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Abstract: Due to the large number of grid connection of distributed power supply, the existing
scheduling methods can not meet the demand gradually. The proposed virtual power plant provides
a new idea to solve this problem. The photovoltaic power prediction provides the data basis for the
scheduling of the virtual power plant. Prediction intervals of photovoltaic power is a powerful statis-
tical tool used for quantifying the uncertainty of photovoltaic power generation in power systems.
To improve the interval prediction accuracy during the non-stationary periods of photovoltaic power,
this paper proposes a probabilistic ensemble prediction model, which combines the modules of data
preprocessing, non-stationary period discrimination, feature extraction, deterministic prediction,
uncertainty prediction, and optimization integration into a general framework. More specifically, in
the non-stationary period discrimination module, the method of discriminating the difference of the
power ratio difference is introduced and applied for identifying the non-stationary period of the data
of photovoltaic output; in the deterministic point prediction module, a stacking- long-short-term
memory neural network model is used for point forecasts; in the uncertainty interval prediction
module, a BAYES neural network is introduced for probabilistic forecasts; in the optimization inte-
gration module, an optimization algorithm named Non-dominated Sorting Genetic Algorithm-II is
applied for integrating and optimizing the results of the point forecast and probabilistic forecast. The
proposed model is tested using two photovoltaic outputs and weather data measured from a grid-
connected photovoltaic system. The results show that the proposed model outperforms conventional
forecast methods to predict short-term photovoltaic power outputs and associated uncertainties. The
interval width is reduced by 10–20%, and the prediction accuracy is improved by at least 10%; this
can be a useful tool for photovoltaic power forecasting.

Keywords: multi-objective optimization; photovoltaic power; point prediction; interval prediction;
ensemble probability prediction (MLBN) model

1. Introduction

In recent years, the fossil energy crisis has gradually attracted the attention of various
countries, and the development momentum of new energy has been risen rapidly [1,2].
As an important part of the new energy industry, photovoltaic power generation has
greatly increased its installed capacity in recent years, occupying a large share of the power
system [3,4]. At the same time, photovoltaic power generation has the characteristics of
randomness, volatility and intermittent. For power systems, when large-scale photovoltaic
power generation systems are integrated into the main grid, they will have a great impact
on the economic operation and stability of the grid, thus increasing the difficulty of power
system dispatch [5,6]. On the other hand, as a solution to maximize the profit of all
participants [7], virtual power plant (VPP) is the use of advanced communications and
computing technology of whole organic regulation multi-type controlled source unit loads
and stores, such as to reduce the effect of the randomness and volatility in the distributed
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generation operation of the main network, make it an active part in power demand side
management [8]. It excavates and utilizes the flexible adjustment ability of all kinds of
distributed resources, which can reduce the energy cost of users and greatly promote
the consumption of new energy. At present, the virtual power plant technology at home
and abroad is mainly applied to the control and scheduling problem of multiple energy
complementary systems [9]. In terms of traditional energy output, it can change the system
output in time with the change of scheduling strategy [10]. In terms of new energy, due
to the intermittent and random nature of wind and light energy, the output of the system
cannot timely and effectively follow the change of scheduling strategy [11], which lays
hidden risks for large-scale system scheduling. In order to solve this problem, photovoltaic
power prediction arises at the historic moment. Combined with the above, it can be
seen that accurate photovoltaic power prediction plays an important role in the overall
regulation of virtual power plant [12]. Therefore, the prediction of photovoltaic power is of
great significance for large-scale photovoltaic grid-connected power generation, improving
the safety and stability of power system operation, and ensuring the safe dispatch of
power grids.

