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Abstract: Smart-meter technology advancements have resulted in the generation of massive vol-
umes of information introducing new opportunities for energy services and data-driven business
models. One such service is non-intrusive load monitoring (NILM). NILM is a process to break
down the electricity consumption on an appliance level by analyzing the total aggregated data
measurements monitored from a single point. Most prominent existing solutions use deep learning
techniques resulting in models with millions of parameters and a high computational burden. Some
of these solutions use the turn-on transient response of the target appliance to calculate its energy
consumption, while others require the total operation cycle. In the latter case, disaggregation is
performed either with delay (in the order of minutes) or only for past events. In this paper, a real-time
NILM system is proposed. The scope of the proposed NILM algorithm is to detect the turning-on
of a target appliance by processing the measured active power transient response and estimate its
consumption in real-time. The proposed system consists of three main blocks, i.e., an event detection
algorithm, a convolutional neural network classifier and a power estimation algorithm. Experimental
results reveal that the proposed system can achieve promising results in real-time, presenting high
computational and memory efficiency.

Keywords: convolutional neural network; energy consumption; energy data analytics; energy
disaggregation; machine learning; non-intrusive load monitoring; real-time; smart meter data; smart
meters; transient load signature

1. Introduction

Nowadays, the amount of data that is generated almost continuously is enormous.
Once analyzed, they can reveal useful information in many different disciplines; economy,
healthcare, and e-commerce, to name a few. In this context, the energy sector could not
have been an exception. Traditionally, energy data was acquired at a few critical points
of the power grid, usually at the transmission level, but the landscape has changed due
to the advance in smart-metering technologies. Thousands of internet-of-things (IoT)
endpoints are placed within the smart grid, providing energy utilities access to valuable
data; thus, new opportunities have been created for energy services and data-driven
business models [1–5]. Energy disaggregation is an example of such a service.

Energy disaggregation is the process of consumption breakdown at appliance or activ-
ity level for residential or commercial-industrial (C&I) users; in other words, it estimates
the individual power consumption for all appliances contributing to the total mains power.
This process can help energy utilities reveal useful information to support load forecasting
and demand-side management programs. Regarding residential consumers, it can be used
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to provide accurate billing and meaningful feedback regarding their energy consumption
as well as to improve the appliance efficiency (e.g., by detecting old devices and replace
them with more efficient ones) [6].

There are two main possible energy disaggregation solutions: (a) Intrusive Load
Monitoring (ILM) and (b) Non-Intrusive Load Monitoring (NILM). In ILM, i.e., a hardware-
based approach, power meters are attached behind each target appliance. The large number
of hardware devices required for ILM makes the installation process difficult and cost-
inefficient but results in very accurate power estimates. On the other hand, NILM is a
software-based approach. It requires a single meter for the total aggregated power, thus
the installation process is simplified and the corresponding cost is reduced. However, since
there is no information about the aggregated power appliances, appropriate algorithms
should be created to perform energy decomposition.

The utilities should perform a large-scale deployment to support thousands of con-
sumers to benefit as much as possible from energy disaggregation services; only then it is
possible to extract useful information for business models. This large-scale deployment
makes NILM far more favorable than ILM due to the low cost, installation simplicity and
minimum hardware requirements. However, in many cases, NILM algorithms present
high computational complexity and significant memory requirements. In this sense, utili-
ties should either use high-end smart meters—or extra hardware attached to them—with
powerful central processing units (CPUs) and sufficient memory. Alternatively, energy
disaggregation must be performed in cloud services. In the latter case, the cost of cloud
services increases with the number of consumers. To this end, utilities must adopt scalable
solutions. Scalability can be more critical even than disaggregation accuracy. As it is
realized, low computational and memory requirements are necessary to run the service on
the edge with conventional microprocessors or minimize the cost of needed cloud services.
Furthermore, to improve user experience, minimum feedback must be required; thus,
the necessity for pre-trained generic appliance models is of utmost importance.

Several approaches have been proposed to cope with the NILM problem [7,8]. It was
first introduced by Hart [9]. Hart’s approach was based on monitoring power changes
(corresponding to the appliance turning-on/off events) of both active and reactive power
signals. These power changes are grouped into clusters, with each cluster representing
a state change of a target appliance. Since then, several works have investigated the
NILM problem utilizing different sampling rates and techniques. Earlier approaches
employed sampling rates lower than 1 Hz, where event detection (appliances turning-
on/off) is impractical and probabilistic models, such as variants of hidden Markov models
(HMM) were examined [10–17]. HMMs yield promising results but present disadvantages,
e.g., high computational complexity when the number of appliances increases and difficulty
in classifying appliances that present similar power consumption [18]. Due to these
disadvantages, researchers have turned to alternative methods, including machine learning
and deep learning techniques [18–38]. NILM approaches can be generally categorized as
event-based and state-based.

Event-based solutions [33–39] leverage the information-rich transient response of an
appliance turning-on. Specifically, they consist of two modules: (a) an event detection
algorithm for discovering power changes corresponding to an appliance turning-on and
(b) a classifier for identifying the appliance that caused the power change. This approach
is based on the fact that turn-on transient responses contain more information regarding
the operating device than steady states. However, in order to obtain this transient state
information, high-resolution data is vital [33–38]. One widespread event-based method is
the V-I trajectory, utilizing high-resolution voltage and current measurements. In [37,38],
useful features are extracted from the V-I trajectories and neural networks are trained for
classification. Other researchers depict the trajectories as binary images [34–36]. This visual
representation solves the appliance recognition problem by exploiting computer vision
techniques. Furthermore, transfer learning techniques have been investigated, as in [36]
where an image classifier has been implemented based on AlexNet [40]. An important
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advantage of event-based approaches is the low complexity; only a few time instants
corresponding to on/off events are processed. Furthermore, such approaches can detect
an appliance turn-on event in real-time since information only from the transient state is
required. However, high-resolution data of several kHz is essential, applying mainly to
detect appliance turn-on/off events, without calculating power consumption.

