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Abstract: In this study, a grey box (GB) model for simulating internal air temperatures in a naturally
ventilated nearly zero energy building (nZEB) was developed and calibrated, using multiple data
configurations for model parameter selection and an automatic calibration algorithm. The GB model
was compared to a white box (WB) model for the same application using identical calibration and
validation datasets. Calibrating the GB model using only one week of data produced very accurate
results for the calibration periods but led to inconsistent and typically inaccurate results for the
validation periods (root mean squared error (RMSE) in validation periods was 229% larger than
the RMSE in calibration periods). Using three weeks of data from varying seasons for calibration
reduced the model accuracy in the calibration period but substantially increased the model accuracy
and generalisation abilities for the validation period, reducing the mean RMSE by over 160%. The
use of one week of data increased the standard deviation in parameter selections by over 40%
when compared with the three-week calibration datasets. Utilising data from multiple seasons for
calibration purposes was found to substantially improve generalisation abilities. When compared to
the WB model, the GB model produced slightly less accurate results (mean RMSE of the GB model
was 1.5% higher). However, the authors found that employing GB modelling with an automatic
model calibration technique reduced the human labour input for simulating internal air temperature
of a naturally ventilated nZEB by approximately 90%, relative to WB modelling using a manually
calibrated approach.

Keywords: model calibration; nearly zero energy building; grey box model; indoor air temperature

1. Introduction

Internal air temperature is a critical parameter for the simulation of the indoor en-
vironment in buildings. In order to simulate important metrics such as thermal comfort,
occupant productivity and energy consumption, accurate internal air temperature models
are required.

White box (WB), black box (BB) and grey box (GB) models have been employed in
previous studies for internal air temperature prediction. WB models are physics-based
and mechanistic in operation. WB models typically utilise a large number of building
descriptive parameters such as material properties, spatial dimensions, fenestration ori-
entations and mechanical/thermal system specifications. BB models are data driven and
use regression or machine learning algorithms to map the relationship between system
inputs and outputs using large amounts of empirical data without the requirement for
static building descriptive parameters [1,2]. GB models, like WB models, are mechanistic
in nature, however, the iterative physics-based operations are simplified and aggregated.
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Therefore, they are less computationally expensive and require fewer building descriptive
parameters [3,4]. The most commonly utilised GB models in thermal engineering applica-
tions are resistive-capacitive (RC) models [3–17] (Table 1). An RC model uses an electrical
analogy to describe model structure and function, where resistors (R) and capacitors (C) are
used to simulate the thermal energy flow and storage in the building. RC models typically
simplify WB model parameters by lumping parameters together into single resistors or
capacitors. The simplification of RC models is achieved through order-reduction [7,18] and
the lumping of parameters [4,14,16].

Table 1. Review of GB models used for predicting internal air temperatures.

Study, Year [Reference] Model(s) Building Data Method Duration *
(Days) Season(s)

Fraisse et al., 2002 [10] 1R2C-3R4C NR Empirical NA 0 d/9 d ** Win
Nielsen et al., 2005 [11] 3R2C NR Synthetic NA 0 d/14 d Win, Sum
Bacher et al., 2011 [12] 1R1C-6R5C TC Empirical Auto 6 d/0 d Win, Spr

Sturzenegger et al., 2013 [8] 14R14C NR Synthetic Mixed 6 d/6 d All
Underwood et al., 2014 [4] 3R2C TC Synthetic Auto 365 d/1 d All

Berthou et al., 2014 [3] 4R2C-7R3C NR Synthetic Auto 14 d/365 d ‡ All
Reynders et al., 2014 [7] 1R1C-8R5C R Synthetic † Auto 135 d/14 d Win, Spr, Sum

Pavlak et al., 2014 [6] 4R1C NR Synthetic † Auto 21 d/7 d Spr
Harb et al., 2016 [13] 1R1C-8R3C R, NR Empirical Auto 26 d/168 d Win, Spr

Oliveira Panao et al., 2016 [14] 5R1C TC Empirical NA 0 d/6 d Aut
Rodriguez Jara et al., 2016 [15] 2R1C TC Synthetic NA 0 d/365 d All

Andrade-Cabrera et al., 2017 [16] 9R6C R Synthetic Auto 181 d/0 d Aut, Win, Spr
Michalak et al., 2017 [17] 5R1C R Synthetic NA 0 d/365 d All
Cattarin et al., 2018 [5] 11R9C TC Empirical NA 0 d/5 d Aut

Oliveira Panao et al., 2019 [9] 2R2C R Empirical Auto NS NS

Building: TC = test-cell, R = residential building, NR = non-residential. Method: Man = manual calibration, Auto = automated calibration,
Mixed = combination of both, NA = method not applicable/no parameter calibration procedure explicitly stated. * Duration: specified in
number of days used in calibrating a model and subsequently validating said model (x calibration/y validation), where d = days. NS = Not
Specified, where the number of days for calibration/validation were not explicitly stated. The number of days was inferred if no value was
explicitly stated. † Noise added to simulate empirical data. ‡ Only the 6R2C model was validated. ** Only the 3R4C model was validated.
Season: Win = Winter, Sum = Summer, Spr = Spring, Aut = Autumn, All = All seasons.

Typically, WB models which utilise precise building parameters were found to be rea-
sonably accurate when validated under experimental conditions in building test-cells [19,20].
However, WB models were found to be inaccurate when compared to measured data from
real buildings [21]. Applying manual or automated calibration techniques to WB models
has been shown to greatly improve accuracy for internal air temperature prediction in real
buildings [22–24].