The forecasting of photovoltaic power is not an easy task because PV power is affected
by many factors, including irradiance, temperature, etc [13]. Under such circumstances, at
present, the PV power forecasting is mainly divided into two categories according to the
different prediction results: certain point/ deterministic prediction [14] and uncertainty
interval prediction [15]. In recent years, many authors have focused on the research of de-
terministic prediction, and the method of artificial intelligence is used widely. The method
digs out the relationship between the input variables implicit in the historical output data
of photovoltaic power plants and the predicted results by machine learning, to realize
the prediction of photovoltaic power. Common artificial intelligence algorithms mainly
include BP neural network, support vector machine, regression tree algorithm, and so
on [16]. Compared with the deterministic point prediction, there are fewer scholars study-
ing the uncertainty interval prediction. Considering that photovoltaic power generation is
greatly affected by meteorological factors when the meteorological conditions within the
forecast period fluctuate greatly, the photovoltaic output curve will no longer be smooth,
and there will be a large peak-valley difference, with the accuracy of the deterministic
prediction results greatly reduced [5]. For this reason, interval forecasts can make up for
the lack of deterministic forecasts and have more comprehensive information. This not
only allows decision-makers to understand the possible output of the prediction point,
but also helps decision-makers understand the future change trend of the output of the
prediction point, thereby greatly improving the prediction accuracy, and promoting grid
planning, risk analysis, and reliability evaluation [6]. Therefore, interval prediction is an
advantageous tool with which to improve the accuracy of photovoltaic power prediction.

In the field of deterministic prediction, Reference [17] divides weather conditions
into ideal weather and non-ideal weather types. For ideal weather, a long-short-term
memory neural network (LSTM) prediction method is used; for non-ideal weather, time-
series correlation and characteristics of non-ideal weather types are considered in LSTM to
generate the final point prediction value. In reference to the limitations and incompleteness
of photovoltaic historical output data and meteorological data, Reference [18] proposed a
day-ahead prediction method similar to cloud space fusion based on this, so as to complete
point prediction. Additionally, Reference [19] established an independent day-ahead PV
power prediction model based on a long-short-term recurrent neural network (LSTM-
RNN), and proposed a method to modify the prediction results of LSTM-RNN model
based on the principle of time correlation, which improves the prediction accuracy of
the model.

In the field of uncertainty prediction, Reference [4] proposed an integrated method of
short-term PV power prediction based on extreme learning machine (ELM) and lower and
upper bound estimation (LUBE), and used an improved differential evolution algorithm
to find the best generating prediction intervals. Reference [20] proposed a new two-stage
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model to quantify the prediction interval value of photovoltaic power output, integrated a
variety of neural network models to generate point prediction values, and generated the
prediction interval through the kernel density estimation method. Reference [21] proposed
an improved Bootstrap method to improve the traditional theoretical method, solve the
problem of invalid prediction error hypothesis, and reduce the interval width under the
premise of ensuring interval coverage. Reference Additionally, [22] proposed a prediction
model based on particle swarm optimization and boundary theory; by using particle
swarm algorithm to optimize the output weight of boundary estimation theory, the interval
prediction of photovoltaic output was realized.

To the best of our knowledge, each model has disadvantages and advantages. There-
fore, none of these models can always achieve the desirable prediction results [23,24]. To fur-
ther improve forecasting performance, this paper proposes a multi-objective optimization-
based ensemble probability forecasting (MLBN) model for the non-stationary period of
photovoltaic output based on the research of previous authors [25,26]. Modeling is divided
into three stages: in the first stage, the historical output data of photovoltaic power plants
are preprocessed, feature selection is performed based on the MIC theory, and the most
suitable input features are selected; in the second stage, according to the feature selection
results of the first stage, the features are respectively input to the improved LSTM algo-
rithm and the BAYES neural network to obtain the initial deterministic point prediction
results and the uncertainty interval prediction results; in the third stage, the initial interval
prediction value is optimized to meet the narrowest interval width and the highest interval
coverage, and then the initial point prediction result is optimized and estimated, and it is
expanded to a new interval prediction value. Finally, the NSGA-II optimization algorithm
is used to perform multi-objective optimization of the two new interval prediction values
to obtain the final prediction interval.

The main contributions of this paper are demonstrated as the follows:

(1) Considering the non-stationary nature of PV power output, the differential theory
based on irradiance and power’s ratio is proposed to preprocess the PV historical data.