On the other hand, state-based approaches [19–27] mainly require lower frequency
data. These approaches do not detect state transitions. On the contrary, they parse all avail-
able data of a time-series, even if no events occur. In such approaches, the appliance must
operate for at least some minutes to determine if it is on [20,22]. There are even cases where
the appliance end-use has to be fully completed to estimate the power consumption [19,24].
In [19], three different neural network architectures were presented, i.e., (a) long short-term
memory (LSTM) networks, (b) stacked denoising autoencoders, and (c) a regression algo-
rithm to forecast the start time, stop time and average power demand of devices. In [21],
a bidirectional LSTM cell was used; in [26] a deep convolutional neural network (CNN)
that uses as input a time window of active power consumption and predicts the active
power in the center of the window. In [23], the authors feed their network with active,
reactive, and apparent power and current data. Furthermore, they use mainly CNN blocks
in order to create a recurrent property similar to LSTMs. Finally, in [24], an attention-based
deep neural network is introduced, inspired by deep learning techniques used in Natural
Language Processing (NLP). State-based approaches use low-resolution data and predict
the power consumption per appliance. However, they present higher computational com-
plexity since all available data are used, thus cannot detect in real-time an appliance being
turned-on/off.

The scope of this paper is to present a real-time event-based NILM methodology
to detect an appliance turn-on event and calculate its power consumption in real-time.
The proposed NILM design is built on top of three main blocks, i.e., an event detector,
a CNN classifier and a power estimation algorithm. The main strengths of the proposed
NILM system rely on the following:

• The proposed system can identify when an appliance is turned-on in real-time, based
on its active power transient response sampled at 100 Hz; processing data of the total
appliance operational duration is not required, as in [19,24].

• The proposed system is delay-free; once the appliance has been turned-on, the system
can calculate its power in real-time.

• The combination of a machine learning model to detect appliance turning-on and
a heuristic algorithm to estimate the power in real-time constitute a system light-
weight, presenting less memory and CPU requirements than end-to-end deep learning
models [19,23,24].

• The proposed NILM algorithm is automatic, thus, no feedback is required by the user.
• Data sampling rate of 100 Hz for active power measurements is used, contrary to

several kHz in relevant works [33–35,41,42].

Generally, as it can be suggested from the above analysis, the proposed system consti-
tutes a real-time scalable solution presenting minimum hardware requirements; thus, it
can be integrated into low-cost chip-sets and, consequently, run on the edge.

The paper is structured as follows: In Section 2, the proposed methodology is pre-
sented. In Section 3, the dataset and the metrics used for evaluation are described. In
Section 4, experimental validation results from real-life installations are analyzed and the
performance of the system is compared to other state-of-the-art approaches. In Section 5,
an industrial perspective regarding scalable real-time NILM services is discussed. Finally,
Section 6 concludes the paper.

2. Proposed System

The proposed methodology comprises of three main parts: (a) an event-detection
system to find active power changes corresponding to turn-on events, (b) a CNN binary
classifier to determine if the turn-on event was caused by a specific target appliance or
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not, and (c) a power estimation algorithm to calculate in real-time the appliance power per
second and consequently the energy consumption. An overview of the system in flowchart
form is illustrated in Figure 1.

Figure 1. Proposed system flowchart.

2.1. Event Detection

The event detection algorithm is used to identify the time instant (trigger time) when a
sudden increase of active power occurs, indicating a possible turn-on event. The advantages
of the proposed event detection algorithm are its simplicity and the fact that no pre-training
is required.

Let us assume that the aggregated active power time-series at 100 Hz is P. The original
signal P is down-sampled at 1 Hz by means of averaging, resulting into signal Pd. Down-
sampling is applied for two main reasons: (a) the event detection algorithm becomes
simpler, presenting less computational burden and (b) most of power changes are still
easily identifiable assuming an 1 Hz sampling frequency. However, if two or more events
occur almost simultaneously, e.g., in a period of less than a second, the algorithm detects
these events as a single one. Considering that the probability of this scenario is very low,
the frequency of 1 Hz has been selected. Next, the maximum power difference (MPD) for
each second n is calculated as:

MPD(n) = max(Pd(n + 1), Pd(n + 2), Pd(n + 3))−min(Pd(n− 3), Pd(n− 2), Pd(n− 1)). (1)

MPD shows the maximum difference in active power in a region around n, i.e., the
maximum power during the first three seconds after n, minus the minimum power of the
three first seconds before n. In this sense, the transient onset can be accurately determined
since the real power increase may not appear immediately, but some seconds after n.
To determine the trigger time candidates, MPD is compared with a threshold, Pth, which is
determined in terms of the appliance rating power. This means that, at time instant n an
event occurs if

MPD(n) > Pth. (2)

At this point, it should be mentioned that trigger time candidates close in time are
merged. For each trigger time, a 6 s window of the captured transient response, Ptr, is
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generated from P (100 × 6 = 600 samples). The pseudo-code for the process described is
presented in Algorithm 1.

Algorithm 1: Event detection.
Input: P, Pth
Output: list of captured transient responses
Pd = P down-sampled at 1 Hz;
Initialize an empty list L;
Initialize an empty list transients;
for each second n do

max_after = max(Pd(n + 1), Pd(n + 2), Pd(n + 3));
min_before = min(Pd(n−3), Pd(n−2), Pd(n−1));
MPD = max_after −min_before;
if MPD ≥ Pth then

Append n to L;
end

end
Merge consecutive seconds in L;
for t in L do

Ptr = P(t − 300:t + 299);
Append Ptr to transients;

end
return transients;

2.2. CNN Classifier

In the proposed methodology, the transient response generated by an appliance’s
turning-on is used as the load signature for appliance classification [7]. Whenever a target
appliance is turned on, a transient response can be detected in the aggregated active power
waveform. Besides appliance classification, this load signature presents two additional
advantages. Firstly, for a given appliance, the turn-on transient response pattern is unique
and relates only to the operational characteristics of the appliance [43]. Consequently,
the identification algorithm’s performance is independent of the simultaneous operation
of other types of appliances, even when a large number of devices is considered [7,44].
Secondly, the proposed algorithm can successfully treat various types of appliances, even
though presenting similar consumption levels at steady-state, since classification is per-
formed based on the unique appliance transient characteristics instead of calculating
steady-state features.

The same principle can detect specific operational states by identifying transient
responses caused by a state transition regarding multi-state appliances. For example, for a
washing machine or a dishwasher, the water heating process’s transient response can be
used to identify this specific state, being of primary interest as the most energy-intensive
process during an operation cycle.

