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Abstract: This paper mathematically explains how state derivative space (SDS) system form with
state derivative related feedback can supplement standard state space system with state related
feedback in control designs. Practically, inverse optimal control is attractive because it can construct
a stable closed-loop system while optimal control may not have exact solution. Unlike the previous
algorithms which mainly applied state feedback, in this paper inverse optimal control are carried out
utilizing state derivative alone in SDS system. The effectiveness of proposed algorithms are verified
by design examples of DC motor tracking control without tachometer and very challenging control
problem of singular system with impulse mode. Feedback of direct measurement of state derivatives
without integrations can simplify implementation and reduce cost. In addition, the proposed design
methods in SDS system with state derivative feedback are analogous to those in state space system
with state feedback. Furthermore, with state derivative feedback control in SDS system, wider range
of problems such as singular system control can be handled effectively. These are main advantages
of carrying out control designs in SDS system.

Keywords: inverse optimal control; state derivative space (SDS) system; state derivative feedback;
DC motor control; singular system; nonlinear control

1. Introduction

In modern control, state space system is used to carry out state related feedback
control design. In state space system, state derivative vector

.
x(t) is a dependent function

of both control input vector u(t) and state vector x(t) as follows.

.
x(t) = f (x(t), u(t)) (1)

Previously, in most researches, state related feedback control algorithms u(t) = φ(x(t))
were developed in state space system form so that the following is a stable closed loop system.

.
x(t) = f (x(t), φ(x(t))) (2)

However, in reality the control design approach of carrying out state related feedback
in state space system has some limitations. For instance, not every system can have its state
space system form. Singular systems [1] with pole at infinity are such cases. For example,
electrical circuits [2], aerospace vehicles [3], piezoelectric smart structures [4], and chemical
systems [5] are actually singular systems. Control design of singular systems were mainly
developed in the following generalized state space system or descriptor system form [6,7]
where E is a singular matrix.

E
.
x(t) = F(x(t), u(t)). (3)
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Control designs for such systems are carried out in large augmented systems and
usually require feedbacks of both state and state derivative variables [7–11].

Therefore, comparing with the design processes for standard state space system,
control design processes for singular systems are much more complicate. In the analysis,
singular systems are further classified into impulse-free mode and impulse mode [7,12].
When a singular system has impulse mode, designers have to further investigate if the
system is impulse controllable and if the impulse mode can be eliminated [7]. In the best
case, applying state feedback control only can stabilize singular systems with impulse
mode. Therefore, state feedback control design for a singular systems with impulse mode
is usually considered as very challenging task.

Moreover, in many systems, the direct measurements by sensor are not state signals
but state derivative signals. For example, accelerations sensed by accelerometers [13] and
voltages or more precisely speaking current derivatives sensed by inductors are directly
measured state derivative related signals in many applications. Especially, velocities and
accelerations which can be modelled as state derivative vector are easily available from
measurements in vehicle dynamic systems [14–18] and piezoelectric smart structure sys-
tems [4]. For those applications, we should not insist to apply state related feedback in
control designs because additional numerical integrations or integrators are needed in
implementation that result in complex and expensive controllers. Instead, state derivative
related feedback should be applied. However, it is not convenient to develop state deriva-
tive related feedback algorithms under standard state space system form. Another system
form for people to conveniently develop state derivative feedback is needed.

Inspired by the above analysis, the correspondence author of this paper proposed the
following state derivative space system form, abbreviated as SDS systems and dedicated
for state derivative related feedback control designs.

x(t) = F
( .
x(t), u(t)

)
. (4)

In SDS systems, state vector x(t) is an explicit function vector of state derivative vector
.
x(t) and control vector u(t).

When state derivative related feedback control law u(t) = φ
( .
x(t)

)
is properly de-

signed and applied, one can obtain a stable closed loop system as

x(t) = F
( .
x(t), φ

( .
x(t)

))
. (5)

The linear time invariant system of SDS system, namely, Reciprocal State Space (RSS)
system can be described as

x = f
.
x + gu (6)

where f and g are constant matrices. When u = −K
.
x is properly designed and applied,

the following closed loop system is stable.

x = ( f − gK)
.
x = fc

.
x (7)

It is well known that the eigenvalues of an invertible matrix and the eigenvalues of
its inverse matrix are actually reciprocals to each other and that was why the name of
Reciprocal State Space system was given. Therefore, closed loop system poles are the
reciprocals of the eigenvalues of matrix fc in (7). To construct a stable closed loop RSS
system, all eigenvalues of matrix fc in (7) must have negative real parts by design of
feedback gain K.

Both SDS system and RSS system forms were proposed by the correspondence au-
thor of this paper. State derivative related feedback control algorithms such as sliding
mode control [19,20], H infinity control [21,22], optimal, and LQR control [23] have been
developed in SDS system or RSS system form. Even the complicated singular system with
impulse mode were successfully controlled in SDS system with state derivative related
feedback control laws [22,23].
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When systems’ global operations are accurately modeled, they are mostly nonlinear
systems. However, control design of nonlinear systems are more difficult than of linear
systems. Optimal control is among the handful design approaches that can systematically
handle nonlinear systems.

Mathematically speaking, problems of nonlinear optimal control can be solved based
on a Hamilton–Jacobi–Bellman (HJB) equation to obtain a Lyapunov function of closed-loop
system (or control Lyapunov function) and correlated optimal control law that minimize a
given performance functional. However, it is not easy to solve this equation. In general
cases, exact solution may not even exist [24,25]. For unstable nonlinear systems, the funda-
mental requirement is to find control laws to stabilize them but this requirement may not
be achieved with optimal control. In 1964, Kalman proposed inverse optimal control (IOC)
as the alternative for finding control laws that can stabilize nonlinear systems. In design ap-
proach of inverse optimal control, a control Lyapunov function is selected at the beginning.
Therefore, solving a HJB equation is circumvented. Followed by design steps according to
the Lyapunov stability theorem and the coupling in HJB equation, one can find an optimal
controller related to a meaningful performance integrand [24,26]. More precisely speaking,
the performance integrand to be constructed is related to the control Lyapunov function,
system dynamic and feedback control law because they are coupled in the HJB equation.
Therefore, Inverse optimal control has great design flexibility by varying parameters in
both the performance integrand and the control Lyapunov function to characterize globally
stabilizing controller to meet response constraints of closed loop system [27]. Hence, for un-
stable nonlinear systems, inverse optimal control is usually considered as the last resort to
stabilize them.