(2) The Stack-LSTM model, which based on LSTM and Stacking learning, is put forward
as a new point prediction model to improve the modeling accuracy.

(3) The multi-objective calibration of ensemble probabilistic photovoltaic power forecast-
ing model (MLBN) is proposed, which can improve prediction accuracy by a large
number and help decision-makers control the changes in the power grid planning
and scheduling.

The remainder of this paper is organized as the follows. Section 2 briefly describes
the basic methods about DM, Stack-LSTM, BAYES and NSGA-II. Section 3 presents the
framework of the proposed MLBN model and the error indicators. Section 4 is designed for
data set preprocessing and forecasting results of different models. Conclusions are given in
Section 5.

2. Method Introduction

In this section, we mainly introduce the ensemble probability forecasting (MLBN)
model method based on multi-objective optimization, including the power ratio difference
discriminant method, point prediction model, interval prediction model, NSGA-II (Non-
dominated Sorting Genetic Algorithm-II) multi-objective optimization algorithm, MIC
(Maximal Information Coefficient) theory, etc.

2.1. Discrimination Method for Radiation Power Ratio Difference (DM)

The output of photovoltaic power plants has the characteristics of randomness and
intermittent. In ideal weather conditions such as sunny days, the output of photovoltaic
power is in a stable period; The output curve shows obvious periodic changes, and is close
to the normal distribution, and the fluctuation is small [27]. In other cases, the photovoltaic
output is in a non-stationary period, and the output curve fluctuates randomly with the
change of the weather, with greater fluctuations than in a stable period. Therefore, this
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paper proposes for the first time the method of discriminating the difference in the radiation
power ratio [16]. According to the fluctuation range of the photovoltaic output curve, the
historical data is divided into a stable output period and a non-steady output period. The
specific discrimination process is as follows [19].

(1) Photovoltaic output is greatly affected by factors such as weather and irradiance,
and it has a strong periodicity. The common output curve types are stable output type and
non-stable output type. Figures 1 and 2 show representative two Group data, respectively,
as the specific description of these two types.
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(2) In order to accurately distinguish the difference between the period of steady
output and the period of non-stationary output, the steps in this paper are as follows.

(a) the parameter radiant power ratio difference can be defined as

Xt =
St−1

St
(1)

where, St−1 is the irradiance of the (t− 1)-th sample in the data sample; St is the irradiance
of the t-th sample in the data sample.

(b) Dividing the value range of Xt, can be expressed as

Xt =


Xt < 0.7
Xt > 1.3

0.7 ≤ Xt ≤ 1.3
(2)

(c) The value of Xt is judged on the basis that when the value is on [0.7, 1.3], which
is regarded as a period of steady output, and all other cases are periods of non-steady
output. Due to the large changes in power during the two periods of time when the sun
rises and the sun sets for photovoltaic power generation, it is a normal phenomenon. To
avoid dividing the two periods of time into non-stationary output periods in the division
process, a new criterion (3) is used to prevent misjudgments.

|Pt−1 − Pt| > 3 (3)

where, Pt−1 is the actual output power of the (t− 1)-th sample in the data sample, and Pt
is the actual output power of the t-th sample in the data sample.

After the test of this method in this paper, the radiant power ratio difference criterion
method can distinguish the stable period and the non-stationary period of photovoltaic
output with high quality, which has strong feasibility.