In order to associate a given transient response, Ptr, with a specific target appliance
behavior, a CNN classifier is utilized. In this sense, for each target appliance, a dedicated
CNN classifier is used, identifying Ptr as positive when related to the target appliance or
negative otherwise.

Different types of appliances generate transient responses with distinct characteristics,
primarily when a high sampling frequency, e.g., at 100 Hz, is used. Suppose a user
was initially given an example of such a response corresponding to a specific appliance.
In that case, he/she could later recognize a new response of the same appliance by simple
visual inspection. However, the implementation of such a recognition algorithm is not an
easy task.

Inspired from the area of computer vision, where CNN models are used for image
recognition, and classification [45], a similar approach has been adopted in this paper.
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Convolutional layers can automatically extract useful features from the input data without
user supervision [45]. Thus, there is no need to implement specific algorithms; instead,
by training a CNN model, the classification problem can be successfully solved. A block
diagram of the proposed CNN architecture is depicted in Figure 2.

Initially, min-max normalization is applied to Ptr by means of (3); the resulting nor-
malized vector, Pnorm, is forwarded as input to the CNN model.

Pnorm =
Ptr −min(Ptr)

max(Ptr)−min(Ptr)
(3)

Figure 2. Convolutional neural network (CNN) block diagram.

Since the CNN input model is an one-dimensional signal, one-dimensional convo-
lutional layers are used to extract the useful features from Pnorm. In particular, three
consecutive 1-d convolutional layers are used in combination with an 1-d max-pooling
layer. All convolutional layer parameters have been set to 32 filters, kernel size equal to 3,
strides equal to 1, ’same’ padding, and rectified linear unit (ReLU) activation function. The
ReLU function is defined as

ReLU(x) = max(x, 0) (4)

for x ∈ R. For max-pooling layers, the pool size was set to 2. Generally, at each 1-d convo-
lutional layer, a number of filters is applied to the corresponding input, xconv. Assuming
that the size of xconv is Mconv × Nconv and a single filter, f, is of 3× Nconv, the output of
the convolution between xconv and f will be a Mconv × 1 matrix. The resulting yconv is
calculated as

yconv(m) = max (
3

∑
t=1

Nconv

∑
n=1

xconv(m + t− 2, n) f(t, n), 0) (5)

for m ∈ [1, ..., Mconv], where xconv(0, n) and xconv(Mconv+1, n) are considered zero for any
n ∈ [1, ..., Nconv] as a result of zero-padding. In our case, where 32 filters are used in a
convolutional layer results yconv, are stacked as columns, forming a Mconv × 32 matrix.

Each layer is followed by a max-pooling layer to down-sample the extracted features
of the input signal. In this sense, a summarized version of the extracted features (half the
size) is created, maintaining the most important features and is further used as input to the
next layer. Assuming xpool, with size Mpool × Npool is the max-pooling layer input matrix,
the output, ypool, has a size of (Mpool/2)× Npool and is calculated as

ypool(m, n) = max (xpool(2m− 1, n), xpool(2m, n)) (6)

for m ∈ [1, ..., Mpool/2] and n ∈ [1, ..., Npool].
Following the three convolutional/pooling pairs, a flattening layer is applied, trans-

forming its input to a single vector by column-wise stacking. Finally, two dense layers are
used of 20 and 1 output nodes, respectively. For the first dense layer, the ReLU activation
function is applied; for the last layer, the sigmoid activation function defined in (7) for
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x ∈ R is used to compute the probability of the transient response to correspond to the
positive class.

S(x) =
1

1 + e−x (7)

Generally speaking, a dense layer with Mdense input nodes and K output nodes
includes two trainable parameters, i.e., a weight matrix, w, with size Mdense × K and a
bias vector, b, with size K. Given an input vector, xdense, with Mdense elements, the output
ydense of size K is calculated as

ydense(k) = F(
Mdense

∑
m=1

xdense(m)w(m, k) + b(k)) (8)

for k ∈ [1, ..., K], where F is the corresponding activation function. Before each dense layer,
a dropout layer [46] is used. Its value is set to 0.2 to prevent model over-fitting.

A standard backpropagation algorithm is used during training to optimize the binary
cross-entropy loss between the predicted probabilities and the actual labels. Assuming
that the predicted probabilities are p1, p2, ..., pB for B samples and the actual labels are
q1, q2, ..., qB, the binary cross-entropy loss is

L = − 1
B

B

∑
b=1

[qb log2 pb + (1− qb) log2 (1− pb)]. (9)

The CNN classifier is trained for a maximum of 50 iterations. The Adamax opti-
mizer [47] was selected assuming an initial learning rate of 0.01 and batch size 32. In order
to avoid over-fitting, early stopping with patience is used. The training process stops once
the validation accuracy does not improve after five consecutive iterations.

2.3. Consumed Energy Estimation Algorithm

The last module is related to the real-power estimation of the target appliance. The im-
plemented algorithm considers the appliance end-uses as pulses of constant power; this
approximation is well-suited for single-state appliances such as microwave oven, kettle
or toaster. In the case of appliances with operating cycles comprising of multiple pulses,
the algorithm considers each pulse as a new appliance end-use and not as a single end-
use event of several pulses. An example is the oven turning-on and off controlled by a
thermostat and the dishwasher, where several water heating pulses may occur depend-
ing on the selected program. In this sense, the proposed algorithm performance may
degrade for multi-state appliances. They are characterized by varying power consumption
and cannot be approximated with a constant power pulse. However, such appliances
present a predominant energy-intensive process during a full operating cycle while the
rest operating states are less critical regarding the total energy consumption. For example,
washing machine or dishwasher cycles include energy-intensive water heating processes
and low energy-consuming processes, e.g., water pumping. Therefore, regarding multi-
state appliances, the proposed power estimation algorithm focuses on the estimation of the
energy-intensive processes neglecting the effect of the minor consuming ones.