Inverse optimal control has been widely applied in robotic control [28,29], biological sys-
tems [30,31], aerospace vehicles [24,32–34] and power systems [35–37]. In this paper, inverse op-
timal control in SDS system with state derivative related feedback is presented. To authors’
best knowledge, this type of research have not been reported before.

To verify the proposed algorithm, a non-traditional speed tracking controller and
torque tracking controller of a DC motor without tachometer by feeding back the voltage
of a small inductor externally connected in series with armature circuit of a DC motor
are provided as one application example. The small inductor serves as sensor in the DC
motor tracking control. Unlike the traditional DC motor controls which apply state related
feedback of speed or current, the inductor’s voltage is state derivative related measurement
feedback of current which is well suitable to apply the proposed IOC algorithm based
on state derivative feedback. The advantages of the proposed controllers with inductor’s
voltage include 1. Inductor’s average power is zero so it does not damage the armature
circuit. 2. No tachometer is needed so it can save the implementation cost. Another ex-
ample of a challenging singular system with impulse mode and bounded disturbance is
also provided.

The organization of paper is described as follows. In Section 2, we introduce the in-
verse optimal control design algorithms for SDS systems with state derivative related feed-
back. In Section 3, we present illustrative examples and simulation results. Finally, we dis-
cuss the results and potential of constructing compact and cheap controller for system with
direct state derivative measurement in Section 4 and conclusions in Section 5.

2. Inverse Optimal Control in State Derivative Space (SDS) System with State
Derivative Related Feedback

This section first introduces stability analysis of SDS system, followed by the algo-
rithms of carrying out inverse optimal control in SDS system with state derivative related
feedback building on the inspirations of inverse optimal control deign in state space system
with state feedback in [26,27,31].
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2.1. Stability Analysis of SDS Systems

Consider the following SDS system with proper dimensions.

x = f
( .
x(t)

)
, x(0) = x0, t ≥ 0 (8)

A Lyapunov function V(x) should be continuously differentiable and meet the follow-
ing requirements.

V(x) > 0, if and only if x 6= 0 and V(0) = 0. (9)

For x 6= 0, taking derivative of V(x) with respect to time t and substituting system
Equation in (8), if the result is negative, the SDS system is stable.

.
V(x) =

dV(x)
dt

=
dV(x)

dx
dx
dt

= V′(x)
.
x =

.
xTV′T

(
f
( .

x(t)
))

< 0 (10)

For a stable system, when t→ ∞, V(x(∞))→ 0 as x(∞)→ 0.
For simplicity of presentation and for people to better understand that in formula

derivation of SDS system control designs, state x should be substituted by its SDS system
equation. In this paper, a popular quadratic Lyapunov function V(x) that meets the
requirements in (9) is selected for formula derivation as follows.

V(x) =
1
2

xT Px > 0, (11)

where P is a positive definite and symmetric matrix.
Consequently, using SDS system Equation in (8), if

.
V(x) =

dV(x)
dt

= xT P
.
x =

.
xT Px =

.
xT P f

( .
x
)
< 0 (12)

the SDS system is stable.
Hence, for a stable SDS system, let the performance integrand as

L
( .
x(t)

)
= − .

xT P f
( .

x
)
= −

.
V(x(t)) > 0 (13)

We have the following positive performance functional

J(x0) =
∫ ∞

0
L
( .
x(t)

)
dt = −V(x(∞)) + V(x(0)) = V(x0) =

1
2

xT
0 Px0 > 0 (14)

The value of performance functional is bounded, greater than zero and related to the
initial condition x(0) = x0.

2.2. Inverse Optimal Control for SDS Systems with State Derivative Related Feedback

In this section, we explain the inverse optimal nonlinear control design process for
SDS systems with state derivative feedback.

Consider the following nonlinear controlled dynamic SDS system with proper dimen-
sions and initial condition.

x = F
( .
x(t), u(t)

)
, x(0) = x0, t ≥ 0, (15)

with performance functional as

J(x0, u(·)) =
∫ ∞

0
L
( .
x(t), u(t)

)
dt (16)

where u(·) is an admissible control.
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The following process is to construct an inverse optimal globally stabilizing control law.

u(t) = φ
( .

x(t)
)

(17)

First, a symmetric and positive definite matrix P serving as the design parameter
should be selected for Lyapunov function in (11).

Therefore, when the control law u(t) is properly designed and substitute SDS system
Equation in (15), we should have

.
V(x) =

dV(x)
dt

= xT P
.
x =

.
xT Px =

.
xT PF

( .
x(t), u(t)

)
< 0 (18)

For simplicity of presentation, we omit (t) in the following formula derivation.
Second, select another design parameter, namely the performance integrand L

( .
x, u
)

and applying (15) so that we have the following Hamiltonian for the SDS system in (15)
with the performance functional in (16).

H
( .

x, u
)
= L

( .
x, u
)
+

.
V(x) = L

( .
x, u
)
+

.
xT Px = L

( .
x, u
)
+

.
xT PF

( .
x, u
)
≥ 0 (19)

Third, one can have the inverse optimal feedback control law in (17) by setting

∂H
( .

x, u
)

∂u
= 0 (20)

Fourth, applying the obtained inverse optimal feedback control law in the third step, if

.
V(x) =

dV(x)
dt

= xT P
.
x =

.
xT Px =

.
xT PF

( .
x, φ
( .

x
))

< 0 (21)

and the steady-state Hamilton–Jacobi–Bellman Equation is zero as follows.

H
( .
x, φ
( .
x
))

= 0 (22)

Then, the following closed-loop SDS system is stable.

x = F
( .
x(t), φ

( .
x(t)

))
(23)

Therefore, the selection of design parameter L
( .
x, u
)

should meet the requirement of
Hamiltonian in (19). Consequently, the inverse optimal feedback control law in (17) ob-
tained from solving (20) should satisfy both (21) and (22) to guarantee the global asymptotic
stability of the closed-loop SDS system in (23).

Furthermore, from (19), we have the following performance integrand.