2.2. Point Prediction Model

Aiming at the characteristics of photovoltaic output during non-stationary periods,
this paper adopts an improved Stack-LSTM model to predict photovoltaic power with
certainty points [2,28]. The standard LSTM neural network is improved from the general
recurrent neural network (RNN) recurrent neural network model, which solves the prob-
lems of long-term dependence and gradient disappearance in the RNN network; compared
with other networks, the processing of nonlinear problems has greater advantages. The
standard structure is shown in Figure 3.
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However, in actual operation, it is found that the prediction accuracy of the standard
LSTM model is not high enough for the power prediction during the non-stationary output
period extracted in this paper. To further improve the prediction model and improve the
prediction accuracy of non-stationary output periods, this paper introduces the integration
theory based on the original LSTM model, and builds the Stack-LSTM model. The model
structure diagram is shown in Figure 4, and the specific process is in the following.
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(1) Dividing the data set I = {xi, yi}m
i=1 into n subsets I1, I2, . . . . . . In;

(2) Based on these n subsets, they are input into the LSTM algorithm to obtain the first
prediction result w1, w2, . . . . . . wn;

(3) The first prediction result is added as an additional feature to the original feature to
form a new input feature x′1, x′2, . . . . . . x′l = (x1, x2, . . . . . . xl , w1, w2, . . . . . . wn), which
is then input into the LSTM algorithm again to perform the second prediction and
obtain a higher precision result [19].

2.3. Interval Prediction Model

Under complex weather conditions, the short-term output of photovoltaic power
plants is not stable. Aiming at the problem that the prediction accuracy of the deterministic
prediction method is significantly reduced, this paper uses Bayesian neural network for
interval prediction [20]. Compared with deterministic forecasting, interval forecasting
can give the interval distribution of all possible output values of photovoltaic equipment
at the forecast time, thereby describing the uncertainty of the forecast point [1]. The
Bayesian neural network is essentially a probability-based uncertainty inference network.
Its structure is similar to that of a deep neural network. It is composed of an input layer,
a hidden layer, and an output layer, as shown in Figure 5a. The difference is that the
Bayesian neural network has a probability layer in the hidden layer of its network; the
weight obeys the probability distribution and is a random variable, not a definite value [21].
The structure of the hidden layer is shown in Figure 5a,b.

In Figure 5, A and B are the input and output vectors of the hidden layer, respectively;
an is the weight of the n-th unit, which obeys the distribution of the form p(an|A, B) , and
bn is the bias of the n-th unit [22].

The existence of the probability layer gives the Bayesian neural network the ability to
describe uncertain events. Its essence is like the integrated neural network. Besides, the
difference is that each sub-network of the probability layer of Bayesian neural network
is not independent of each other; rather, after each training, all sub-networks can be
synchronized and optimized, which makes Bayesian neural networks have a better ability
to suppress the risk of overfitting than ordinary neural networks [23].
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2.4. Optimization of the Ensemble Prediction Model

The deterministic prediction method chooses the power value as the prediction result,
which can also support the long-term optimization of the scheduling system. However, in
complex weather conditions, the prediction accuracy of the deterministic point prediction
is poor that would affect the safe operation of the power grid. Consequently, the probability
and interval of the prediction result are unavailable. And the interval prediction method
depends on the interval distribution of the photovoltaic equipment as the output to describe
the uncertainty of the forecast point at the forecast point, which promotes the scheduling
system to evaluate the fluctuation of output according to the predicted interval size, thereby
adjusting the scheduling strategy. In addition, the interval prediction results are affected
by the interval width which is restricted by the learning ability of the network. Thus, the
whole prediction accuracy would be influenced by interval prediction results. Considering
existed problems above, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is
introduced to conduct Multi-objective optimization about its results and improve the
overall prediction accuracy [24].

The basic idea of the NSGA-II described as follows: an initial population of size N is
generated randomly [25]. Then, after non-dominated sorting, the first-generation progeny
population is obtained through three basic operations of the genetic algorithm including
selection, crossover, and mutation; subsequently, starting from the second generation, the
parent population and the offspring population are merged to perform fast non-dominated
sorting [29]. Meanwhile, for forming a new parent population, the crowding degree
calculation of the individuals in each non-dominated layer must be implemented according
to the non-dominated relationship and the crowding degree of the individuals. Finally, a
new progeny population is generated through the basic operation of the genetic algorithm;
Follow above reasoning, until the conditions for the end of the program are met, the specific
flowchart is shown in Figure 6.