When the CNN classifies a transient response as positive, it is implied that the appli-
ance has been turned-on. The calculated power increase, Pinit is considered equal to the
appliance power consumption and assumed constant during the total time of operation
of the appliance. When a power decrease between two consecutive seconds in Pd inside
the interval [0.8 Pinit, 1.2 Pinit] is detected, the appliance is considered to be turned-off.
The pseudo-code of the energy consumption estimation algorithm is shown in Algorithm 2,
having as input the time (in seconds), t, when the target appliance is turned-on and Pd.
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Algorithm 2: Energy consumption estimation.
Input: t, Pd
Output: turn-off time, Pinit
Pinit = Pd(t + 2) − Pd(t−2);
for each second n ≥ t do

if 0.8 Pinit ≤ (Pd(n−1) − Pd(n)) ≤ 1.2 Pinit then
Assume target appliance is turned-off;
break;

else
Assume power consumption equal to Pinit;

end
end
return n, Pinit;

3. Evaluation Methodology
3.1. Dataset

The proposed NILM system is based on the fact that each household appliance
presents a transient response pattern with distinct characteristics, becoming more no-
ticeable as the sampling frequency increases. In this paper, the selected sampling frequency
is 100 Hz; at this frequency the transient characteristics are captured in contrast to lower
sampling rates where such information may be lost. In Figure 3, turn-on transient re-
sponses at 100 Hz and 1 Hz for five appliances are depicted. It is evident that the frequency
of 100 Hz reveals unique details that are lost when sampling at 1 Hz. More specifically,
Figure 3a presents the turn-on response of a high-power consumption (~1.2 kW) fridge
compressor with a duration of fewer than two seconds. Figure 3b visualizes the water
heating process of a washing machine, which corresponds to a steep power step-up. Next,
Figure 3c illustrates the transient response of a microwave oven as a high-power spike fol-
lowed by a smooth power increase. In Figure 3d, a stove turn-on presenting a smooth and
convex power increase is shown, and finally, in Figure 3e visualizes the transient response
from a heat pump dryer appliance, including a high-power spike at motor starting time.

An extensive set of transient responses for each target appliance is required to train
the CNN classifier. For this purpose, a private dataset that includes transient responses
of different household appliances sampled at 100 Hz from different installations is used.
The type of appliance and the number of samples for each case are summarized in Table 1.
Note that, the duration of the transient responses contained in the dataset ranges from 12 s
to 1 min.



Energies 2021, 14, 767 9 of 23

10:20:00 10:20:1210:20:04 10:20:08
0

500
1000
1500
2000
2500

Po
w
er
 (W

)

(a)
100 Hz
1 Hz

12:43:24 12:43:3612:43:28 12:43:32
400

1000
1600
2200
2800

Po
w
er
 (W

)

(b)
100 Hz
1 Hz

12:24:16 12:24:2812:24:20 12:24:24
0

1300
2600
3900
5200
6500

Po
w
er
 (W

)

(c)
100 Hz
1 Hz

13:05:00 13:05:1213:05:04 13:05:08
500

1500

2500

3500

Po
w
er
 (W

)

(d)
100 Hz
1 Hz

11:43:00 11:43:1211:43:04 11:43:08
600

1600

2600

3600

Po
w
er
 (W

)

(e)
100 Hz
1 Hz

Figure 3. Comparison of the turn-on transient response with sampling frequency at 100 Hz and 1 Hz for (a) fridge, (b)
washing machine, (c) microwave oven, (d) stove and (e) heat pump dryer.
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Table 1. Private dataset: Number of transient responses for the appliances of interest.

Appliance Number of Transient Responses

Fridge 132

Dishwasher 171

Heat pump 202

Washing machine 135

Oven 82

Stove 148

Heat pump dryer (drum spinning) 54

Heat pump dryer (heating) 42

Microwave 290

In this study, three appliances are selected to test the proposed methodology’s perfor-
mance, i.e., fridge, washing machine, and microwave oven. Pulses can approximate the
end-use of these appliances without significant error in power estimation. Furthermore,
such appliances are considered typical for most households, corresponding to substantial
total energy consumption. The selected appliances represent a larger group of appli-
ances since both single-state and multi-state appliances are considered. Additionally,
detailed results regarding the analysis of such appliances can be found in several relevant
works [19,20,22,25–27]; thus, a comprehensive comparative analysis can be performed.
Finally, low energy-consuming appliances such as game consoles and phone chargers have
not been investigated, being of trivial importance and hard to be identified in terms of
NILM algorithm application [19].

For each target appliance, a binary classifier is implemented and trained. During train-
ing, the transient responses of the appliance under consideration are labeled positive; the
responses corresponding to a different appliance are labeled negative. Balancing of the
positive and negative classes is performed in order to prevent bias towards the class with
the most samples; the number of negative responses is the same as the number of positive
ones. A training/validation/testing split is used assuming a ratio of 60%/20%/20% to
avoid over-fitting for each class separately.

However, because the number of samples per appliance is small, augmentation tech-
niques are used. These techniques aim to increase the number as well as the diversity of
the training samples by artificially introducing variations in existing transient responses.
Specifically, for each transient response, 15 samples with the required length of 6 s are cre-
ated. Assuming that the time-series that contains a response is z, each one of the 15 samples
is generated by means of the following steps:

1. Considering that the transient response starts at index s of z, a random number u in
the interval [s − 500, s − 100] is selected, following uniform distribution. The selected
sample is equal to z from index u to index u + 599.

2. White Gaussian noise with mean value (µ) equal to 0 and standard deviation (σ) equal
to 1 is added to the sample; 10 W maximum power is considered.

The number of samples for training, validation and testing the sets per appliance is
shown in Table 2.
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Table 2. Number of positive samples per set.

Appliance Training Validation Testing

Fridge 2400 780 780

Washing machine 2430 810 810

Microwave 5220 1740 1740

3.2. Performance Metrics

The proposed methodology is evaluated in terms of the event detection algorithm,
the CNN classifiers as well as the overall system performance. For each case, different
metrics are used.

3.2.1. Metrics for Event Detection Evaluation

For the event detection algorithm the true positive rate (TPR = TP/(TP + FN)),
the false positive rate (FPR = FP/(FP+TN)) and false negative rate (FNR = FN/(TP + FN))
are calculated; TP, FN, FP and TN are the number of true positives, false negatives, false
positives and true negatives, respectively. Here, a sample (a time instant) is positive if it is
an actual event (there is an appliance turning-on or off) and negative if not.

3.2.2. Metrics for Classifier Evaluation

To evaluate the classifier, the most common metrics used in classification and NILM
problems are adopted [18,29,32,34,35]. Specifically, the accuracy, precision, recall and
F1-score, defined in (10)–(13), respectively, are calculated

accuracy =
TP + TN

TP + TN + FP + FN
(10)

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

F1 = 2 · precision · recall
precision + recall

. (13)

In this context, for a transient response classifier, a sample (i.e., transient response of
6 s) is positive if the transient response corresponds to the target appliance. Otherwise, it is
assumed negative.