L
( .
x, u(t)

)
= −

.
V(x) + H

( .
x, u(t)

)
. (24)

Taking integrals of both sides of (24) and using (19) and (22), it follows that

J(x0, u(·)) =
∫ ∞

0 L
( .
x(t), u(t)

)
dt =

∫ ∞
0

[
−

.
V(x) + H

( .
x(t), u(t)

)]
dt

= − lim
t→∞

V(x(t)) + V(x0) +
∫ ∞

0 H
( .

x(t), u(t)
)
dt

= V(x0) +
∫ ∞

0 H
( .
x(t), u(t)

)
dt ≥ V(x0) +

∫ ∞
0 H

( .
x(t), φ

( .
x(t)

))
dt

≥ V(x0) = J
(

x0, φ
( .
x(·)

))
,

(25)

Hence, when we apply inverse optimal control law in (17), we have (22). Consequently,
performance functional is the minimum as follows.

J
(

x0, φ
( .

x
))

= minJ(x0, u(·)) = V(x0) =
1
2

xT
0 Px0 > 0 (26)
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2.3. Inverse Optimal Control for Affine SDS Systems with State Derivative Related Feedback

Affine systems are nonlinear systems that are linear in the input. Consider the nonlin-
ear affine SDS system with dimension notations given by

xn×1 = fn×1
( .
x(t)

)
+ gn×m

( .
x(t)

)
um×1(t),x(0) = x0,t ≥ 0, (27)

with performance functional as

J(x0, u(·)) =
∫ ∞

0
L
( .

x(t), u(t)
)
dt. (28)

The following process is to construct an inverse optimal globally stabilizing control law.
First, a symmetric and positive definite matrix P serving as the first design parameter

should be selected for Lyapunov function V(x) in (11). Therefore, when the control law
u(t) is properly designed and substitute SDS system Equation in (27), we should have

.
V(x) =

dV(x)
dt

= xT P
.
x =

.
xT Px =

.
xT P

[
f
( .
x(t)

)
+ g
( .
x(t)

)
u(t)

]
< 0 (29)

Second, we consider the performance integrand L
( .
x(t), u(t)

)
which is also a design

parameter of the form

L1×1
( .

x(t), u(t)
)
= L11×1

( .
x(t)

)
+ L21×m

( .
x(t)

)
um×1 + u1×m

T(t)Rm×m
( .
x
)
um×1(t). (30)

Therefore, L
( .
x(t), u(t)

)
is decomposed into three design parameters,

namely, L11×1

( .
x(t)

)
,L21×m

( .
x(t)

)
and Rm×m

( .
x
)
.

(31)

For simplicity of presentation, we omit (t) and dimension notations in the following
formula derivation.

Third, use (29) and define following Hamiltonian for the SDS system in (27) with the
performance functional specified in (28).

H
( .

x, u
)
= L

( .
x, u
)
+

.
V(x) = L1

( .
x
)
+ L2

( .
x
)
u + uT R

( .
x
)
u +

.
xT P

[
f
( .
x
)
+ g
( .
x
)
u
]
≥ 0 (32)

We should first select a positive definite R
( .
x
)

so that uT R
( .
x
)
u > 0 in (32).

Setting the partial derivative of the Hamiltonian with respect to u to zero,

∂H
( .
x, u
)

∂u
= LT

2
( .
x
)
+ 2R

( .
x
)
u + gT( .

x
)

P
.
x = 0, (33)

the inverse optimal state derivative related feedback control law is obtained as follows.

u = φ
( .

x
)
=
−1
2

R−1( .
x
)[

LT
2
( .

x
)
+ gT( .

x
)

P
.
x
]
. (34)

From (34), we have [
L2
( .
x
)
+

.
xT Pg

( .
x
)]

= −2φT( .
x
)

R
( .

x
)
. (35)

Fourth, substituting (34) into (29), we should have

.
V(x) = dV(x)

dt = xT P
.
x =

.
xT Px =

.
xT P

[
f
( .
x
)
+ g
( .
x
)
φ
( .
x
)]

=
.
xT P

[
f
( .

x
)
− 1

2 g
( .
x
)

R−1( .
x
)

LT
2
( .
x
)
− 1

2 g
( .
x
)

R−1( .
x
)

gT( .
x
)

P
.
x
]
.

(36)

Therefore, to ensure (34) is a stabilizing control law, L2
( .
x
)

should be selected such that

.
xT P

[
f
( .
x
)
− 1

2
g
( .
x
)

R−1( .
x
)

LT
2
( .
x
)
− 1

2
g
( .
x
)

R−1( .
x
)

gT( .
x
)

P
.
x
]
< 0. (37)
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Fifth, using (32) and (35), L1
( .
x
)

should be selected as

L1
( .

x
)
= φT( .

x
)

R
( .
x
)
φ
( .
x
)
− .

xT P f
( .
x
)

(38)

The following is the proof.
Substituting (35) and (38) into (32), it can be shown that

H
( .

x, u
)
= L1

( .
x
)
+ L2

( .
x
)
u + uT R

( .
x
)
u +

.
xT P

[
f
( .
x
)
+ g
( .
x
)
u
]

= φT( .
x
)

R
( .

x
)
φ
( .
x
)
− .

xT P f
( .
x
)
+ L2

( .
x
)
u + uT R

( .
x
)
u +

.
xT P

[
f
( .
x
)
+ g
( .
x
)
u
]

= φT( .
x
)

R
( .

x
)
φ
( .
x
)
+
[

L2
( .

x
)
+

.
xT Pg

( .
x
)]

u + uT R
( .
x
)
u

= φT( .
x
)

R
( .

x
)
φ
( .
x
)
− 2φT( .

x
)

R
( .
x
)
+ uT R

( .
x
)
u

=
[
u− φ

( .
x
)]T R

( .
x
)[

u− φ
( .
x
)]
≥ 0

(39)

Based on (39), applying the inverse optimal control law in (34), the steady-state
Hamilton–Jacobi–Bellman equation is zero as follows.