Model calibration often requires parameter tuning or selection. Parameter tuning can
be performed using manual [25], automated [26] and semi-automated [27] approaches. The
manual calibration approach uses human intuition combined with standardised calibration
metrics [28] to minimize prediction error. This approach begins with an initial un-calibrated
model populated with design stage building parameters. These parameters are then tuned
via a series of revisions to the initial model based on the relative error reduction after
each revision. [29,30]. The automated calibration approach uses mathematical or statistical
methods for parameter tuning [26]. These methods typically utilise optimisation algorithms
to reduce the error between model outputs and measured data [16]. Semi-automated
or mixed approaches to calibration combine intuitive and mathematical methods [31].
Typically, an initial model is created manually, parameters are selected for tuning and
boundary limits are manually selected for each parameter. The algorithm then selects the
final values of these parameters through an iterative error minimization process [8,32]. The
difference in time taken to manually or automatically calibrate models has been shown in
some instances to be very substantial [26,32]. As manual calibration relies on user intuition,
this process can be time intensive (e.g., 40 to 50 h), whereas automated calibration can take
over 80% percent less time (e.g., two to seven hours).
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In building simulation, WB models are the most widely used models in practice [33].
Typically, WB models are manually calibrated [22,25,34]. However, previous studies have
also used semi-automated calibration procedures with WB models [32,35]. BB models
are developed solely from empirical data where the internal architecture and coefficients
(i.e., number for neurons in the hidden layer of a neural network and the synaptic weight-
ings between neurons) are selected through an automatic procedural method based on
globalised error reduction [36–41]. For GB models, several studies use manual [5,11,14]
and semi-automated calibration approaches [12]. However, the most common approach is
automated calibration [3,4,13,15–17]. The majority of studies using RC models for internal
air temperature prediction have either relied on synthetic data generated by WB models or
a higher order GB model for calibration and validation [3,6–8,11,15–17]. When empirical
data are employed for such purposes, it is most commonly recorded data from unoccupied
test-cells or rooms [5,12,14]. The number of RC models that have been calibrated and
validated using recorded data from real occupied buildings is limited [10,13].

Nearly zero energy buildings (nZEBs) are now a legislative requirement for new-
builds in many parts of the world. A large amount of literature has identified nZEBs and
zero energy or net zero energy buildings as the target for buildings in the future [42–45].
Reaching nZEB standards requires improvements in fabric and energy performance when
compared to existing buildings. Although energy performance certificates suggest that
many nZEBs exist [46], the sample of well documented case study examples in published
literature is limited [23,47–50]. Over 80% of the simulation studies that focused on mod-
elling and performance of actual nZEBs, identified occupant behaviour (OB) as the primary
inhibiting factor for accurate simulation and predictions of both energy and internal air
temperatures [23,49,51–53]. This is due to the near stochastic nature of OB in certain condi-
tions. OB has a strong influence on the internal air temperatures in nZEBs [23], as these
buildings are highly insulated and can be thermally decoupled from external climatic
conditions. As a result, the internal thermal gains from OB have a more dominant effect
on internal air temperature. The observed efficacy of parameter tuning for RC models
may be lower if measured empirical data from nZEBs are used (as opposed to synthetic
data) due to the included noise from OB. The majority of published research has focused
on RC model calibration of air-conditioned buildings [3,6–8,13,16,17]. As these buildings
incorporated controlled air-conditioning systems for regulating the internal environment,
the influence of OB on air temperature was attenuated, therefore, the model calibration
and validation processes are less susceptible to the negative effects of OB noise. Pavlak
et al., (2014) trained an RC model on three weeks of synthetic data. Varying levels of noise
were added to the calibration dataset to simulate the uncertainty of recorded empirical
data. The results of this study showed that least-squares based automatic model calibration
error increased relative to noise level and noise type, with high levels of brown noise
resulting in a substantial increase in model error. RC models calibrated and validated
using automatic calibration algorithms have produced low levels of error with root mean
squared error (RMSE), with average of RMSE values of 0.4 ◦C and a maximum RMSE value
of 1.2 ◦C [6–8,13,16,17]. RC model predictions in naturally ventilated (NV) buildings are
reported in the literature as being less accurate, with mean absolute errors of 1.0 ◦C to
1.1 ◦C and daily maximum errors of 1.8 ◦C [14]. Air temperature in NV buildings is much
more sensitive to external climatic conditions (external air temperature and wind velocity)
than mechanically air-conditioned buildings [54]. OB also has a strong influence on the
operation of NV buildings as many NV systems either fully or partially rely on manual
occupant-controlled openings.

Table 1 presents findings from a systematic mapping (from peer-reviewed literature)
of published RC models that have been calibrated and/or validated for predicting internal
air temperatures in different buildings. This table includes the types of RC models that
have been used, the building type (i.e., residential, non-residential or test-cell), the types of
calibration data used (i.e., synthetic from other software package or empirical from a real
building), the calibration method (i.e., manual, automated or mixed methods), the duration
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of calibration or validation in days, and the season(s) that were considered during calibra-
tion or validation. 40% of the studies identified in Table 1 used a combined calibration and
validation approach. Of the studies that calibrate or validate GB models using measured
empirical data, the data requirements for calibration purposes were typically between 6
days to 26 days and depended on the application [5,10,12,13] with some studies that used
larger datasets broken into smaller periods [7]. Following a review of the RC model studies
presented in Table 1, a number of gaps have been identified. Existing literature on GB
model calibration has a limited number of validated examples of thermally decoupled
environments such as nZEBs, and these examples are in test-cell environments [5]. GB
models of nZEBs have yet to be calibrated in occupied conditions. The majority of GB
models have used synthetic data for parameter tuning. There are few studies of GB model
calibration in NV buildings [5,14]. While some examples have added noise to synthetic
data [6,7], calibration or validation with measured empirical data from real buildings is
very limited [10,13] and non-existent for NV nZEBs.