Applying NSGA-II to the conditions described in this article, the specific process is as
follows [19].

(1) Input selection. Select three points: the deterministic point prediction result, the
upper and lower bounds of the interval distribution from the interval prediction, and
the actual output value about this point as the input variables of the network.

(2) Model construction. By inputting the relevant variables selected above, a basic
NSGA-II network model is constructed to perform multi-objective optimization.
The optimization objectives are (PINAW) the smallest interval width and (PICP) the
largest interval coverage. Owing to these two indicators are contradictory in the
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same network, the optimization constraint must weigh them, and choose the smallest
interval width under the maximum interval coverage as the restrictions.

(2) Model validation. After experiments in the subsequent part of this article, the feasibil-
ity of the model would be verified.
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2.5. MIC Theory

MIC (Maximal Information Coefficient) is the maximum information coefficient. This
theory was proposed by Reshef and other scholars in 2011 to measure the degree of corre-
lation between two variables x and y, that is, the strength of linearity or nonlinearity [25].
Compared with Mutual Information (MI, Mutual Information), MIC has higher accuracy
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and is an excellent data correlation calculation formula. The calculation formula of MI is
shown as:

I(x, y) =
∫

p(x, y) log2
p(x, y)

p(x)p(y)
dxdy (4)

In the formula, p(x, y) is the joint probability between variables x and y; generally, it
is difficult to find this value.

The basic principle of MIC is to discretize the relationship between two variables
in a two-dimensional space and apply a scatter diagram to represent it [26]. After the
current two-dimensional space is divided into a certain number of intervals in the x and
y directions, and then check how the current scatter points fall into each grid. This is the
calculation of joint probability. This solves the difficult problem of joint probability in
mutual information, with the calculation formula below.

MIC(x; y) = max
a∗b<B

I(x; y)
log2(min(a, b))

(5)

In the formula, a and b are the number of grids divided in the x and y directions, which
is essentially the network distribution, and B is a variable, generally taken as the 0.6th
power of the amount of data.

3. MLBN Model Development
3.1. Model Construction

Based on the above methods (radio power ratio difference discriminant method, MIC,
Stack-LSTM, BAYES, and NSGA-II), this paper proposes a multi-objective optimization-
based ensemble probability forecast (MLBN) model. The model couples the integrated
modules of data preprocessing, non-stationary period discrimination, feature extraction,
deterministic prediction, uncertainty prediction, and optimization, as shown in Figure 7.
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The MLBN proposed in this article is mainly composed of five modules.
Module 1: Data preprocessing and identification of non-stationary periods
(1) Data preprocessing
The central limit theorem (3-Sigma principle) is applied to detect and eliminate abnor-

mal data from the historical output data of photovoltaic power plants, and then adopt the K
nearest neighbor algorithm, and the Euclidean distance method to fill in the abnormal data.

(2) Discrimination of non-stationary periods
The pre-processed historical data is discriminated by the method of discriminating

the difference in power ratio described above, and two types of periods of steady output
and non-stable output are obtained.

Module 2: Feature extraction
Based on the theory of mutual information, this paper chooses the MIC method to

extract the input vector features of photovoltaic output data during non-stationary periods,
which mainly include the following factors: wind speed, wind direction, temperature,
humidity, pressure, and irradiance.

Module 3: Point forecast
The improved Stack-LSTM model algorithm is used to predict the period of photo-

voltaic non-stationary output with certainty points, and two sets of data from different
sources are selected for verification.

Module 4: Interval prediction
The Bayes neural network model is used to predict and verify the interval of uncer-

tainty in the period of photovoltaic non-stationary output.
Module 5: optimize integration forecast
The NSGA-II optimization algorithm is utilized for multi-objective optimization. The

prediction results of certainty points and the upper and lower bounds of uncertainty
interval prediction are selected as input, and the optimization targets are the largest PICP
and the smallest PINAW.