H
( .
x, φ
( .
x
))

= 0 (40)

Consequently, the performance integrand in (30) is obtained as

L
( .

x, u
)
= φT( .

x
)

R
( .
x
)
φ
( .
x
)
− .

xT P f
( .
x
)
+ L2

( .
x
)
u + uT R

( .
x
)
u

= φT( .
x
)

R
( .
x
)
φ
( .
x
)
+ L2

( .
x
)
u + uT R

( .
x
)
u− .

xT P
[

f
( .
x
)
+ g
( .
x
)
φ
( .
x
)]

+
.
xT Pg

( .
x
)
φ
( .
x
) (41)

From (35), we have

L2
( .
x
)
= −2φT( .

x
)

R
( .
x
)
− .

xT Pg
( .
x
)
. (42)

Substituting (34) and (42) into (41) and using (29) yields

L
( .
x, φ
( .

x
))

= φT( .
x
)

R
( .

x
)
φ
( .

x
)
+
(
−2φT( .

x
)

R
( .
x
)
− .

xT Pg
( .
x
))

φ
( .
x
)
+ φT( .

x
)

R
( .
x
)
φ
( .
x
)

− .
xT P

[
f
( .

x
)
+ g
( .
x
)
φ
( .
x
)]

+
.
xT Pg

( .
x
)
φ
( .
x
)

= − .
xT P

[
f
( .
x
)
+ g
( .
x
)
φ
( .

x
)]

= −
.

V(x)

(43)

Therefore, based on (43) when inverse optimal law in (34) is applied, the closed loop
SDS system is stable, performance functional in (28) becomes

J
(

x0, φ
( .

x
))

=
∫ ∞

0
L
( .

x, φ
( .

x
))

dt = −
∫ ∞

0

.
V(x)dt = − lim

t→∞
V(x(t)) + V(x0) =

1
2

xT
0 Px0 > 0 (44)

Hence, to have a small value of performance functional, one may consider to select a
diagonal P matrix with positive but small diagonal elements.

2.4. Inverse Optimal Control for Affine SDS Systems with L2 Disturbance

Consider the nonlinear affine SDS system with bounded L2 input disturbance ω(t) [27]
in the following form.

x(t) = f
( .

x(t)
)
+ g
( .
x(t)

)
u + J1

( .
x(t)

)
ω(t), x(0) = x0, ω(·) ∈ L2, t ≥ 0 (45)

with the following performance variables.

z = h
( .

x(t)
)
+ J
( .
x(t)

)
u(t), (46)

We consider the non-expansivity case [27] so that the supply rate is given by

r(z, w) = γ2ωTω− zTz (47)

where γ > 0.
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An inverse optimal globally stabilizing control law should be designed so that the
closed loop system satisfies the non-expansivity constraint [27].∫ T

0
zTzdt ≤

∫ T

0
γ2ωTωdt + V(x0), T ≥ 0, ω(·) ∈ L2 (48)

The performance integrand is considered as

L
( .
x, u
)
= L1

( .
x
)
+ L2

( .
x
)
u + uT R

( .
x
)
u (49)

Therefore, the performance functional becomes

J(x0, u(·)) =
∫ ∞

0

[
L1
( .
x
)
+ L2

( .
x
)
u + uT R

( .
x
)
u
]
dt (50)

The following process is to construct an inverse optimal globally stabilizing control
law φ

( .
x
)

with state derivative feedback.
First, a symmetric and positive definite matrix P serving as the first design parameter

should be selected for Lyapunov function in (11). Consequently, substituting SDS system
Equation in (45), we have

.
V(x) =

dV(x)
dt

= xT P
.
x =

.
xT Px =

.
xT P

[
f
( .
x(t)

)
+ g
( .

x(t)
)
u + J1

( .
x(t)

)
ω(t)

]
(51)

In [22], H∞ control has been carried out for the same SDS system in (45), and the ωTω
is maximum when disturbance is

ω = ω∗ =
1

2γ2 JT
1
( .

x
)

P
.
x and ω∗Tω∗ =

1
4γ2

.
xT PJ1

( .
x
)

JT
1
( .
x
)

P
.
x (52)

Considering (46) and (52), when an inverse optimal globally stabilizing control law
φ
( .

x
)

is obtained, we should have the following conditions in (53)–(55).

Γ
( .
x, φ
( .

x
))
≥ 0with Γ

( .
x, u
)
=

1
4γ2

.
xT PJ1

( .
x
)

JT
1
( .
x
)

P
.
x +

[
h
( .
x
)
+ J
( .

x
)
u
]T[h( .

x
)
+ J
( .
x
)
u
]

(53)
.
xT P

[
f
( .

x(t)
)
+ g
( .
x(t)

)
φ
( .
x
)]

< 0 (54)
.
xT PJ1

( .
x
)
ω ≤ γ2ωTω− zTz + L

( .
x, φ
( .
x
))

+ Γ
( .
x, φ
( .
x
))

(55)

Therefore, applying (55) yields

.
V(x) = dV(x)

dt =
.
xT P

[
f
( .
x
)
+ g
( .
x
)
φ
( .
x
)
+ J1

( .
x
)
ω(t)

]
≤ .

xT P
[

f
( .
x
)
+ g
( .
x
)
φ
( .
x
)]

+ γ2ωTω− zTz + L
( .
x, φ
( .
x
))

+ Γ
( .
x, φ
( .
x
)) (56)

Second, an auxiliary cost functional is specified as

=(x0, u(·)) =
∫ ∞

0

[
L
( .
x, u
)
+ Γ

( .
x, u
)]

dt (57)

From (50), (53), and (57) yields

J
(

x0, φ
( .
x
))
≤ =

(
x0, φ

( .
x
))

=
∫ ∞

0

[
L
( .

x, φ
( .
x
))

+ Γ
( .
x, φ
( .
x
))]

dt (58)

Third, with (45), (49), and (53), and the Hamiltonian has the form

H
( .

x, u
)
= L1

( .
x
)
+ L2

( .
x
)
u + uT R

( .
x
)
u +

.
xT P

[
f
( .

x
)
+ g
( .
x
)
u
]

+ 1
4γ2

.
xT PJ1

( .
x
)

JT
1
( .

x
)

P
.
x +

[
h
( .
x
)
+ J
( .
x
)
u
]T[h( .

x
)
+ J
( .
x
)
u
]
≥ 0

(59)
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Then, with the feedback control law φ
( .
x
)
, there exists a neighborhood of the origin

such that if x0 within this neighborhood and when SDS system in (45) is undisturbed
(ω(t) ≡ 0), the zero solution x(t) ≡ 0 of the closed loop system is locally asymptoti-
cally stable.