3.2.3. Metrics for Overall NILM System Evaluation

The overall proposed NILM system is tested by using the same metrics as previously,
i.e., accuracy, precision, recall, and F1-score to evaluate the predicted status of the appliance
(ON or OFF). Thus, a sample (i.e., a time instant) is considered positive if the appliance is
ON and negative if not. It should be mentioned that an appliance is considered turned-on
if the measured active power is higher than 5 W. Additionally, for energy estimation,
the mean absolute error (MAE) and the root mean square error (RMSE) in (14) and (15),
respectively, are computed

MAE =
1
N

N

∑
n=1
|y[n]− ŷ[n]| (14)

RMSE =

√√√√ 1
N

N

∑
n=1

(y[n]− ŷ[n])2 (15)
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where y[n] and ŷ[n] is the original and the estimated power response with N samples.
Moreover, the relative error in total energy (RE), defined in (16), is calculated

RE =
|E− Ê|

max(E, Ê)
(16)

where E and Ê is the original and the estimated total energy consumption of the appliance.

4. Results

In this section, experimental validation results are analyzed considering data from real-
world installations. The Building-Level fully-labeled dataset for Electricity Disaggregation
(BLUED) [48] is used to test the applicability of the proposed event-detection algorithm.
Energy consumption data from three household installations are also used to evaluate the
performance of the proposed methodology; common metrics are employed and results
are compared with those obtained from other state-of-the-art methods proposed in the
literature. Finally, the computational and memory efficiency of the proposed system
is discussed.

4.1. Event Detection Evaluation

The BLUED dataset contains aggregate voltage/current and active power data, sam-
pled at 12 kHz and 60 Hz, respectively, from a 2-phase household in Pittsburgh, USA.
The recording duration is eight days. The time instants when a turn-on or turn-off event
occurred are also reported in the dataset. In particular, for testing the proposed event-
detection algorithm, the active power measurements of phase A, at 1 Hz, from 11:58:32
20 October 2011, to 09:29:55 21 October 2011, are used. In fact, during this period, 125 events
have occurred, including six pairs of simultaneous events. The proposed algorithm de-
tects the simultaneous events as well as two near-simultaneous turn-off events as single
events, respectively. Finally, one false event is detected; an appliance power drop, was
incorrectly identified as an appliance turning-off, while the appliance being still in opera-
tion. In summary, 118 out of the 125 events have been correctly detected by the proposed
event-detection algorithm. In Figure 4, the active power and the detected events for the
period from 18:30:00 to 20:30:00 are shown.
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400
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Phase A
ON
OFF

Figure 4. Event detection in a real household on a given day.
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The TPR, FPR and FNR metrics are calculated and compared to other more complex
solutions [32,49,50] in Table 3. It can be seen that the proposed algorithm can achieve good
results while being simple and computationally efficient.

Table 3. Event detection evaluation.

Reference TPR FPR FNR

Proposed 94.400% 0.003% 5.600%

[32] 94.000% 0.088% 6.000%

[49] 96.700% 0.810% 3.300%

[50] 94.130% 0.260% 5.870%

4.2. Classification Evaluation

To evaluate the classifiers performance regarding the three target appliances, the pri-
vate testing sets mentioned in Section 3.1 are used. The calculated accuracy, precision,
recall and F1-score results are summarized in Table 4.

Table 4. Classification results.

Appliance Accuracy Precision Recall F1-Score

Fridge 0.978 0.984 0.972 0.978

Washing machine 0.872 0.875 0.867 0.871

Microwave 0.992 0.986 0.999 0.992

It is evident that the proposed classification algorithm presents high performance
regarding the microwave and the fridge. These appliances are related to transient response
patterns presenting specific characteristics, thus can be identified with high confidence.
However, this is not the case for the washing machine, since the turn-on transient response
is a simple steep step-up waveform. Similar patterns are also related to the heating pro-
cesses of most of the household appliances, e.g., dishwasher, oven and generally appliances
that use resistive elements for heating as shown in Figure 5. This illustrates the relatively
lower scores obtained for the washing machine metrics compared to the other appliances.
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Figure 5. Turn-on transient responses from different household appliances.
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4.3. Application on Residential Households

The overall performance of the proposed methodology is tested on a private dataset.
This dataset includes three 3-phase power supply households located in the Netherlands.
For each household, aggregated active power per phase was measured at 100 Hz along
with power consumption of selected appliances for 15 days. For evaluation purposes,
the proposed NILM system is applied only when the target appliance is connected.

Figure 6 presents the results for each target appliance, assuming an operational
duration of four hours. Specifically, the aggregated power is colored in blue. The actual
target appliance power measured with plugwise meters is colored in red. The target
appliance power, as estimated by the proposed methodology, is colored in green.
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Figure 6. Power estimation for the selected appliances in real households. Time-series of (a) aggregated power, (b) actual
target appliance power, (c) estimated power for fridge; (d) aggregated power, (e) actual target appliance power, (f) estimated
power for washing machine; (g) aggregated power, (h) actual target appliance power, (i) estimated power for microwave.

The accuracy, precision, recall, F1-score, MAE, RMSE and RE are calculated as well as
their average considering the three households for 15 days. Results for the fridge, washing
machine and microwave oven are shown in Tables 5–7, respectively. It can be generally
observed that the proposed algorithm presents high accuracy regarding the power and en-
ergy estimates of the fridge and the microwave. On the contrary, the microwave oven recall
metric is low. This can be attributed to the fact that the proposed methodology considers
this appliance standby mode of operation as OFF. In fact, the power consumption during
this period is low, thus, of trivial importance regarding energy consumption calculations.
Regarding the washing machine results, the NILM system is designed to detect only the
most energy-intensive process during the washing machine operation cycle, i.e., water
heating mode of operation. For the rest of the operational cycles (non-detected), i.e., water
pumping, drum spinning, rinsing, the appliance status is assumed OFF. The partial detec-
tion of the washing machine appliance is evident in Figure 6, resulting into low recall scores.
Moreover, in the third household, the calculated low precision is due to the operation of
appliances presenting similar transient response patterns, being misclassified as washing
machine end-uses.
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Table 5. Results for fridge.