This paper presents the first example of GB model calibration for internal air tempera-
ture prediction in an occupied NV nZEB. The five objectives of this study are, (1) investigate
GB model performance for predicting internal air temperatures in a thermally decoupled
NV building with different sources of empirical calibration and validation datasets, (2) de-
velop a GB model of a naturally ventilated nZEB, (3) apply an automatic calibration
algorithm to select optimal GB model parameters using measured internal air temperature
data, (4) compare the validated GB model to a calibrated WB model and, finally, (5) inves-
tigate the potential for practical implementation of GB models. In Section 3 we present
the model theory and the calibration and validation approaches. In Section 4 we analyse
the accuracy of the GB model when compared to the WB model and measured empirical
data along with an analysis of the parameter selection when using different calibration
and validation periods. In Section 5 we discuss the efficacy of different calibration and
validation configurations as well as a practical comparison of WB and GB models. Section 6
presents the conclusions of this study.

2. Materials and Methods
2.1. Application

The empirical data used for this study were gathered from a test-bed building known
as the zero2020 building. The zero2020 building is a 223 m2 educational building that
functions as a live test-bed known as the National Building Energy Retrofit Test-bed
(NBERT) shown in Figure 1. The NBERT is used for research in thermal comfort, ventilative
and passive cooling, energy systems, and micro-grid applications [55–59]. The NBERT
uses a multi-configuration slotted louvre (MCSL) natural ventilation system for both
comfort cooling and air quality. The retrofitted building also has a highly insulated external
envelope that has fabric and fenestration u-values that are lower than the legislative
requirements for nZEBs in Ireland [60]. The NBERT has one large open plan office area,
two small cellular offices, one conference room and one seminar room, with a corridor
connecting all occupied zones. For information relating to the thermo-physical properties
and the building geometry see [56,61,62], for information regarding the natural ventilation
system see [54] and for specification of the instrumentation used in recording the empirical
data see [23]. The data used in this paper as well as building information regarding the
NBERT test-bed can be found at messo.cit.ie/nbert.
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Figure 1. NBERT in the zero2020 building: (a) image of exterior of retrofitted building; (b) image of
open plan office with MCSL ventilation system; (c) image of high-performance retrofitted wall detail.

2.2. Grey Box Model Structure

Figure 2 displays the floor plan of the NBERT open plan office, while the bottom-left
(b) of Figure 1 displays its interior, which has glazed facades to the west and south, and
a roof light. This room was selected as the application in this study for the following
reasons: (1) highly insulated external façade, therefore, the internal air temperature is to
a higher degree, thermally decoupled from the external air temperature in comparison
to a typical building. Occupancy related heat gains therefore, have a stronger influence
on internal air temperature. (2) the space has a highly variable occupancy schedule [23],
therefore profiling occupancy related gains is more difficult than a conventional open space
office. (3) NBERT employs a natural ventilation system with automatic openings (which
can be manually overridden by occupants), and manually operated openings, which are
controlled exclusively by the occupants. Therefore, the air temperature control in the
space relies on both external climatic conditions, (through solar irradiation and ventilation
convection exchanges), and internal OB and interactions with the space. For these reasons,
the space was deemed an interesting application for a GB model with automatic calibration
and validation using measured empirical data.
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The GB model used in this study was an RC model. Previous studies have found
that single capacitor building RC models are too simplistic and do not adequately simu-
late internal air temperature for high thermal mass buildings [4,11,15,63], while cognate
research that utilised multiple capacitors in RC models found that there was a reducing
return on increased model accuracy as the number of capacitors was increased beyond
two [12–14]. Therefore, a two-capacitor model (2C) was selected for this application. The
internal air mass (air capacitor), and the internal material mass (material capacitor), were
both modelled as independent capacitors. Three of the six zone boundary surfaces were
external (two external walls and roof) while the other three were internal (two internal
walls and floor). It was assumed no heat transfer would occur through the internal surfaces.
The resistors of the three external surfaces were lumped into one resistor, which was the
resistance of the external envelope (UEnv). This approach was adopted as the internal air
temperature and external air temperature at either side of these three resistors were uniform.
A second resistor was applied to the material capacitor representing the materials such
as the walls and roof (which was the resistance of the convective heat transfer coefficient
(hCap)), therefore, the structure of the model used was 2R2C (for an equivalent RC diagram
see [9]). This model structure was found to be very effective in cognate studies [9,12,13],
and from the literature review in Section 1, the authors deemed this to be the simplest
configuration that would be capable of simulating the dynamic internal air temperature for
this application.

3. Theory
3.1. GB Model

The internal air temperature in the room (TAi(t)) at each time-step (t) is described in
Equation (1):

TAi(t) = dTAi + TAi(t−dt) (1)

The change in internal air temperature, TAi, due to the balance between energy flow
in, (θA,I) and out (θA,O) of the air in the room is defined in Equation (2):

dTAi
dt

=

(
dθA,I

dt
− dθA,O

dt

)
(mAiCA)

−1 (2)

where mAi is the mass of the air in the room and CA is the specific heat capacity of air.
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The sensible energy input to the room is described in Equation (3):

dθA,I

dt
= β

(
dθSol

dt
γSol +

dθOccu
dt

γIO +
dθInt

dt
γIO

)
(3)

where, θSol, θOccu, and θInt are the solar, occupant driven, and internal energy gains added
to the room at each time-step. β represents the percentage of thermal gains that enter the air.
It was assumed a percentage of all gains would be lost due to latent energy [64]. γ describes
the fraction of energy that is convective or radiative. Two independent convective-radiative
ratios were employed in this study, one for internal gains and occupant gains (γIO) and
another for solar gains (γSol). These ratios represented the percentage of convective gains
that enter the air, where the remainder was assumed as radiative and was absorbed by the
surface of the material capacitor (i.e., the walls, floor and roof).

Equation (4) describes how the solar gains (θSol) were broken into gains entering from
the sky-light window on the horizontal, and gains entering from all vertical windows. The
g-values for the skylight (gh) and vertical windows (gv) were independent as the glazing
details varied. The solar radiation incident on the horizontal (Ih) and vertical (Iv) were
derived from global horizontal irradiance data and converted to vertical values for the
vertical windows using the Perez model [65] swhich was employed from TRNSYS 17 [66]
using the integrated weather data and radiation processor (Type 99):

θSol = (Ihgh + Ivgv) (4)

Equation (5) describes totalised outward sensible energy flows from the internal air
(θA,O):

dθA,O

dt
=

(dθIn f

dt
+

dθVent
dt

+
dθCond

dt
+

dθMat
dt

)
(5)

where, θInf, θVent, θCond and θMat are energy flows due to infiltration, ventilation, conductive
losses and material capacitor energy losses (energy flowing from the air to the material
capacitor), respectively.

