the function forecast to predict the average prices for the next few days
in order to calculate the forecast. We try to predict two weeks of the year 2018, and we
will use three different training periods: one year (2017), the spring/summer season from
April to September 2017, and the autumn/winter period from October 2016 to March 2017.
Table 1 shows the parameters that are used for each analyzed period. With s = 7, we refer
to the fact that we implement a weekly seasonality, as our kind of data suggests.

Table 1. SARIMA model’s parameters.

Training Period SARIMA(p, d, q)× (P, D, Q)s

One year (2, 0, 2)× (1, 0, 1)7

Spring/Summer (2, 1, 2)× (1, 1, 1)7

Autumn/Winter (3, 1, 3)× (1, 1, 1)7

In addition, a test can also be performed to check the fit of the model, e.g., the
well-known “Ljung-Box Q-Test”, for more details, see [34]. We test it for 20 lags with a
significance level of 0.05. For all of the tested models, we do not have to discard the null
hypothesis, so that we can consider them to be good and reasonable models for our data.
The correlations in the population from which the sample is drawn are 0, so that all of the
correlations observed in the data result from the randomness of the sampling procedure.

Figure 12 shows the results of the forecasts and their confidence intervals at 95%. In
Table 2, we see the values of the RMSE: a shorter and more specific time period for the train
has a better outcome.
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(a) Comparison between target and forecast
values for two weeks with a training of the whole

year 2017.

(b) Comparison between target and forecast
values for two weeks with a training of

spring/summer of 2017.

(c) Comparison between target and forecast
values for two weeks with a training of

autumn/winter of 2016/2017

Figure 12. Comparison between target and forecast values for two weeks with the given training data.

Table 2. Summary of the Root Mean Squared Error (RMSE).

Train Period One Year Spring/Summer Autumn/Winter

RMSE 21.5418 12.5163 8.1396

The results may not be very accurate, but let us note that we are considering a daily
average of the price. Therefore, it is more important that the general trend shows similar
behavior. In addition, we can observe that fluctuations occur for certain periods of time,
but these latter are not as regular as for other types of data, which implies a higher level of
difficulties in analyzing these data.

5.3. ARIMA Model

Because our series are quite long, it may not be sufficient to model weekly seasonality,
but it may be necessary to include other components. As in the SARIMA example, we will
start by modeling 2017 so as to provide a forecast for the first two weeks of 2018. Subse-
quently, we will see the results referring at only one period of the year (spring/summer;
fall/winter).

• We decide to deseasonalize the series while using the Matlab function deseasonalize,
see Section 4.2. It considers both a short-term and a long-term seasonal component.

• We have used an Augmented Dickey–Fuller test to verify that our deseasonalized
series is stationary. It tests the null hypothesis that a unit root is in a time series sample.
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In Matlab, we can use the function adftest; it returns a logical value with the rejection
decision for a unit root in a univariate time series. For example, the result ad f = 0
indicates that this test does not reject the null hypothesis of a unit root against the
trend-stationary alternative.
In our cases, we have that the series is not stationary, so we can differentiate it, then
obtaining the series to become stationary, which is equivalent to having d = 1.

• Our goal now is to find a suitable ARIMA(p, d, q) model for estimating the series.
To guess a plausible order of the parameters, we consider the autocorrelation and
partial autocorrelation functions, as proposed in the procedure of Box and Jenkins.

• We try to estimate different types of models, then choosing the one minimizing
the information criterion AIC and BIC. In particular, we end up with choosing
ARIMA(1,1,2):

(1− φ1B)(1− B) xt = (1 + θ1B + θ2B2) εt. (26)

• Subsequently, we calibrate our parameters in order to optimize the error in the L2

norm of the difference between the Probability Density Function (PDF) of the data
and the forecast we calculated based on the estimated model. The PDF is estimated
by the Matlab function ksdensity. It uses a non-parametric method, called kernel
density estimation. We are interested in estimating the form of the density function f
from a sample of data (x1, . . . , xn); its kernel density estimator is

f̂h(x) =
1

nh

N

∑
i=1

K
( x− xi

h

)
, (27)

where K is the kernel, h > 0 denotes a smoothing parameter, called bandwidth, and N
denotes the number of observations. By default, K is set as the normal density function.