House Accuracy Precision Recall F1-Score MAE (W) RMSE (W) E (kWh) Ê (kWh) RE

1 0.86 0.94 0.77 0.85 12.97 38.67 14.26 11.74 0.18

2 0.89 0.96 0.74 0.84 7.05 17.14 6.19 4.24 0.32

3 0.98 1.00 0.90 0.95 3.68 12.89 4.74 5.05 0.06

Average 0.91 0.97 0.80 0.88 7.90 22.90 - - 0.19

Table 6. Results for washing machine.

House Accuracy Precision Recall F1-Score MAE (W) RMSE (W) E (kWh) Ê (kWh) RE

1 0.94 0.99 0.24 0.39 20.86 168.96 19.85 12.83 0.35

2 0.97 0.94 0.24 0.38 10.02 116.83 10.44 8.44 0.19

3 0.93 0.42 0.13 0.20 24.27 183.42 7.27 12.61 0.42

Average 0.95 0.78 0.20 0.32 18.38 156.40 - - 0.32

Table 7. Results for microwave.

House Accuracy Precision Recall F1-Score MAE (W) RMSE (W) E (kWh) Ê (kWh) RE

1 1.00 0.94 0.52 0.67 1.28 36.55 2.16 2.13 0.01

2 1.00 0.99 0.46 0.63 1.08 37.63 2.10 1.90 0.10

3 0.99 0.82 0.47 0.60 2.61 57.27 2.19 2.57 0.15

Average 1.00 0.92 0.48 0.63 1.66 43.82 - - 0.09

4.4. Comparison with Other Methods

The performance of the proposed methodology is compared to other NILM-based
energy consumption estimation systems. The average MAE, RE, precision, recall, F1-score
and accuracy calculations obtained by the proposed method are summarized in Tables 8–10
regarding the fridge, washing machine and microwave, respectively. The corresponding
results (where available) reported in the relevant literature are also presented as well as the
associated NILM technique, sampling frequency, and testing dataset. Note that, most of the
literature state-of-the-art methods have been tested by using the well-known UK Domestic
Appliance-Level Electricity (UK-DALE) [51] dataset. This dataset includes aggregated
active power and appliance measurements of 0.167 Hz for several months, recorded for a
small number of household installations. Moreover, the Reference Energy Disaggregation
Data Set (REDD) [52] has been used in [21] to evaluate the LSTM algorithm performance;
the sampling frequency is 1 Hz for mains and 0.333 Hz for the appliances. The proposed
NILM system is tested by using an 100-Hz private dataset, since high-frequency sampling
data are not provided in the above mentioned public datasets. It is important to stress out
that in order to conduct a fair comparison between the different approaches, all metrics
should be taken into consideration. However, this is not possible, since results for all
metrics calculations are not always provided in the corresponding literature. Therefore,
a direct comparison should be carried out with caution.
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Table 8. Comparison results among existing non-intrusive load monitoring (NILM) solutions for fridge identification and energy
consumption estimation.

Reference Method Sampling Frequency Dataset MAE RE Precision Recall F1-Score Accuracy

Proposed 100 Hz private 7.90 0.19 0.97 0.80 0.88 0.91

[19] Autoencoder 0.167 Hz UK-DALE 26.00 0.38 0.85 0.88 0.87 0.90

[19] CNN 0.167 Hz UK-DALE 18.00 0.13 0.79 0.86 0.82 0.87

[19] LSTM 0.167 Hz UK-DALE 36.00 0.25 0.72 0.77 0.74 0.81

[20] LSTM 0.167 Hz UK-DALE 51.00 0.21 0.45 0.51 0.47 0.60

[20] GRU 0.167 Hz UK-DALE 51.00 0.26 0.46 0.75 0.57 0.60

[20] seq2point 0.167 Hz UK-DALE 51.00 0.29 0.42 0.74 0.53 0.54

[21] LSTM 0.333 Hz REDD - - 0.91 0.96 0.93 -

[22] WGRU 0.167 Hz UK-DALE 28.46 0.13 - - 0.82 -

[22] SAEDdot 0.167 Hz UK-DALE 35.25 0.60 - - 0.62 -

[22] SAEDadd 0.167 Hz UK-DALE 32.31 0.65 - - 0.66 -

[25] PCNN AE 0.167 Hz UK-DALE 3.46 - - - - -

[25] PCNN LSTM 0.167 Hz UK-DALE 3.22 - - - - -

[26] seq2seq 0.167 Hz UK-DALE 24.49 - - - - -

[26] seq2point 0.167 Hz UK-DALE 20.89 - - - - -

[27] UNet 0.167 Hz UK-DALE 15.12 - - - - -

Note: GRU stands for gated recurrent units, seq2point/seq2seq for sequence-to-point/sequence-to-sequence, WGRU for window
GRU, SAEDdot/SAEDadd for self-attentive energy disaggregation with ‘additive’/‘dot’ attention mechanism, PCNN AE for
parallel CNN autoencoder.

Table 9. Comparison results among existing NILM solutions for washing machine identification and energy consumption estimation.

Reference Method Sampling Frequency Dataset MAE RE Precision Recall F1-score Accuracy

Proposed 100 Hz private 18.38 0.32 0.78 0.20 0.32 0.95

[19] Autoencoder 0.167 Hz UK-DALE 24.00 0.48 0.07 1.00 0.13 0.82

[19] CNN 0.167 Hz UK-DALE 11.00 0.74 0.29 0.24 0.27 0.98

[19] LSTM 0.167 Hz UK-DALE 109.00 0.91 0.01 0.73 0.03 0.23

[20] LSTM 0.167 Hz UK-DALE 25.00 0.35 0.16 0.56 0.24 0.95

[20] GRU 0.167 Hz UK-DALE 30.00 0.58 0.22 0.54 0.31 0.96

[20] seq2point 0.167 Hz UK-DALE 17.00 0.28 0.26 0.55 0.35 0.97

[22] WGRU 0.167 Hz UK-DALE 10.45 0.43 - - 0.34 -

[22] SAEDdot 0.167 Hz UK-DALE 13.10 0.34 - - 0.30 -

[22] SAEDadd 0.167 Hz UK-DALE 22.01 0.53 - - 0.30 -

[25] PCNN AE 0.167 Hz UK-DALE 83.40 - - - - -

[25] PCNN LSTM 0.167 Hz UK-DALE 73.16 - - - - -

[26] seq2seq 0.167 Hz UK-DALE 10.15 - - - - -

[26] seq2point 0.167 Hz UK-DALE 12.66 - - - - -

[27] UNet 0.167 Hz UK-DALE 11.51 - - - - -
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Table 10. Comparison results among existing NILM solutions for microwave identification and energy consumption estimation.