Equation (6) describes the energy losses due to conduction (θCond):

dθCond
dt

= (TAi − TAe)(UEnv AEnv) (6)

where, TAi is the internal air temperature of the room, TAe is the external air temperature,
UEnv is the u-value of the external envelope and AEnv is the area of the external envelope.

Equation (7), where, θMat,I and θMat,O are the energy flows in and out of the material
capacitor, mMat is the mass of the material capacitor, and CMat is the capacitance of the
materials in the room, describes the change in temperature due to the energy flows entering
and exiting the material capacitor (walls, floor and roof):

dTMat
dt

=

(
dθMat,I

dt
− dθMat,O

dt

)
(mMatCMat)

−1 (7)

The mass of the material capacitor is described in Equation (8) and is a function of its
depth (dMat), area (AMat) and density (ρMat). For this study, the material capacitance for the
room was assumed to be concrete from the walls, floor and roof in the room. Therefore,
all thermo-physical parameters that were defined for the material capacitor were related
to concrete blocks with a maximum thickness of 0.2 m and a maximum utilisable depth
of 0.1 m, based on maximum depths for calculations proposed by ISO 13790 [67]. Initial
values for the density of the material capacitor were taken from CIBSE Guide A [68]:

mMat = dCap AMatρMat (8)
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Equation (9) describes the energy flowing in to the material capacitor (θMat,I):

dθMat,I

dt
=

(
dθSol

dt
(1 − γSol) +

dθOccu
dt

(1 − γIO) +
dθInt

dt
(1 − γIO)

)
(9)

where, θSol, θOccu, and θInt are the solar, occupant driven and internal energy added to the
material capacitor at each time-step. (1 − γSol) and (1 − γIO) describe the radiative gains
entering the material capacitor.

Equation (10) describes the energy flowing out the material capacitor (θMat,O):

dθMat,O

dt
= (TAi − TMat)(hMat AMatex)

−1 (10)

where, TAi is the temperature of the air in the room, TMat is the temperature of the material,
hMat is the convective heat transfer co-efficient for the material capacitor, and AMatex is heat
exchange area between the material capacitor and the air capacitor.

Equation (11) describes the heat exchange due to infiltration through the building
external envelope.

dθIn f

dt
=

dQAin f

dt
(TAi − TAe)(CAρA)

−1 (11)

where TAi is the temperature of the air in the room, TAe is the external air temperature, CA
is the heat capacity of the air, ρA is density of the air in the open plan office, and QAinf is the
volume of air due to infiltration.

Equation (12) describes the heat loss due to ventilation from the building’s natural
ventilation system:

dθVent
dt

=
dQAvent

dt
(TAi − TAe)(CAρA)

−1 (12)

where QAvent is the volume of air flowing through the room due to natural ventilation.
The volumetric flowrate of air passing through the room is based on whether the wind

driven flow (QW) is greater than the buoyancy driven flow (QB) or vice versa, as indicated
in Equation (13):

dQAvent
dt

=

{
dQB

dt , dQW < dQB
dQW

dt , dQW ≥ dQB
(13)

Equations (14) and (15) describe the volumetric flowrate for wind driven (QW) and
buoyancy driven (QB) flow according to Warren et al. [69]:

dQW
dt

= (Fr)(αAwin)(υw) (14)

dQB
dt

= α

(
AwinCd

3

)√√√√∣∣∣TAi(t) − TAe(t)

∣∣∣Hg

(TAi(t) + TAe(t))0.5
(15)

where FR describes the reference flow number, α describes the opening position of openings
(the opening scaling factor), Awin describes the area of openings in the room, υw describes
the local wind speed, H is the height of the opening and Cd is the discharge co-efficient for
all openings.

3.2. Calibration, Testing and Validation Data

The data utilised for calibration, testing and validation in this study were recorded in
an occupied open plan office in NBERT (see Section 2.1). In previous work by O’Donovan
et al. a WB model was calibrated and validated using the same dataset [23]. Table 2 and
Figure 3 display the periods where data were used for calibrating and validating both the
GB and the WB model. The WB model was calibrated using data from week 1 to week 3
and validated using data from week 4 to week 6. For more detailed information on these
data please see the supplementary data section of O’ Donovan et al. [23].
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Table 2. Periods used to calibrate or validate the GB model or WB model.

Week Name (Day)–Date from (Day)–Date to

Week1 (Wed)–24 December 2014 (Tue)–30 December 2014
Week2 (Mon)–29 June 2015 (Sun)–5 July 2015
Week3 (Mon)–19 October 2015 (Sun)–25 October 2015

Week4 (Mon)–26 October 2015 (Sun)–1 November 2015
Week5 (Mon)–4 May 2015 (Sun)–10 May 2015
Week6 (Mon)–11 May 2015 (Sun)–17 May 2015
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3.3. Calibration and Validation Approaches and Metrics

Calibration and validation using both WB and GB models were compared. The
baseline model geometry for the WB model was developed using the TRNSYS 3D Google
Sketchup Plugin [70] and imported into TRNSYS 17 [66]. The WB model was calibrated
using a manual approach, where, the baseline model (describing the building fabric and
solar heat gains) was calibrated sequentially, first using unoccupied data and later occupied
data. Week 1 was used to tune parameters related to the unoccupied condition of the
building (i.e., infiltration rate, external shading factor, thermal bridges). Week 2 was
used to tune parameters related to the occupied condition of the building (i.e., lighting,
appliances, occupant gains, window positions). Week 3 was used to test the WB model
performance, while, data from week 4 to week 6 were used to validate the WB model
(i.e., no parameters were tuned). Changes from the baseline to the calibrated model were
made through a series of iterations that were evidence-based. All changes to the baseline
were founded on building information or detailed knowledge of the building performance.
Each iteration was, therefore, a manual adjustment of the previous model and did not rely
on automation. To assess whether the model was satisfactorily calibrated, standardised
calibration metrics with reference to measurement and verification or calibration standards
were applied. More information on this approach can be found in O’ Donovan et al. [23].
In this study, three GB model validation/calibration approaches were investigated:

(1) The GB model was calibrated on an individual week, then validated on the corre-
sponding five weeks. This was repeated for all calibration and validation periods.
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The purpose of this analysis was to examine the performance of the model when
calibrated on a single week with a specific occupancy level during a specific season,
then validated on five individual weeks with different occupancy levels over vary-
ing seasons. The comparison of calibration and validation metrics was used as an
indicator of robustness.

(2) The GB model was calibrated on three weeks, then validated on the other three weeks.
Multiple simulations were carried out where the three calibration weeks and the
three corresponding validation weeks contained periods of varying occupancy and
different seasons. The efficacy of this calibration and validation method was examined
and then compared to the previous method. The model parameters selected by the
calibration algorithm for both methods were compared.

(3) A comparison of both GB and WB models was performed where both models were
calibrated and validated using identical data. The GB model was simultaneously
calibrated using data from weeks 1, 2 and 3. The WB model was incrementally
calibrated for weeks 1 and 2 and tested using data from week 3. Both models were
validated using data from week 4 to 6.

To compare the accuracy of each model, the RMSE for a given period, (p), was calcu-
lated for each week using Equation (16):

RMSEP =

√
∑ (TAi,S − TAi, M)2

N
(16)

where, TAi,S is the simulated internal air temperature, TAi,M is the measured internal air
temperature and N is the number of measurements during period p.

Previous work by O’Donovan et al. noted the need to include a correlation metric
when comparing air temperature predictions with empirical data as the range of tem-
peratures in nZEBs can be quite narrow and may not accurately represent the error in
a model [23]. Equation (17) shows the calculation of the Pearson correlation co-efficient
(r) [71]:

r =
∑
(
TAi,S − TAi,S

)(
TAi, M − TAi, M

)√
∑
(
TAi,S − TAi,S

)2
√

∑
(
TAi,M − TAi, M

)2
(17)

where, TAi,S and TAi, M are values of simulated and measured air temperatures for each
instance, and, TAi,S and TAi, M are the mean values for the simulated and measured
datasets, respectively.

The Pearson correlation co-efficient was used to measure the strength of correlation
between the models’ outputs and the measured empirical data. This correlation is a
direct indication on the models’ abilities to profile the transient behaviour of the internal
air temperature, and therefore, it provides a good indication on whether the model is
accurately capturing the thermodynamic characteristics of the space. When the Pearson
correlation co-efficient is greater than 0.5, it can be suggested that the model is representing
the dynamic behavior of the building [72].

3.4. GB Model Calibration

The Levenberg-Marquardt algorithm [73] was used in the automatic calibration pro-
cess. This algorithm was chosen for its computational efficiency and ability to avoid local
minima. The Levenberg-Marquardt method has proven to be successful in cognate mod-
elling applications [40,74,75]. The values of the 11 model parameters and their upper and
lower limits are shown in Table 3. The algorithm selected the optimal configuration of the
11 parameters through an iterative process. The cost function employed was the sum of
squared errors (SSE) (see Equation (18)).

SSE =
N

∑
i=1

(TAi,Mi − TAi,Si)
2 (18)
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Table 3. Maximum and minimum limits and initial values for auto-calibration parameters.

Name Symbol Eqn. Units Minimum Maximum Initial Value

Solar convective-radiative ratio γSol (3), (9) % 0.1 0.8 0.3
Internal convective radiative ratio γIO (3), (9) % 0.3 0.7 0.5

Latent loss percentage β (3) % 0.1 0.5 0.3
Horizontal solar transmittance gh (4) % 0.04 0.3 0.2

Vertical solar transmittance gv (4) % 0.1 0.5 0.35
External envelope heat loss rate Uenv (6) W/(m2 K) 0.17 0.5 0.33

Material capacitor depth dMat (8) m 0.01 0.1 0.1
Maximum material capacitor area AMat (8) m2 150 300 250
Material capacitor exchange area AMatex (10) m2 100 125 115

Material capacitor convective heat
transfer coefficient hMat (10) W/(m2 K) 2 13 6

Infiltration rate QAin f (11) m3/h 30 300 150
Opening scale factor α (14), (15) % 0.2 1 0.5

γSol is the solar convective-radiative ratio, γIO is the internal convective-radiative ratio, β is the latent loss percentage, gh is the horizontal
solar transmittance, gv is the vertical solar transmittance, Uenv is the external envelope heat loss rate, dMat is the material capacitor depth,
AMat is the maximum area of the material capacitor, AMatex is the material capacitor exchange area, hMat is the material capacitor convective
heat transfer coefficient, QAinf is the infiltration rate, and α is the opening scale factor.

This cost function was selected as it penalizes large residuals, where the error was the
difference between simulated air temperature (TAi,S) and the measured air temperature
(TAi,M). The value of N is dependent on the length of the calibration dataset. The algorithm
stopping criteria were set to a convergence value (1 × 10−3) and a maximum limit of
1000 iterations.

While many of the standard building parameters (such as the density of concrete
blocks) were assumed to be known, the building specific parameters were assumed to
be unknown but could be estimated within a set range [76]. The 11 building specific
parameters shown in Table 3 could be altered during the auto-calibration process. As these
parameters were unknown, the initial parameter values were estimated and the upper
and lower limits were either set by the physical constraints of the building or maximum
plausible boundary limits determined by the authors.