• The optimal prediction results from the solution of this problem:

min
φ1,...,φp ,θ1,...,θq

‖PDF(forecast){φ1,...,φp ,θ1,...,θq} − PDF(data)‖2, (28)

where φ1, . . . , φp, θ1, . . . , θq are the parameters of the chosen model, and we choose
a compact interval of R, where they can vary before solving the problem. With
PDF(forecast), we denote the estimated density function from the obtained forecasts.
In order to solve this minimization problem we use the Matlab function fminsearch,
which determines the minimum of a multi-variable function using a derivative-free
method. In this case, we use the Matlab function arma_forecast for the point forecasts,
see [35]. In particular, fminsearch uses the Nelder–Mead simplex algorithm, which is
a direct search method that does not use numerical or analytical gradients. Indeed, it
depends on the given initial values. In particular, we use the parameters that come
from the first estimate of the ARIMA model.
Let us note that such an approach differs from the one that was used by Ziel and
Steinert, see [9]. In fact, the optimal parameters of the problem are given by the
solution of minimizing the BIC criteria while using the lasso technique. The general
idea is that, for a linear model Y = β′X + ε, the LASSO estimator is given by:

β̂ = min
β
‖Y− β′X‖2

2 + λ‖β‖1 (29)

where λ ≥ 0 is the penalty term.
• We plot the density functions and see the results in Figure 13.
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Figure 13. Estimated density functions of forecasted and original data.

• In Table 3, one can compare between the error of the difference before and after
optimization:

Table 3. Errors before and after the optimization

Forecasted Days Error before Error after
14 1.83 ·103 0.1098

• Finally, we try to implement the idea that is described in Section 5.1. In view of the
Probability Density Function (PDF) of the point estimates, we can guess a possible
realization of the future period, for example, for the first three weeks of January 2018.
A plausible result can be observed in Figure 14.

(a) Possible path for three future weeks of 2018 (b) Histogram

Figure 14. From PDF to the stochastic process.

Now, we follow the same steps—test for stationary, identification of the model, cali-
bration of the parameters—to see whether we can achieve an improvement of the RMSE
by reducing the number of observations and choosing a certain time period for training
and testing (see Table 4). Therefore, we first use the autumn/winter period and then the
spring/summer period (See Figures 15 and 16).

Table 4. Summary for the two restricted period.

Period ARIMA Forecasted Days Error before Error after

Autumn/Winter (2,0,0) 14 days in January 1.7390 0.1223

Spring/Summer (1,1,4) 14 days in June 11.1979 0.1375
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(a) Estimated PDF (b) Possible path for two weeks of
June 2018

(c) Histogram

Figure 15. Summary of results for spring/summer period.

(a) Estimated PDF (b) Possible path for two weeks of
January 2018

(c) Histogram

Figure 16. Summary of results for autumn/winter period.

Let us note that the values of RMSE are now generally not as high as in the case that
is considered in Section 5.1. This is due to the fact that we use a more structured procedure
in the preparation of our forecast. We are aware that this type of approach may not be
appropriate if we want to achieve a high degree of accuracy; there are already a lot of other
methods for this purpose. Here, we try to imagine a plausible trend for future data within
a medium-term period. Such an approach in combination with ARIMA leads to better
results when the behavior of the series is quite regular, as already mentioned and as it is
the case when dealing with statistical models.

5.4. Neural Networks

For the same data, we try to use an ANN to calculate the forecast. In particular, we
implement in MATLAB the LSTM architecture from Section 4.4. The selection of a suitable
representation and preprocessing of the input data plays a central role in any machine
learning task. However, neural networks have the tendency to be relatively robust to the
choice of input representation, see [26]. The only requirements for input representations
of NNs are that they are complete, i.e., that they contain all of the information needed to
successfully predict the output. Although irrelevant inputs are not a major problem for
NNs, a large input space could lead to too many input weights and poor generalization.

A common procedure is the standardization of the components of the input vectors.
This means that, first, the mean value and standard deviation are calculated with the
classical estimators:

µ =
1
N

N

∑
i=1

xi, and σ =

√√√√ 1
N − 1

N

∑
i=1

(xi − µ)2, (30)

then compute the standardised input vector x̂ with x̂ = x−µ
σ .
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This method does not change the training set information, but it does improve the
performance by moving the input values to a range that is more appropriate for the
standard activation functions. Standardizing the input values can have a great impact on
the performances [26].