We should select a positive definite R
( .
x
)

so that uT R
( .

x
)
u > 0 in (49), followed by setting

∂H
( .

x, u
)

∂u
= LT

2
( .

x
)
+ 2R

( .
x
)
u + gT( .

x
)

P
.
x + 2JT( .

x
)

J
( .
x
)
u + 2J

( .
x
)
h
( .

x
)
= 0, (60)

and define
Ra
( .
x
)
= R

( .
x
)
+ JT( .

x
)

J
( .
x
)

(61)

the inverse optimal state derivative related feedback control law is obtained as follows.

u = φ
( .
x
)
=
−1
2

R−1
a
( .
x
)[

LT
2
( .
x
)
+ gT( .

x
)

P
.
x + 2JT( .

x
)
h
( .
x
)]

(62)

Consequently, from (62) yields[
L2
( .
x
)
+

.
xT Pg

( .
x
)
+ 2hT( .

x
)

J
( .
x
)]

= −2φ
( .
x
)

Ra
( .
x
)

(63)

L2
( .

x
)

should be selected such that

.
xT P

[
f
( .

x
)
− 1

2
g
( .
x
)

R−1
a

(
LT

2
( .
x
)
+ gT( .

x
)

P
.
x + 2JT( .

x
)
h
( .
x
))]

+ Γ
( .
x, φ
( .
x
))

< 0 (64)

According to (53), (64) implies (54).
In addition, the auxiliary cost functional in (57), with

L1
( .

x
)
= φT( .

x
)

Ra
( .
x
)
φ
( .
x
)
− .

xT P f
( .
x
)
− hT( .

x
)
h
( .
x
)
− 1

4γ2
.
xT PJ1

( .
x
)

JT
1
( .

x
)

P
.
x (65)

in the sense that
=
(
x0, φ

( .
x
))

= min=(x0, u(·)) (66)

Applying (53), (59), (63), and (65), we have

H
( .

x, u
)
= L1

( .
x
)
+ L2

( .
x
)
u + uT R

( .
x
)
u + Γ

( .
x, u
)
+

.
xT P

[
f
( .

x
)
+ g
( .
x
)
u
]

= φT( .
x
)

Ra
( .

x
)
φ
( .

x
)
+
[

L2
( .

x
)
+

.
xT Pg

( .
x
)
+ 2hT( .

x
)

J
( .
x
)]

u + uT[R( .
x
)
+ JT

1
( .
x
)

J1
( .
x
)]

u
= φT( .

x
)

Ra
( .

x
)
φ
( .

x
)
− 2φ

( .
x
)

Ra
( .

x
)
u + uT Ra

( .
x
)
u

=
[
u− φ

( .
x
)]T Ra

( .
x
)[

u− φ
( .

x
)]
≥ 0

(67)

Hence,
H
( .

x, φ
( .

x
))

= 0 (68)

Furthermore, (67) and (68) imply that

L
( .

x, φ
( .

x
))

+ Γ
( .

x, φ
( .
x
))

= L1
( .

x
)
+ L2

( .
x
)
φ
( .
x
)
+ φ

( .
x
)

R
( .

x
)
φ
( .
x
)
+ Γ

( .
x, φ
( .

x
))

= − .
xT P

[
f
( .

x
)
+ g
( .

x
)
φ
( .
x
)]

> 0
(69)

Substituting (69) into (56) yields

.
V(x) =

dV(x)
dt

=
.
xT P

[
f
( .

x
)
+ g
( .
x
)
φ
( .
x
)
+ J1

( .
x
)
ω(t)

]
≤ γ2ωTω− zTz (70)

Integrating over
[

0, T
]

V(x(T))−V(x0) ≤
∫ T

0

(
γ2ωTω− zTz

)
dt (71)
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V(x(T)) +
∫ T

0
zTzdt ≤

∫ T

0
γ2ωTωdt + V(x0) (72)

∵ V(x(T)) ≥ 0 (73)

∴
∫ T

0
zTzdt ≤

∫ T

0
γ2ωTωdt + V(x0) (74)

Therefore, applying the inverse optimal control law in (62), the closed loop system
satisfies the non-expansivity constraint in (74).

2.5. Brief Mathematical Review of Singular System with Impulse Mode

As mentioned in the introduction, singular systems with impulse mode are difficult in
control designs with state related feedback alone. However, some of singular systems with
impulse mode can be expressed in RSS system form and can be fully controlled with state
derivative feedback. An example of such system will be provided in next section to verify
the proposed design process, but before that, the limitation of applying state feedback
alone to control singular system with impulse mode is reviewed in this subsection.

The researches of linear singular system control mainly focus on the impulse-free
mode. For the following linear and time invariant singular system

E
.
x = Fx + Nu (75)

When matrix E in (75) has zero eigenvalues, it cannot be expressed in state space sys-
tem form. For people to better understand the nature of this kind of system, singular value
decomposition (SVD) can be applied to convert the system to new coordinates as follows.[

I 0
0 0

][ .
q1.
q2

]
=

[
F11 F12
F21 F22

][
q1
q2

]
+

[
N1
N2

]
u (76)

The singular system is impulse-free when matrix F22 is invertible. Consequently, q2 and
q1 are coupled by the following equation.

q2 = −F−1
22 F21q1 − F−1

22 N2u (77)

Substituting (77) into the first equation in (76) gives the following subsystem in state
space system form with state vector of q1.

.
q1 = (F11 − F12F−1

22 F21)q1 + (N1 − F12F−1
22 N2)u (78)

Therefore, the state vector q1 can be fully controlled with state feedback design if the
subsystem in (78) is controllable. However, through the coupling in (77), state vector q2 is
only stabilized but not fully controlled.

When matrix F22 is noninvertible, the singular system has impulse mode. This kind of
system is usually very difficult to be controlled with state feedback alone. If it is impulse
controllable, applying proper state feedback control may obtain a stabilizing closed loop
systems as follows. [

I 0
0 0

][ .
q1.
q2

]
=

[
Fc11 Fc12
Fc21 Fc22

][
q1
q2

]
(79)

In such case, matrix F−1
c22 must exist. Similarly, state vector q2 still can only be stabilized

through its coupling with q1. If the system is impossible to apply state feedback to obtain
an invertible matrix Fc22, it is called impulse uncontrollable in the research literature.
Consequently, the system is not stabilizable by applying state feedback alone. In short,
applying state feedback alone cannot control the entire singular system. Singular systems
can be stabilized with state feedback control only if it is impulse free or impulse controllable.
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However, if matrix F of the singular system with impulse mode in (75) is invertible,
we may express it in the following SDS form to fully control it with state derivative
feedback alone.

x = F−1E
.
x− F−1Nu = f

.
x + gu. (80)

In next section, we will provide an example that verify the proposed design process in
this section.