3.2. Model Prediction Evaluation Index

To evaluate the prediction results of the model more objectively and comprehensively,
this paper evaluates the deterministic prediction results from the perspective of certainty,
and evaluates the results of interval prediction from the perspective of uncertainty [20].

The deterministic forecast evaluation indicators selected in this paper are the average
absolute percentage error (MAPE) and root mean square error (RMSE). The calculation
formula is as follows:

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣
∧
yi − yi

yi

∣∣∣∣∣× 100% (6)

RMSE =

√√√√ 1
N

N

∑
i=1

(
∧
yi − yi)

2
(7)

In the above formula, N is the number of samples,
∧
yi and yi are the predicted value

and actual value at time i, respectively.
Meanwhile, to construct high-quality interval predictions, the indicators used in this

paper to evaluate the uncertainty prediction results are the prediction interval coverage
probability (PICP) and the prediction interval normalized average width (PINAW). Interval
coverage is the most key indicators to measure wind power prediction effect, reflect the
accuracy of forecasting model, the definition refers to the actual wind power value falls
within the upper bound and lower bound envelope by the prediction interval of probability,
the greater the PICP, represent the actual wind power value of the fall in the corresponding
prediction interval, interval prediction effect is better, the smaller PICP value is, the more
actual wind power value is not within the prediction range, and the worse the prediction
effect is. The width of the forecast interval can be used to evaluate the quality of the forecast
interval from another perspective. In other words, the mean width of the interval (PINAW)
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is to measure the interval width obtained by the forecast interval. Its mathematical to
calculate the mean of all the interval widths over the forecast period.

With the calculation formulas in the following:

PICP = 1
N

N
∑

i=1
ci

ci =

{
1, ζi ∈ [Li, Ui]
0, ζi /∈ [Li, Ui]

(8)

where, N is the total number of samples, ζi is the actual photovoltaic power, Li is the lower
bound of prediction, and Ui is the upper bound of prediction.

Usually, the performance evaluation index of interval prediction is PICP. If the limit
value of the target value is used as the upper and lower boundaries of the prediction
interval, 100% PICP can be easily achieved. Too wide the interval leads to an increase in the
uncertainty of the forecast results, reduces the instruction of the forecast results for system
scheduling, and loses decision-making value. Therefore, it is necessary to quantitatively
evaluate the width of the forecast interval [24].

PINAW =
1

NR

N

∑
i=1

(Ui − Li) (9)

where, R is the variation range of the target value, and using of R can ensure that PINAW
is normalized in [0, 1].

4. Results and Discussion
4.1. Data Description

To prove the effectiveness and practicability of the proposed hybrid forecasting model,
this paper selects the official data provided by the National Energy Nissin Second Pho-
tovoltaic Forecast Competition for forecasting research; the output data of Power Station
1 and Power Station 2 for the whole year of 2017 are selected. The original data is the
complete data for the whole year of 2017, and the data time step is 15 min. For the data
sampled 24 h a day, there are 32,848 sets of data for power station 1 and 33,060 sets of
data for power station 2. Due to the periodicity and intermittent nature of photovoltaic
output, this paper only selects the data at the time of daytime power generation. Excluding
the data during the non-power generation period at night, and processing and repairing
the abnormal data, missing data, and erroneous data in the whole data, finally power
station 1 retains a total of 16,018 groups of valid data, and power station 2 retains a total of
16,427 groups of valid data. The first 90% is the training set and the last 10% is the test set.
Figure 8 is as follows:
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4.2. Model Input Selection

The purpose of feature selection is to identify a set of optimal feature quantum sets
as the input variables of the prediction model. By eliminating irrelevant and redundant
variables, the data latitude is reduced, the amount of calculation is reduced, and the training
process of the model is accelerated. Appropriate feature selection is one of the key factors to
improve the performance of prediction models based on machine learning algorithms [30].
The data of each sample in the data set used in this article includes 1-dimensional historical
photovoltaic power generation and 6-dimensional influencing factor variables, as detailed
in Table 1. The results obtained by MIC theory analysis are shown in Figure 9.