4. Results and Discussion
4.1. Calibration and Validation of GB Model

In this section, we compared the performance of the GB model for two different
calibration and validation datasets. The first dataset contained one week for calibration
and five weeks for validation purposes (C1V5), while the second dataset contained three
weeks for calibration and three weeks for validation purposes (C3V3). Each dataset was
partitioned and folded into multiple calibration and validation subsets (Figure 4) to allow
multiple calibration and validation arrangements [77]. The purpose of comparing the
calibration and validation of the GB model for these two datasets was to determine the
performance gap when the model was calibrated using just one week in a particular
season with a particular occupancy level versus being calibrated using multiple weeks
over varying seasons and occupancy levels.

4.1.1. GB Model Performance (C1V5)

Table 4 displays the calibration and validation results for the GB model for C1V5. The
dataset contained six individual weeks of data. These weeks were recorded over varying
seasons and contained multiple occupancy levels (see Section 3.2). The GB model was
calibrated using one week and then validated on the other five weeks, this was repeated for
each week. For example, when calibrating using week 2, the validation period consisted of
weeks 1, 3, 4, 5 and 6 (C2_V13456) (see Figure 4). We can see from the results that the GB
model correlated very strongly and produced a very low error for the weeks on which it
was calibrated.
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Table 4. Accuracy of models calibrated on one week of data. The values in bold indicate the accuracy
of the training week. The corresponding line plots for these bold values are in Figure 5.

Name Metric Week1 Week2 Week3 Week4 Week5 Week6

C1_V23456
RMSE 0.25 0.53 1.24 0.64 2.14 0.87

r 0.99 0.76 0.47 0.92 0.28 0.85

C2_V13456
RMSE 1.94 0.21 1.80 1.83 2.11 1.04

r 0.99 0.95 0.80 0.31 0.35 0.91

C3_V12456
RMSE 1.02 1.16 0.50 0.60 0.81 0.43

r 0.99 0.79 0.86 0.84 0.60 0.90

C4_V12356
RMSE 0.57 1.46 1.52 0.22 1.77 2.39

r 0.99 0.85 0.45 0.96 0.33 0.83

C5_V12346
RMSE 0.35 1.44 0.85 0.38 0.58 0.59

r 0.99 0.76 0.69 0.90 0.66 0.86

C6_V12345
RMSE 2.43 0.76 0.79 0.93 0.75 0.31

r 0.99 0.91 0.86 0.80 0.76 0.95

Figure 5 shows the calibrated models’ performance for each respective calibration
period. The models’ very tight fit to the empirical data in each calibration period demon-
strates the algorithm’s ability to finely tune the model parameters to produce the minimum
error. However, the correlation substantially decreases and the error substantially increases
for the validation periods. For the six simulations of C1_V23456 through to C6_V12345, the
mean RMSE was 334%, 739%, 62%, 593%, 25% and 265% higher in the validation period
compared to the calibration period, respectively. The mean increase in RMSE from the
calibration period to the validation periods on average was 229%.

Figure 6 displays the set of parameters selected by the calibration algorithm for each
calibration period (the parameters are displayed as a percentage between the upper and
lower limits). We can see there is substantial variation between periods for the majority of
parameters. Depending on the week selected for calibration, the tuned parameter values
varied substantially. The mean of the standard deviations for the 11 parameters was 19%.

4.1.2. GB Model Performance (C3V3)

Table 5 displays the calibration and validation results for the GB model for C3V3. The
GB model was calibrated using three weeks and then validated on the other three weeks.
The composition of the three calibration weeks were selected and folded to ensure the
model was calibrated using data containing varying occupancy levels during different
seasons. The last simulation employs all six weeks for calibration purposes (C123456).

For the four simulations of C123_V456 through to C256_V134, the mean RMSE was
109%, 53%, 65%, and 29% higher in the validation period compared to the calibration period,
respectively. The mean increase in RMSE from the calibration periods to the validation
periods was 62%. Figure 7 illustrates the final parameter selections that the calibration
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algorithm made for each three-week combination of calibration and validation datasets.
As can be seen, the parameter values selected by the algorithm can vary depending on
the three weeks used for the calibration dataset. However, the variance was substantially
lower in comparison to the C1V5 results (Figure 6). The mean of the standard deviations
for the 11 parameters was 13%.
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Table 5. Accuracy of models calibrated using three weeks of data. The values in bold indicate the
accuracy of the calibration weeks.

Name Metric Week1 Week2 Week3 Week4 Week5 Week6

C123
V456

RMSE 0.27 0.46 0.59 0.67 1.18 0.91
r 0.99 0.82 0.81 0.83 0.49 0.90

C456
V123

RMSE 0.29 1.10 0.78 0.37 0.58 0.46
r 0.99 0.78 0.73 0.90 0.65 0.89

C134
V256

RMSE 0.27 0.89 0.58 0.47 0.81 0.49
r 0.99 0.85 0.77 0.88 0.55 0.88

C256
V134

RMSE 0.84 0.49 0.67 0.62 0.71 0.46
r 0.98 0.83 0.72 0.84 0.49 0.88

C123456
RMSE 0.27 0.82 0.64 0.45 0.76 0.52

r 0.99 0.84 0.73 0.90 0.58 0.88
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4.1.3. Comparison of GB Model Performance for Both Calibration Methods

Figure 8 displays the performance of the GB model when different sources of data
were used for calibration and validation. The GB model calibrated on three weeks of
data (C3V3), produced results with a relatively consistent level of accuracy, with mean
RMSE values of between 0.58 ◦C and 0.67 ◦C, maximum RMSE values of between 0.82 ◦C
and 1.18 ◦C, Pearson correlation coefficients ranged from 0.49 to 0.99, for calibration and
validation periods, respectively.
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Figure 8. Scatterplots of Pearson correlations with respect to RMSE. Data grouped according to
calibration approaches, i.e., for one week (C1V5) and three week (C3V3), using colour scheme and
according to stage (blue for one week and orange for three weeks) and using data point shape for
calibration or validation (circle for calibration period and triangle for validation period). Dashed box
indicates the accuracy of WB model (see Section 4.2 for comparison with GB model).