3. Examples and Results

In this section, we provide four examples to verify the effectiveness of the proposed
design method. In addition, from both the implementation and mathematical point of
views, the advantages of using direct state derivative measurement in control design of
SDS system are explained.

Example 1. There are part (a) and part (b) in this example for different purposes.

(a) To illustrate the utility of the proposed design process for SDS systems and to emphasize that
some SDS systems have no equivalent state space form, we consider

x(t) =
[

x1(t)
x2(t)

]
=

[
− .

x5
1(t) +

.
x2

2(t)
.
x2

1(t)

]
+

[
0
1

]
u(t) = f

( .
x(t)

)
+ g
( .
x(t)

)
u(t) (81)

Please note that we cannot convert the SDS form in (81) to state space form because the
characteristics of original SDS system will be lost after using square root or power of even number
order operation.

First, we select R
( .
x
)
= 1 and V(x) = 1

2 xT Px = 1
2
[

x1 x2
][ 2 0

0 2

][
x1
x2

]
= x2

1 + x2
2.

Based on (36) and (37), L2
( .

x
)

should be selected such that

.
V(x) =

[
2

.
x1 2

.
x2
][ − .

x5
1 +

.
x2

2
.
x2

1 − 1
2 LT

2
( .

x
)
− 1

2
(
2

.
x2
) ] = −2

.
x6

1 + 2
.
x1

.
x2

2 + 2
.
x2

1
.
x2 − LT

2
( .

x
) .

x2 − 2
.
x2

2 < 0

Select L2
( .

x
)
= 2

( .
x1

.
x2 +

.
x2

1

)
, we have

.
V(x) =

[
2

.
x1 2

.
x2
][ − .

x5
1 +

.
x2

2
.
x2

1 − 1
2 LT

2
( .

x
)
− 1

2
(
2

.
x2
) ] = −2

.
x6

1 + 2
.
x1

.
x2

2 + 2
.
x2

1
.
x2 − LT

2
( .
x
) .
x2 − 2

.
x2

2 < 0
.

V(x) = −2
.
x6

1 − 2
.
x2

2 < 0

Therefore, the closed loop system is stable and the corresponding inverse optimal control law
φ
( .

x
)

is obtained using (34) as

φ
( .

x
)
=
−1
2

R−1( .
x
)[

LT
2
( .
x
)
+ gT( .

x
)

P
.
x
]
= − .

x1
.
x2 −

.
x2

1 −
.
x2.

Next, using (38) obtains

L1
( .

x
)
= φT( .

x
)

R
( .
x
)
φ
( .
x
)
− .

xT P f
( .
x
)
=
( .

x1
.
x2 +

.
x2

1 +
.
x2

)2
− 2

.
x1

(
− .

x5
1 +

.
x2

2

)
− 2

.
x2

.
x2

1.

Consequently, using (30) obtains the performance integrand in (28) as

L
( .
x, u
)
= L1

( .
x
)
+ L2

( .
x
)
u + uT R

( .
x
)
u

=
( .

x1
.
x2 +

.
x2

1 +
.
x2

)2
+ 2

.
x6

1 − 2
.
x1

.
x2

2 − 2
.
x2

.
x2

1 + 2
( .

x1
.
x2 +

.
x2

1

)
u + uTu.
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Furthermore, it can be shown that

H
( .
x, φ
( .
x
))

= L
( .

x, φ
( .
x
))

+
.

V(x) = 0.

(b) To emphasize the possibility of constructing a stable closed loop system in SDS form with state
feedback control, we consider

x =

[
x1
x2

]
=

[
− .

x1 +
.
x2

.
x1+

.
x3

2

]
+

[
0
1

]
u = f

( .
x
)
+ g
( .

x
)
u (82)

Please note that the spirit of handling nonlinear control in SDS system is to construct a
stable closed loop SDS system with feedback control regardless of using state derivative feedback
or state feedback. In this example, if we use state feedback control u = 2x2, the closed loop SDS
system becomes

x =

[
x1
x2

]
=

[
− .

x1 +
.
x2

− .
x1−

.
x3

2

]
If

P =

[
2 0
0 2

]
,

we have
.

V(x) =
.
xT Px =

[
2

.
x1 2

.
x2
][ − .

x1 +
.
x2

− .
x1−

.
x3

2

]
= −2

.
x2

1 − 2
.
x4

2 < 0.

Therefore, closed loop SDS system is stable.
Similarly, it is also possible to apply state derivative feedback to stabilize a nonlinear system in

state space form. For example, for the following nonlinear state space system

.
x =

[ .
x1.
x2

]
=

[
−x1 + x2
x1+ x3

2

]
+

[
0
1

]
u

If we apply the following state derivative feedback control u = 2
.
x2, the closed loop SDS

system becomes
.
x =

[ .
x1.
x2

]
=

[
−x1 + x2
−x1 − x3

2

]
and also select the same V(x), it follows

.
V(x) = xT P

.
x =

[
2x1 2x2

][ −x1 + x2
−x1− x3

2

]
= −2x2

1 − 2x4
2 < 0

Therefore, closed loop state space system is stable.

Example 2. A popular actuator widely used in control systems is DC motor. The DC motor
model in [38] is modified and adapted for this example. Figure 1 shows the free-body diagram of
the rotor and the equivalent circuit of the armature. As seen in the figure, a small inductor L1
externally connected in series with armature circuit of a DC motor serves as the only sensor of
the control system and we assume that tachometer is not installed to measure the rotational speed
.
θ of the shaft. The voltage of L1 is measured and used in feedback controller design. Unlike the
traditional DC motor controls which apply state related feedback of angular velocity or current,
the inductor’s voltage (L1 di

dt ) is state derivative related measurement feedback of current deriva-
tive which is well suitable to apply the proposed IOC algorithm based on state derivative feedback.
Furthermore, inductor’s average power is zero so it does not damage the armature circuit. Therefore, the con-
troller can save implementation cost and avoid power lose.
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Figure 1. The rotor free-body and the electric equivalent armature circuit diagram.