Reference Method Sampling Frequency Dataset MAE RE Precision Recall F1-Score Accuracy

Proposed 100 Hz private 1.66 0.09 0.92 0.48 0.63 1.00

[19] Autoencoder 0.167 Hz UK-DALE 9.00 0.73 0.15 0.94 0.26 0.99

[19] CNN 0.167 Hz UK-DALE 6.00 0.50 0.14 0.40 0.21 0.99

[19] LSTM 0.167 Hz UK-DALE 20.00 0.88 0.07 0.99 0.13 0.98

[20] LSTM 0.167 Hz UK-DALE 86.00 0.10 0.01 0.45 0.02 0.93

[20] GRU 0.167 Hz UK-DALE 97.00 0.07 0.02 0.75 0.04 0.93

[20] seq2point 0.167 Hz UK-DALE 103.00 0.16 0.01 0.79 0.03 0.91

[21] LSTM 0.333 Hz REDD - - 0.50 0.05 0.09 -

[22] WGRU 0.167 Hz UK-DALE 4.36 0.25 - - 0.44 -

[22] SAEDdot 0.167 Hz UK-DALE 5.97 0.19 - - 0.25 -

[22] SAEDadd 0.167 Hz UK-DALE 5.98 0.17 - - 0.26 -

[25] PCNN AE 0.167 Hz UK-DALE 27.50 - - - - -

[25] PCNN LSTM 0.167 Hz UK-DALE 9.42 - - - - -

[26] seq2seq 0.167 Hz UK-DALE 13.62 - - - - -

[26] seq2point 0.167 Hz UK-DALE 8.67 - - - - -

[27] UNet 0.167 Hz UK-DALE 6.48 - - - - -

From the results of Table 8 it can be seen that the proposed algorithm presents a high
performance on most metrics. In particular, the method presents the third-best MAE, being
inferior only to PCNN AE and PCNN LSTM. Regarding energy estimation, the RE metric is
low (equal to 0.19), thus the proposed method is outperformed only by the CNN [19] and
the WGRU [22] algorithms. Finally, the proposed solution presents the highest precision in
terms of status estimation. In particular, the fridge status has been falsely identified as ON
(real status was OFF) for the minimum of cases from all examined NILM solutions. On the
other hand, the proposed method presents moderate performance in terms of recall (0.80),
since the Autoencoder, CNN [19] and LSTM [21] algorithms achieve better results. This is
mainly attributed to the proposed power estimation algorithm design. The fridge status
may be falsely considered OFF prior to an actual turning-off, due to similar power step-
down recordings, caused by appliances different from the target one. A possible solution
is to determine the fridge duration pulse. However, this is practically infeasible since the
fridge duration pulse varies significantly due to temperature difference inside and outside
the appliance. Finally, by ranking all methods in terms of the F1-score and accuracy, it can
be realized that the proposed method is the second-best and first, respectively, among all
examined solutions (where the corresponding metrics were available).

By analysing the washing machine results in Table 9, it can be observed that the pro-
posed method presents relatively high MAE; seven out of the fourteen examined methods
perform better. Regarding energy estimation the proposed method can be considered as
the second-best in terms of RE, following the seq2point implementation [20]. Moreover,
the proposed method presents the highest precision and the lowest recall among the exam-
ined solutions. This is due to the fact that the proposed system is specifically designed to
detect the most energy-intensive and lower-duration process of the appliance, i.e., heating.
The rest of the washing machine operation cycles, e.g., drum-spinning and rinsing are
not taken into account as low energy-consumption longer-duration processes; thus, being
of less importance. This implies that the proposed NILM system can accurately estimate
the washing-machine energy consumption (low RE value) but predicts the appliance idle
status (no water heating process) as OFF, resulting into low recall and high MAE. Some of
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the current state-of-the-art NILM systems can indeed detect these low energy-intensive
processes. However, this results into an increased number of FP and consequently to
low precision. Note that, the low precision (although the highest among the examined
solutions) is attributed to the fact that the transient response of the heating process is
similar to that of other household appliances; thus, may lead to an increased number of
FP predictions. Finally, the F1-score and accuracy metrics set the proposed method as
the third- and fourth-best, respectively, among the examined solutions (where metrics
were available).

Finally, regarding the microwave oven (Table 10), the proposed method outperforms
the examined NILM methods presenting the lowest MAE and RE as well as the highest
precision, F1-score and accuracy. Better results by other methods are observed only in terms
of recall. This is due to the fact that the proposed system can not detect the microwave oven
standby mode of operation. However, the power consumption during this period can be
considered negligible. It is also important to note, that in NILM and from a user-experience
point of view, precision is considered more important than recall; missing an appliance
event is preferable than detecting an appliance event that has not actually occurred. In this
sense, missing standby modes is more favored than predicting false microwave end-uses.
The superiority of the proposed method for the analysis of the microwave oven is based
on the following: (a) the microwave transient response pattern is unique, thus, it can be
easily identified, and (b) the microwave oven end-use duration is short, varying from few
seconds to minutes; thus, the number of the possible turning-off events caused from other
appliances that may degrade the power estimation algorithm performance is very limited.

4.5. Computational and Memory Efficiency

The proposed methodology is designed to be memory and computationally efficient.
The first part, i.e., the event detector, calculates the power difference over time. The second
part, i.e., the classifier, is triggered only when a significant power step-up is detected. If the
classifier detects a target appliance, the power estimation algorithm is enabled. This event-
based approach can be considered computationally efficient compared to other solutions
operating continuously, i.e., even no turning-on event occurs. Furthermore, the transient
response classifier consists of 54,377 parameters. This is a small number compared to other
end-to-end deep learning models requiring a number of parameters in the order of millions,
e.g., the model parameters proposed in [19] range from 1 million to more than 150 million
parameters. Therefore, the proposed NILM system can be considered as memory efficient.