Table 1. Data composition of sample points.

Number Variate Whether

1 The actual output value of
photovoltaic power station

2 Wind speed
√

3 Wind direction
√

4 Temperature
√

5 Humidity
√

6 Intensity
7 Irradiance

√
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It can be obtained from the MIC result graph that in the two sets of data, the factors
with strong nonlinear correlation include irradiance, humidity, temperature, and wind
speed, so these factors are selected as the model inputs of this paper.

4.3. Point Prediction Result

According to the above-mentioned results from MIC, the input variables are selected
for the Stack-LSTM model. The data 1 and data 2 are validated by the evaluation indexes
(MAPE, RMSE) for this model to get its prediction curve, respectively shown in Figure 10a,b.
To use these two sets of results as a control group, LSTM and ANN models are selected as
the benchmark model, as shown in Figure 10c–f.
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Figure 10. Multiple point prediction model diagram.

From Figure 11, compared with the original LSTM model and ANN model, the Stack-
LSTM model has the highest curve fit and prediction accuracy through the improvement
of the non-stationary photovoltaic output period prediction model. To accurately quantify
the improvement of prediction accuracy, Table 2 provides a comparison of indicators for
evaluating the prediction effect of the model.

Table 2. Comparison of multi-model MAPE.

Number Text ANN (%) LSTM (%) Stack-LSTM (%) Rate of Rise

Station 1

1 1.10306 0.72771 0.50218 0.22553
2 1.12407 0.73006 0.49782 0.23224
3 1.08590 0.72827 0.50116 0.22711
4 1.12504 0.72735 0.49835 0.21900

Station 2

1 0.95952 0.70039 0.51487 0.18552
2 0.95643 0.71264 0.51035 0.20229
3 0.96076 0.70982 0.50273 0.20709
4 0.94895 0.69331 0.51640 0.17691

According Table 2, through the improvement of the prediction model for the non-
stationary photovoltaic output period, the prediction accuracy of the Stack-LSTM model
is compared with the original LSTM model and the traditional ANN network, and the
accuracy is improved by nearly 20% and 30%, which verify the feasibility and practicability
of the Stack-LSTM model.
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4.4. Interval Prediction Result

Through the MIC analysis results, the input features are selected, and the BAYES
neural network prediction of the two sets of data is performed, with the prediction results
shown in Figure 11. The relative interval widths under the coverage rates of 85%, 90%, and
95% are calculated respectively, as shown in Table 3.

Table 3. Comparison before and after multi-objective optimization

Number PICP Reference [18] Before PINAW After PINAW Rate of Rise (%)

Station 1
85% 9.0342 7.4852 6.2607 17.56
90% 9.4976 7.7087 6.8395 12.84
95% 10.1306 8.2711 7.7403 10.41

Station 2
85% 9.0342 7.2975 6.4453 13.38
90% 9.4976 7.6542 7.0842 9.86
95% 10.1306 7.9583 7.2574 9.65

It can be seen from the Figure 12, that compared with deterministic point prediction,
using the Bayesian neural network for interval prediction has a better ability to suppress
the risk of overfitting than ordinary neural networks. During the non-steady output period,
it can predict the possible output at that point, so that the dispatching system can adjust
the dispatching strategy in time to ensure the safe and stable operation of the power grid
to the greatest extent.

4.5. Optimization of Ensemble Prediction Results

In order to improve the overall prediction accuracy, select the prediction results of
certain points and the upper and lower bounds of the uncertainty interval prediction as
input. The optimization targets are the largest PICP and the smallest PINAW. The NSGA-
II optimization algorithm is used for multi-objective optimization, Figure 12 shows the
comparison of its prediction interval results.
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The shaded part in the Figure 12 is the interval boundary value optimized by this
article. The green and purple straight lines represent the unoptimized, original interval
prediction upper and lower boundary values. On the premise of ensuring interval cover-
age, after the optimization processing in this article, the interval width has been greatly
narrowed and the prediction accuracy has been greatly improved under the premise of
ensuring the coverage of the interval. To quantify the degree of increase in this uncertainty,
specific data pairs are shown in Table 3.