Once we have standardized, we train the network exploiting specific Matlab functions.
In particular, we use the function trainNetwork, specifying the train set, the lstmLayers,
and appropriate options for the training. With the function trainingOptions, which is
part of the Matlab Deep Learning Toolbox, we can set all of the parameters that we need,
see Table 5. It is worth mention that there is not a specific procedure for selecting these
values. Contrary to what we saw for the (S)ARIMA example, we do not have any criteria
or index that we can exploit to justify a choice. Here, the decision is made after several
attempts. There are two main problems to pay attention to. The first one is the so-called
over-fitting. This implies that it is fundamental to prescribe an appropriate number of
epochs for the training phase. For example, we can stop once we see that the loss function
is stable, or we can try to optimize the parameters: a very high number of hidden layers
could be complex to handle from a computational point of view.

In Table 5, we also see the duration of the training. The training time is another
difference to the statistical methods, which are more immediate. Here, the elapsed time is
about 1 min., but, for larger data sets, this value can become hours.

Table 5. Summary of Neural Network architecture in Matlab.

Number of Epochs 250

Hidden Layers 200

Initial Learn Rate 0.005

Elapsed Time 1 min 8 s

We know that the purpose of the SGD during training is to minimize the loss between
the actual performance and performance expected by our training masters. The loss
minimization is progressive. The training process begins with randomly set weights, and
then these weights are updated incrementally as we get closer to the minimum. The steps
size depends on the learning speed. During training, once the loss has been computed for
our inputs, then the gradient of that loss is computed in relation to every weight in the
model. We can observe this type of process in Figure 17a: We see that the loss function, the
RMSE, is minimized epoch by epoch.

Having obtained gradients values, we multiply them for the learning rate, whcih
results in small numbers, usually between 0.01 and 0.0001. Nevertheless, the actual value
can change, and any value that we obtain for the gradient will be smaller after we multiply
it by the learning rate. If we set the learning rate on the higher part of this range, then there
is a risk of overshoot. This happens when we take a “too big” step toward the minimized
loss function and exceed this minimum and miss it. We can avoid this by setting the
learning rate to a value on the lower side of the range. Our steps will be very small with
this option, so it will require more time to reach the point of loss minimization. Overall,
the act of choosing between a higher and lower learning rate leaves us with this kind of
compromise idea. All of these starting parameters are something to test, and then you can
choose the more suitable one for the problem, it is impossible to determine them in advance.
When considering the example with statistical methods, where we have information criteria
that can lead us to optimal parameters, in this case we can only observe the final RMSE and
the course of the training process. For example, if we see high peaks or irregularities until
the end of the training, it might be necessary to add some epochs; conversely, if the loss
function suddenly becomes very low and remains constant, then we can decide to reduce
the number of epochs or decrease the learning rate to avoid over-fitting phenomena.

In the following figures, we can see the results: the training procedure, a comparison
between forecasts and original data and the comparison between densities.
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(a) Training Process (b) Forecasts

(c) Densities

Figure 17. Summary of the results of long-term short-term memory (LSTM) network on one year
data for two weeks forecast.

As done in the previous sections, we can repeat the same procedure while using the
spring/summer period, Figure 18; and then using the autumn/winter period, Figure 19
and Table 6.

Table 6. Summary of Neural Network architecture in Matlab for the summer and winter period.

Spring/Summer Autumn/Winter

Epochs 280 250

Hidden Layers 190 190

Initial Learn Rate 0.009 0.007

Elapsed Time 56 s 43 s

We can observe that we obtain good results and that it is possible to simplify calcula-
tions shortening the period as well as to obtain more precision for a given season, as done
for previous analysis.
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(a) Training Process (b) Forecasts

(c) Densities

Figure 18. Summary of results of LSTM network on spring/summer period for two weeks forecast.

(a) Training Process (b) Forecasts

Figure 19. Cont.
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(b) Densities

Figure 19. Summary of results of the LSTM network on autumn/winter period for two weeks forecast.

5.5. Hybrid Approach

In the literature, there are other important approaches used to forecast the price of
electricity, namely: hybrid methods realized by combining other models to capture different
patterns characterizing time series of interest. A common example of these hybrid models
is a combination between a statistical model, such as the ARIMA and an LSTM-based
model. For more details, we refer the interested reader to [36]. As to proceed further, the
simplest approach is to average between them, finding suitable weights wi:

f orecast = w1 SARIMA(results) + w2 LSTM(results). (31)

This procedure is quite common, allowing to easily decide which component needs to be
highlighted. In Table 7, we specify the weights for each component, while, in Table 8, we
can see the final comparison between RMSE, noticing that the hybrid approach can be a
valid tool for obtaining a lower RMSE. In Figure 20, we summary the results of hybrid
approach for each time period of training.