However, when the GB model was calibrated using one week of data (C1V5), the
accuracy of the model was far less consistent in comparison to the C3V3 results, with mean
RMSE values of between 0.21 ◦C and 1.52 ◦C, and maximum RMSE values of between
1.46 ◦C and 2.43 ◦C. Pearson correlation coefficients ranged from 0.28 to 0.99, for calibration
and validation periods, respectively. From Figure 8 we can see how the calibration periods
for C1V5 (see Figure 5 for line graphs), are highly accurate. However, the corresponding
validation periods are typically far less accurate, with lower Pearson correlation and
higher RMSE. In contrast, the calibration periods for C3V3 (see Figure 9 for line graph of
C123V456), were not as accurate in comparison to C1V5, but the validation periods were
far more accurate. We can see the number of weeks used for calibration of parameters in
GB models effects the accuracy and repeatability of results (for a breakdown of individual
weeks see Figure 10). The inconsistency in the results for C1V5 is likely a result of over-
fitting for the conditions present in the individual calibration week. This is reflected in
the mean RMSE values for each calibration week or series of weeks and in the difference
in standard deviation between C1V5 and C3V3. The use of three weeks of data (C3V3)
as opposed to one week of data (C1V5) for calibration, reduces the average RMSE in the
validation period by over 160%. The use one week of data (C1V5) increases the standard
deviation in final parameter selections by 46%.
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4.2. Comparison of WB and GB Models

Figure 9 displays the difference observed between recorded air temperature data,
GB model predictions and WB model predictions in the NBERT open plan office for both
calibration and validation periods. Table 6 displays the Pearson coefficient and the RMSE
for both models for the calibration period (weeks 1–3) and the validation period (weeks
4–6). During the calibration period the GB model produced a higher Pearson coefficient for
week 2 (0.82), while the WB performed better in week 3 (0.86). In week 1 (non-occupied)
both models produced an equivalent Pearson coefficient (0.99). The RMSE in the calibration
period for GB was considerably lower in all three weeks (0.27, 0.46, and 0.59). During the
validation period the GB model produced a higher Pearson coefficient for week 3 (0.9),
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while the WB model performed better in weeks 2 and 3 (0.88 and 0.6). The RMSE values of
the WB model over the validation period were lower than the GB model for weeks 1 and 3
(0.46 ◦C and 0.77 ◦C), while the GB model produced a lower RMSE in week 2 (1.18 ◦C).
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Figure 10. Scatterplots of Pearson correlation co-efficient and RMSE for both GB calibration methods
(C3V3 and C1V5). Points indicate the accuracy for a single specific week for the GB model calibrated
using different data sources, where, the colour indicates the season and the shape indicates the
calibration method (C3V3 or C1V5) and whether it was a calibration or validation week. Dashed line
indicates the line of best fit according to season.

The mean RMSE of the GB model during the validation period increased by 109%
when compared to mean RMSE of the calibration period. However, the mean RMSE of the
WB model only increased by 28% between the calibration and validation period. The drop
in GB model accuracy between the calibration and validation periods may be due to the
overfitting of the tuning parameters to the calibration data as discussed in Section 3.2 (for
the selected parameters please see Figure 7, C123_V456).

Table 6. Calculated error for both GB and WB models during calibration (weeks 1–3) and validation
(weeks 4–6).

Week
r RMSE (◦C)

GB WB GB WB

1 0.99 0.99 0.27 0.50
2 0.82 0.74 0.46 0.62
3 0.81 0.86 0.59 1.00

4 0.83 0.88 0.67 0.46
5 0.49 0.60 1.18 1.49
6 0.90 0.86 0.91 0.77
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When directly comparing the performance of the models, we can see the GB model
substantially outperformed the WB model over the calibration period. The mean RMSE of
the GB model (0.44 ◦C) was 38% less than the WB model (0.71 ◦C) over the same period.
However, during the validation period the mean RMSE of the GB model (0.92 ◦C) was
slightly higher than the WB model (0.91 ◦C) and the correlation between the measured
empirical data and model predictions were stronger for the WB model during the validation
period. The GB model was far more accurate during the calibration period, but this
can be attributed to the automatic calibration method, which employed an optimisation
algorithm, which was able to converge on a solution. The WB model relied on a manual
calibration method, which used a piecemeal evidence-based approach for a larger number
of parameters. It must also be noted that WB model parameters were calibrated using
data from weeks 1 and 2, while week 3 was used for testing purposes (as described in
Section 3.3). While the WB model is only slightly more accurate than the GB model for the
validation period, this comparison suggests the WB modelling technique produced better
generalisation abilities. Figure 8 provides a breakdown of the accuracy of the individual
weeks used for calibration and validation used in C1V5 and C3V3 for the GB model. The
accuracy of the calibration and validation periods for the WB model are represented by
the dashed box. From this, we can see that the GB model out-performs the WB model for
the calibration periods, especially for the C1V5 configuration. For the validation periods,
the GB model is more likely to produce less accurate results than the WB model, with the
C1V5 configuration producing the least accurate results.