From Table 3, under the same interval coverage, the prediction model compared with
the unoptimized prediction model is obtained. The width of the interval in this article
has been reduced by 10–20%, which means that the prediction accuracy has increased
by at least 10%. Compared with the boundary estimation theory method described in
reference [18], under the same interval coverage, the MLBN prediction model constructed
in this paper performs multi-objective optimization on the deterministic prediction results
and the interval prediction results, and the prediction accuracy is improved by more than
20%, which proves the feasibility of constructing the model in this paper. The accuracy
improvement shown by the experimental data enables the dispatching system to more
accurately evaluate the fluctuation of photovoltaic output based on the width of the interval,
which is of great significance to the safe and stable operation of the power grid.

5. Conclusions

Aiming at the problem of poor prediction accuracy of traditional photovoltaic power
prediction models during non-stationary periods of photovoltaic output, this paper pro-
poses an ensemble probability prediction (MLBN) model based on multi-objective opti-
mization, the conclusions are as the follows:

(1) The model combines with data preprocessing, non-stationary period discrimination,
feature extraction, deterministic prediction, uncertainty prediction, and optimization
integration modules to construct a difference in power ratio discrimination method
and a Stack-LSTM point prediction model. The proposed MLBN model combines
mainstream deterministic forecasting models and interval forecasting models, fusing
point forecasting and interval forecasting, and performing multi-objective optimiza-
tion on two different forms of forecasting results.
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(2) After improving the prediction in this article, the prediction accuracy of the Stack-
LSTM model is 20% higher than that of the original LSTM model, and compared with
the traditional ANN network, the accuracy is improved by nearly 30%, verifying the
feasibility and practicality of the model constructed in this article.

(3) Under the PICP of 85%, 90% and 95%, the interval forecast can predict the possible
output of this point as far as possible in the non-stationary output period, which
enables the dispatching system to timely adjust the dispatching strategy and ensure
the safe and stable operation of the power grid to the greatest extent.

(4) Compared with the unoptimized prediction model, the interval width is reduced by
10–20% and the prediction accuracy is improved by at least 10% under the uniform in-
terval coverage, which significantly improves the prediction accuracy of photovoltaic
power prediction and verifies the feasibility of the proposed method.

The novelty of the work relies on combining point prediction and interval prediction,
focusing on interval prediction. The results show that the MLBN model can significantly
improve the prediction accuracy of photovoltaic power prediction, which can greatly
facilitate grid planning, risk analysis and reliability evaluation. At the same time, accurate
photovoltaic power forecast can carry out effective scheduling and scientific management
of photovoltaic power stations, improve the ability of power grid to accept photoelectricity,
guide the deficiency elimination and planned maintenance of photovoltaic power stations,
and improve the operation economy of photovoltaic power stations. And this model has
great benefits to promote the efficient planning of renewable energy system operations and
smart grid systems in obtaining multiple energy sources.

In the further research, this article will try as follows. One is to well combine the
deterministic prediction and uncertainty prediction models since this article to further
increase the prediction accuracy; the second is to try to higher-level machine learning
methods to study the prediction of photovoltaic power interval in the whole climate field,
increase the prediction duration, and improve the prediction accuracy.
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Abbreviations
PV Photovoltaic
LSTM long-short-term memory neural network
Stack-LSTM Stacking- long-short-term memory neural network
LSTM-RNN long-short-term recurrent neural network
ELM extreme learning machine
LUBE lower and upper bound estimation
DM Discrimination method for radiation power ratio difference
NSGA-II Non-dominated Sorting Genetic Algorithm-II
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MIC Maximal Information Coefficient
RNN recurrent neural network
MI Mutual Information
MAPE average absolute percentage error
RMSE root mean square error
PICP prediction interval coverage probability
PINAW prediction interval normalized average width
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