Table 7. Percentage of component for each training period.

One Year Autumn/Winter Spring/Summer

SARIMA 10% 30% 50%

NN 90% 70% 50%

Table 8. A comparison between RMSE.

One Year Autumn/Winter Spring/Summer

SARIMA 21.54 8.13 12.53

NN 6.05 7.65 9.13

Hybrid 4.15 7.08 9.38
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(c) Hybrid forecast for one year of training (d) Densities

(e) Hybrid forecast for autumn/winter period of
training

(f) Densities

(g) Hybrid forecast for spring/summer period of
training

(h) Densities

Figure 20. Summary of results of hybrid approach for each time period of training.

In the following, we test our idea to capture the dynamic of the underlying possible
stochastic process, and Figure 21 shows the results. We try to obtain good approximations
to the investigated processes on the basis of the examined data, while assuming that their
development can be well shaped by a certain (previously specified) type of stochastic
process. The estimated densities are not precise, so our approach does not yield better
results, as we can see from the previous figure. From this point of view, a hybrid approach
does not yield any improvement.
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(a) Hybrid forecast for one year of training. (b) RMSE

(c) Hybrid forecast for autumn/winter period of
training.

(d) RMSE

(e) Hybrid forecast for spring/summer period of
training.

(f) RMSE

Figure 21. Summary of results of probabilistic hybrid approach for each time period of training for a
time horizon of three weeks.

6. Conclusions

In this paper, we gave a general overview of energy price forecasting, highlighting its
highest relevant quantitative aspects, smartly using two of the most frequently exploited
approaches in order to analyze the corresponding behavior over time. We also included
applications that are based on real-time series. In particular, we first focused our attention
on (S)ARIMA models, which are widely implemented as typical starting point for most time
series analyses. Even if the obtained results have been shown to be quite adequate, better
ones can be obtained by using Neural Networks (NNs) based alternatives. Specifically,
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we considered LSTM-architectures. The latter being between the most popular within the
NNs-oriented community because of the highly accurate results provided, see, e.g., [37].
These improvements are characterized by both a more complex computational structure
and a higher data processing time.

In general, one could say that NNs-based results are often better than those that are
obtained with an ARIMA model, cf. Table 8. This is because these networks allow for us to
obtain and store more information, even for more complex seasonal influences. It is also
worth remembering that ARIMA works better in very regular situations. Both are valuable
models, but, in this case with this kind of data and context, LSTM can be a suitable tool,
not only for our probabilistic approach, but also for point estimation for short and medium
term period forecasts, for more details, see With the hybrid approach, as in Section 5.5, we
have shown that we can balance our results, also achieving significant improvements w.r.t.
the accuracy of the two weeks—point forecast.

Let us finally emphasize that our results regarding the prediction of the (random)
electricity price behavior (expressed in the form of a stochastic process) are based on an
innovative probabilistic proposal, which gives us remarkable accuracy results. However,
one must not forget that these models are developed to answer specific questions. Therefore,
they have to be carefully redesigned according to the constraints of the particular problem
that a company intends to solve. This fact reflects the need to include more information,
such as temperature or another type of exogenous variable, in order to better describe some
spikes or other phenomena. We could also consider working with hourly data in order to
achieve a higher degree of prediction accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Autocorrelation Function
AIC Akaike Information Criteria
BIC Bayesian Information Criteria
CDF cumulative distribution function
CRPS continuous ranked probability score
DM Diebold Mariano
EPEX European Power Exchange
EPF electricity price forecasting
FNN feedforward neural network
GARCH generalized autoregressive conditional heteroskedasticity
i.i.d. independently identically distributed
LASSO least absolute shrinkage and selection operator
LSTM Long Short Term Memory
LTSC Long-Term Seasonal Component
OLS Ordinary Least Squares
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PACF Partial Autocorrelation Function
PDF Probability Density Function
PI prediction intervals
PIT probability integral transform
PL pinball loss
QRA Quantile Regression Average
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SARIMA Seasonal Autoregressive Integrated Moving Average
SDG Stochastic Gradient Descent
STSC Short-Term Seasonal Component
VAR Value-at-Risk
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