In this example, torque tracking controller and rotational speed tracking controller
are constructed based on the design algorithm of inverse optimal control for affine SDS
Systems with state derivative related feedback. This example is used to illustrate the design
method in Section 2.3 for linear time invariant SDS systems, namely RSS systems.

From the above figure, according to Newton’s second law and Kirchhoff’s voltage law,
we can get the following governing Equations.

J
..
θ + b

.
θ = Ki

(L + L1)
di
dt

+ iR = v− K
.
θ

where i is armature circuit’s current, θ is rotor’s rotational angle, R is electric resistance, L is
electric inductance, J is rotor’s moment of inertia, b is motor viscous friction constant, L1 is
the external inductor sensor connected in series with armature circuit, and K represents
both electromotive force constant and motor torque constant in SI unit.

For simulation purpose, the DC motor’s physical parameters in this example are given
as R:1 Ω, L: 0.49 H, J: 0.01 kg.m2, L1: 0.01 H and K : 0.01 V/rad/sec for electromotive force
constant and 0.01 N.m/Amp for motor torque constant.

Defining state vector as x =

[ .
θ
i

]
, using the governing equations, one can obtain the

following SDS system.

x =

[ .
θ
i

]
=

1
Rb + K2

[
−RJ −K(L + L1)
KJ −(L + L1)

][ ..
θ
di
dt

]
+

1
Rb + K2

[
K
b

]
v (83)

Substituting the physical parameters of the DC motor into above SDS system, one obtains

x =

[ .
θ
i

]
=

[
−0.0999 −0.05

0.001 −4.995

][ ..
θ
di
dt

]
+

[
0.0999
0.9990

]
v = f

.
x + gu (84)
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Since the L1 inductor’s voltage is state derivative related measurement, the measure-
ment of the system is given as

y =
[

0 L1
][ ..

θ
di
dt

]
=
[

0 0.01
][ ..

θ
di
dt

]
= C

.
x (85)

The measurement feedback control law is given as

u = −ky = −kC
.
x

where k is the measurement feedback gain.
If the rotational speed of the shaft

.
θ needs to track a reference command r0, the perfor-

mance output equation is given as follows.

z =
[

1 0
][ .

θ
i

]
= Hsx (86)

If the torque T = Ki needs to track a reference command r0, the performance output
equation is given as follows.

z =
[

0 K
][ .

θ
i

]
=
[

0 0.01
][ .

θ
i

]
= Htx (87)

From (83) to (84), the DC motor model is linear and time invariant. Therefore, the SDS
system is also a RSS system as mentioned in introduction section. Therefore, the open loop
system poles: −9.9975 and −2.0025 are the reciprocals of the eigenvalues of matrix f in
the system. Although the open loop RSS system is stable, its tracking performance can be
further improved.

To carry out tracking control, the closed loop system should be stable.
First, a symmetric and positive definite matrix P serving as the design parameter for

Lyapunov function V(x) in (11) is selected as follows.

P =

[
1 0
0 0.5

]
.

Followed by selecting another design parameter R
( .
x
)

as

R
( .
x
)
= 0.0004.

To ensure the closed loop system is stable, based on (37), the L2
( .
x
)

is selected as

L2
( .
x
)
=
[ ..

θ di
dt

][ −0.0999
−0.4999

]
.

Using (34), the inverse optimal law φ
( .
x
)

is obtained as

φ
( .

x
)
= 0.497976

di
dt

= −kC
.
x = −k

[
0 0.01

][ ..
θ
di
dt

]
= −0.01k

di
dt

.

Therefore, we obtain the measurement feedback gain k in (85) as

k = −49.7976.
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Consequently, use (38) to obtain L1
( .
x
)

as

L1
( .
x
)
=
[ ..

θ di
dt

][ 0.0999 0.0500
−0.0005 0.2498

][ ..
θ
di
dt

]

and use (41) to obtain the performance integrand L(
.
x, u).

Applying the obtained control law with feedback gain, the close loop system poles
have been moved to better locations at −10.0102 and −493.9479. We use the following
tracking controller to illustrate the improvement of closed loop system.

u = −ky + Nr0 = −kC
.
x + Nr0

where r0 is given reference command vector to be tracked by performance output and N is
a feedforward gain to be designed.

The steady state derivative is zero (
.
x(∞) = 0) when the RSS closed loop system is

stable. In that case, the steady state is

x = ( f − gkC)
.
x + gNr0 = gNr0.

If the performance output is z = Hx, to have zero tracking error of steady state, let

ε(∞) = r0 − Hx = r0 − HgNr0 = (I − HgN)r0 = 0.

Consequently, the feedforward gain N is obtained as

N = (Hg)right
−1 (88)

where (Hg) −1
right is the right inverse of matrix Hg.

If Hg is a full rank matrix with the size of m× n and m ≤ n, we have

(Hg) −1
right = (Hg)T(Hg(Hg)T)

−1

The feedforward gain N and feedback gain k can be designed separately because they
are independent of each other.

Therefore, according to (86), for rotational speed tracking, we have feedforward gain
Ns as

Ns = (Hsg)right
−1 = 10.01

Similarly, for motor torque tracking, from (87) we have feedforward gain Nt as

Nt = (Htg)right
−1 = 100.1

Since the open loop system is stable, we can give the reference command for system
to track. As seen in Figure 2, there are obvious attenuation and phase lag for tracking a
sin t reference command of rotational speed

.
θ.
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Figure 2. Open loop tracking result of rotational speed
.
θ with reference command sin t.

Furthermore, as seen in Figure 3, both attenuation and phase lag are large for tracking
a sin 50t waveform of reference command of torque Ki.

Figure 3. Open loop tracking result of torque Ki with reference command sin 50t.

Therefore, tracking performance should be improved. Applying the obtained inverse
optimal law, as seen in Figure 4, rotational speed

.
θ can better track sin t reference command.

There is no attenuation and phase lag is only 5.72
◦
.
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Figure 4. Closed loop tracking result of rotational speed
.
θ with reference command sin t.

Applying the obtained inverse optimal law, as seen in Figure 5, torque Ki can track
sin 50t reference command much better. There is no attenuation and phase lag is only 5.72

◦
.

Figure 5. Closed loop tracking result of torque Ki with reference command sin 50t.