Figure 10 displays the calibration and validation results for individual weeks contained
in the C1V5 and C3V3 configurations. We can see calibration periods for both C1V5 and
C3V3 fit the winter period very well with low RMSE values (≤0.27 ◦C). However, when
the GB model was validated on the winter season, the validation RMSE rose to 0.84 ◦C for
the C3V3 configuration and to 2.43 ◦C for the C1V5 configuration, while the correlation
remained very high (r ≥ 0.98). The summer calibration periods produced RMSE values
between 0.21 ◦C and 0.49 ◦C while the validation periods resulted in RMSE values between
0.53 ◦C and 1.46 ◦C, with r values between 0.76 and 0.95. The shoulder season produced the
widest spread in RSMEs with calibration values between 0.22 ◦C and 0.71 ◦C and validation
values between 0.38 ◦C and 2.39 ◦C. The r values ranged between 0.28 and 0.96. From these
results we can see that calibrating the GB model using one week of data from the winter
or summer period results in high errors and poor correlations when the model is then
validated on shoulder season periods. Likewise, when the GB model is calibrated using
one week from the shoulder season periods and validated on the summer or winter period,
it generally performs poorly. The occupancy level in the winter period is zero, the summer
period is low and the shoulder season is high (Figure 3). These results indicate the OB noise
in the shoulder season has a negative effect on model calibration and validation. While
the RMSE values for validation on the winter period vary considerably for GB models that
have been trained using one week of data from another period, the correlation coefficient
remains consistently very high. This may be due to the lack of occupants during this period
and therefore the elimination of OB noise. When the C3V3 configuration is employed, the
magnitude of validation error for all seasons reduced substantially as the calibration period
generally contains a varied mix of data from multiple seasons and occupancy levels.

5. Discussion

From the results in Section 4.1.1 we can see the simple GB model employed in this
study was capable of accurately capturing the dynamic characteristics of the internal air
temperature profile when calibrated over one week using an automatic algorithm (Figure 5).
However, depending on the week selected as the calibration period (varying season and
occupancy levels), the parameters selected by the algorithm varied substantially (Figure 6),
which resulted in varied model performance (generally poor) when validated (Table 5).
Many previous studies utilised only one week or less of empirical data (single season) for
model calibration purposes. Using a similar sized single-season calibration period (C1V5)
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for the RC model and calibration algorithm used in this study did not produce consistently
accurate results. When additional weeks (across varying seasons) where added to the
calibration period, the consistency of the model’s performance substantially improved.
However, the generalisation abilities of the C3V3 GB model where still below that of the
WB model. The C3V3 GB model did however produce accuracy levels comparable to that
of the WB model (mean RMSE of the GB model was 1.5% higher than mean RMSE of the
WB model).

From a practitioner’s perspective, the GB modelling and automatic model calibration
techniques were found to be far more straightforward and time efficient methods of
simulating internal air temperature in an nZEB, in comparison to a WB model manually
calibrated using a piecemeal evidence-based approach. The WB model had a complex
structure and accounted for many other factors which interact with internal air temperature
(such as relative humidity), while the GB model had a simple RC structure, less interactions
and fewer parameters. The manual evidence-based WB calibration method was entirely
depended on lengthy human interaction, while the automatic calibration method required
minimal human interaction. The mean time for the calibration algorithm to converge on a
final set of parameters for the full C3V3 configuration (six individual calibration periods
made up of three weeks each) was 148 s using a six core Intel i7 3930 3.2 GHz processor
with parallel computing enabled. The authors of this study estimated that by employing
the GB modelling method with an automatic model calibration technique, the human
labour input to simulating internal air temperature was reduced by approximately 90%
relative to WB modelling using a manually calibrated evidence-based approach. The labour
reduction applies only to the model development, calibration and validation time and does
not include the time required to record and process the empirical data, which would be the
same for both methods. This results in a significant decrease in human labour input, albeit
with a slight decrease in accuracy and drop in generalisation abilities for this application.
In this study, both WB and GB modelling techniques and their corresponding calibration
methods were found to possess independent attributes and both styles had unique merits.

6. Conclusions

In this study, a GB model for a naturally ventilated nZEB was developed and calibrated
using multiple data configurations using an automatic calibration algorithm. Then the GB
model was compared to a WB model for the same application with identical calibration
and validation datasets. The following conclusions were drawn from the results:

• The GB modelling method used in this study was capable of simulating the dynamic
internal air temperature profile of a naturally ventilated nZEB.

• Utilising only one week for the GB model calibration dataset resulted in overfitting.
When three weeks of data from varying seasons were used, the GB model was able to
consistently produce more accurate results for the validation periods.

• The season and level of occupancy in the calibration and validation data had a strong
influence on the GB model’s accuracy levels.

• When calibrated and validated using identical data, the WB model produced slightly
more accurate results than the GB model and displayed better generalisation abilities.

• Although the GB model was slightly less accurate than the WB model (mean RMSE
1.5% higher), the authors found the development time to be significantly lower for
the GB automatic calibration method in comparison to the WB manual calibration
method (approx. 90% reduction in human time input).

Author Contributions: M.D.M.: Conceptualization, Methodology, Investigation, Software, Formal
Analysis, Writing—Original Draft, Supervision. P.D.O.: Resources, Writing—Review & Editing.
G.C.d.G.: Resources, Writing—Review & Editing. A.O.: Investigation, Data Curation, Visualiza-
tion, Writing—Review & Editing. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.



Energies 2021, 14, 871 21 of 24

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank Fergus Delaney for his efforts in managing the
NBERT facility.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Symbols
T temperature (◦C)
m mass (kg)
CA specific heat capacity of air (J/kg K)
θ energy (J)
U u-value (W/(m2 K))
A area (m2)
h heat transfer co-efficient (W/(m2 K))
γ convective-radiative ratio (%)
p density (kg/m3)
V volume (m3)
υ wind velocity (m/s)
α scaling coefficient
Fr reference flow number
Cd discharge coefficient
H opening height (m)
g acceleration due to gravity (m/s2)
r Pearson coefficient
Q volumetric flow rate (m3/s)
Subscripts
Int internal
e external dry bulb air
Sol solar
Occu occupancy
O out
I in
h horizontal
t time
v vertical
inf infiltration
vent ventilation
Cond conduction
Mat material
A air
B buoyancy driven
W wind driven
Abbreviations
nZEB nearly zero energy building
MCSL multi-configuration slotted louvre
NBERT national building energy retro test-bed
RMSE root mean squared error
RC resistance capacitance
NV naturally ventilated
GB grey box
WB white box
BB black box
SSE sum of squared errors
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