The only drawback is the use of 100 Hz active power data to recognize appliance
turning-on when a transient occurs. However, this feature is important to enable the
real-time application of the proposed NILM system, contrary to other approaches requir-
ing power data of more extended periods (minutes to hours) in order to identify which
appliance is operating. Moreover, it must be noted that the 100 Hz time-series is used only
when an event is detected, and only a 6 s window is extracted. Based on the above, it is
evident that the proposed system can operate on the edge without the need of high-end mi-
croprocessors.

5. Discussion—Towards Scalable Real-Time NILM Services

As already reported, the proposed methodology is implemented as a real-time scal-
able solution with minimum hardware requirements, thus allowing utilities to perform
a large-scale deployment. However, some criteria need to be met from an industry per-
spective before massively adopting such a service. Coming up with the correct blend of
characteristics is not a trivial issue. So, it is no surprise that no real-time NILM solution
based on sub-second energy data resolution has been rolled out in scale (>50 K end-users)
globally yet. In this section, four necessary criteria are investigated and we examine if the
proposed methodology meets them or not.

1. First of all, as expected, comes the accuracy metric. Accuracy usually refers to a
weights-based combination of (i) correctly detected events, (ii) precise energy con-
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sumption estimation for the detected appliance events and (iii) minimized FP. Energy
companies and electricity consumers usually trust a NILM service when its accuracy
exceeds 90% and when they are not receiving reports for appliances/activities never
actually occurred.

2. Second comes the data resolution and as a result the data volumes required for an
accurate NILM output. As mentioned above in Section 3, for real-time appliance
identification sub-second data granularity is needed. Note that, most of the solutions
presented in literature deal with kHz or even MHz of data. Considering as a rule of
thumb that 1-s resolution data from separate phases in a 3-phase installation result
in almost 1 GB of data being produced per year, we realize that moving into the
kHz resolution areas makes data parsing, storing and analysing a rather complicated,
costly and therefore non-scalable option.

3. Next in the list comes the computational/RAM efficiency of such a service. Al-
though the recent trend was to move everything to the cloud, now NILM vendors and
energy companies realise that such a decision is not always the most cost-effective;
the opposite actually. Running for example the whole service for ~100 k end users on
the cloud can increase cloud operation costs that much, that there is no business case
that can be built on top of a NILM layer, no matter how accurate that is. So, the key to
unlock scalability opportunities here is to built a system that is so efficient that can
run on the edge instead of the cloud.

4. Strictly connected to the hardware constraints of the previous point comes the hard-
ware cost. Traditionally sub-second data can be acquired only via a din meter hard-
ware installed in the metering cabinet (it’s only recently that a few smart-meter manu-
facturers make >1 Hz resolutions available through their S1 port [53]). On the other
hand, utilities and energy retail companies see NILM as a great customer engagement
tool on top of which they can build value-added services and they usually tend to
offer that as a freemium service. As a result, hardware cost has to be as low as possible
and ideally within the companies customer retention and acquisition budgets.

In Figure 7, three of the criteria mentioned above are analyzed for the proposed system,
i.e., accuracy, sampling frequency, and computational burden. As we can see, scalability-
related criteria #1 and #2 are met; the proposed system presents accuracy higher than 90%
in all examined cases by utilizing the sampling frequency of 100 Hz (see results in Section 4).
Although this frequency is high, it is still considerably lower than a resolution of several
kHz used in most state-of-the-art real-time implementations [33–35,39]. To that end, it is an
excellent “do a lot with a little” decision to take. Regarding criterion #3, i.e., computational
and memory efficiency, as demonstrated in Section 4.5, optimized design can efficiently
run on the edge and even on low-cost chip-sets. Specifically, in Figure 7, it is assumed that
the “High” value refers to expensive algorithms, incorporating several parameters that
cannot be easily integrated into a low-cost microprocessor. On the other hand, the “Very
Low” value refers to low computational complexity algorithms that can be integrated and
run in a low-cost microprocessor. The proposed system is between the “Low” and “Very
Low” area. Criterion #4 is expected to be met as a consequence of #3. However, such an
investigation falls out of the scope of this paper.
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Figure 7. Scalability evaluation of the proposed implementation.

6. Conclusions

In this paper, a novel real-time event-based energy disaggregation methodology is
introduced. Initially, a simple event-detection algorithm is proposed to find time instants
when an appliance is turned-on and extract transient responses at 100 Hz. Next, a convo-
lutional neural network classifier identifies if a transient response was caused by a target
appliance. Finally, a power estimation algorithm is implemented considering appliance
end-uses as pulses of constant power. Experimental results show a promising performance
for specific appliances.

Unlike most relevant papers in the literature, the proposed non-intrusive load mon-
itoring system can identify in real-time when an appliance is turned-on based on its
information-rich transient response sampled at 100 Hz. Furthermore, it is delay-free since,
once a target appliance has been turned-on, the active power can be directly calculated.
Moreover, the system is computational and memory-efficient and can be integrated into
smart meters.

The proposed approach can be used for a significant number of appliances with
negligible error. However, energy consumption of specific appliances, e.g., heat pump,
tumble dryer, including many states of operation, cannot be calculated by the proposed
methodology. For such cases, dedicated algorithms should be implemented. As future
steps, a more robust power estimation algorithm will be examined for multi-state appliance
uses. Additionally, the proposed methodology will be tested on more types of appliances.
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Abbreviations
The following abbreviations are used in this manuscript:

AE autoencoder
BLUED Building-Level fUlly-labeled dataset for Electricity Disaggregation
C&I commercial-industrial
CNN convolutional neural network
CPU central processing unit
FN false negative
FNR false negative rate
FP false positive
FPR false positive rate
GRU gated recurrent unit
HMM hidden Markov model
ILM intrusive load monitoring
IoT internet-of-things
LSTM long short-term memory
MAE mean absolute error
MPD maximum power difference
NILM non-intrusive load monitoring
NLP natural language processing
PCNN parallel CNN
RE relative error in total energy
REDD Reference Energy Disaggregation Data Set
ReLU rectified linear unit
RMSE root mean square error
SAEDadd self-attentive energy disaggregation with ‘dot’ attention mechanism
SAEDdot self-attentive energy disaggregation with ‘additive’ attention mechanism
seq2point sequence-to-point
seq2seq sequence-to-sequence
TN true negative
TP true positive
TPR true positive rate
UK-DALE UK Domestic Appliance-Level Electricity
WGRU window GRU
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