Therefore, the control law works well to improve the tracking performance.

Example 3. The following circuit in Figure 6 is a typical singular system with impulse mode
from [39] with C = 1. It is unstable and has pole at infinity. This example is used to illustrate
the design approach of Inverse Optimal Control for Affine SDS Systems with L2 Disturbance in
Section 2.4.

Figure 6. Singular circuit with impulse mode.
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E
.
x =

[
1 0
0 0

]
.
x =

[
0 1
1 0

]
x +

[
0
1

]
u = Fx + Nu, x =

[
vc
iE

]
=

[
x1
x2

]
Since matrix F is invertible, the singular system with impulse mode can be expressed

in the following SDS system form.

x = F−1E
.
x− F−1Nu = f

.
x + gu (89)

For verifying the proposed algorithm, external disturbance ω is added to the system
as follows.

x =

[
0 0
2 0

]
.
x +

[
−1
0

]
u +

[
0.1
−0.1

]
ω = f

.
x + gu + J1ω

z =
[

2 1
] .
x + 0.8u = h

.
x + Ju

u = −K∞
.
x, γ = 0.6

First, a symmetric and positive definite matrix P serving as the design parameter for
Lyapunov function V(x) in (11) is selected as follows.

P =

[
1 0
0 1

]
.

Followed by selecting another design parameter R
( .
x
)

as

R
( .
x
)
= 1.

Consequently,

Γ
( .

x, u
)
=

.
xT
[

4.0069 1.9931
1.9931 1.0069

]
.
x +

.
xT
[

3.2
1.6

]
u + 0.64uTu

To ensure the closed loop system is stable, based on (64), the L2
( .
x
)

is selected as

L2
( .
x
)
=
[ .

x1
.
x2
][ −9.9759
−4.9702

]
(90)

Then using (62) yields

φ
( .

x
)
=
[

2.3707 1.0275
] .
x = −K∞

.
x (91)

Therefore, the obtained full state derivative feedback gain is

K∞ =
[
−2.3707 −1.0275

]
.

Applying the control law, the closed loop system poles locate at −0.5768 ± 0.3923i.
Since their real parts are all negative, the closed loop system are stable.

Applying (65), we have

L1
( .
x
)
=

.
xT
[

2.2102 2.0018
0.0018 0.7245

]
.
x

Furthermore, applying (91) obtains

Γ
( .
x, φ
( .
x
))

=
.
xT
[

15.1901 7.0926
7.0926 3.3266

]
.
x (92)
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Substituting (90) and (92) into (64) yields

− 12.5019xTx < 0

It proved that L2
( .
x
)

is properly selected.
In addition, this SDS system is actually controllable with state derivative feedback

control. For example, if we want to assign the closed loop poles at −2 and −4 using full
state derivative feedback control law u = −K

.
x, the closed loop SDS system becomes

x = f
.
x + gu = ( f − gK)

.
x.

The gain K should be designed such that matrix ( f − gK) has eigenvalues at −0.5 and
−0.25 because they are the reciprocals of−2 and−4, respectively. In this case, using Matlab
command place, one can easily find K =

[
−0.7500 −0.0625

]
. Therefore, using state

derivative feedback control, it is possible to assign all closed loop poles for some singular
systems with impulse mode if they can be expressed in a controllable SDS system form.
However, using state feedback control, it is impossible to assign all closed loop poles for
any singular systems. It is only possible to stabilize some of the singular systems with state
feedback control.

Example 4. It is interesting to compare the proposed inverse optimal control (IOC) in Section 2.4
with sliding mode control (SMC) design for SDS system with matched disturbance because they are
both developed based on Lyapunov stability theorem. Consider the following unstable SDS system
with matched disturbance given in [20].

x(t) = f
.
x(t) + gu(t) + J1ω(t) = f

.
x + g(u + ω(t)) , t ≥ 0 (93)

where f =

 1 −0.5 0.25
0 0.5 −0.25
0 0 0.5

, g = J1 =

 −0.25
0.25
−0.5

 (for matched disturbance),

x(t) =

 x1
x2
x3

, and ω(t) = 0.2 sin 0.3333t, with the following full state derivative perfor-

mance variables.
z = h

.
x(t) + Ju(t) =

.
x(t)

where h = I3×3 (identity matrix) and J = [0 0 0]T.

(a) For sliding mode control (SMC) [20], the sliding surface is selected as

s =
[
−84 −180 −50

]
x = Cx

Consequently, we have Cg = 1.
The ideal controller is given as

u(t) := −(Cg)−1C f
.
x(t)− (Cg)−1(γ + α)sign

( .
s(t)

)
(94)

where ‖γ‖ > ‖Cgω(t)‖ = 0.2 in this example for countermeasure the matched disturbance
and α > 0 should be selected to ensure that the approaching condition can happen.

In [20], it has been proven that applying the ideal controller in (94), the following
approaching condition happens.

sT(t) · .
s(t) < −α · ‖ .

s(t)‖ < 0
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To avoid or reduce “chattering phenomenon” due to sign
( .
s(t)

)
switching function in

(94), the following modified controller is used.

u(t) := −(Cg)−1C f
.
x(t)− (Cg)−1(γ + α)sat

( .
s(t), ε

)
(95)

where ”sat” is a saturation function to smoothly handle the switching as follows.

sat(
.
s, ε) =


1

.
s > ε

.
s
ε

∣∣ .
s
∣∣ ≤ ε

−1
.
s < −ε

=

{
sign

( .
s
) ∣∣ .

s
∣∣ > ε

.
s
ε

∣∣ .
s
∣∣ ≤ ε

Here ε is a small positive value as the bound of the differential sliding surface
.
s such that∣∣ .

s
∣∣ ≤ ε

In this example ε = 0.5,γ = 0.4 and α = 0.05 are used in the simulation. When sliding
surface is selected, we need to tune design parameters of ε, γ and α to have a SMC controller
with good enough performance.

(b) For applying the inverse optimal control (IOC) design method in Section 2.4, we can
follow the same design steps and use the same notations in example 3. In this example,
we have

h = I3×3 (identity matrix) and J = [0 0 0]T

First, we select the following design parameters as

γ = 0.6, P = I3×3 (identity matrix) andR
( .
x
)
= 1

To ensure the closed loop system is stable, based on (64), the L2
( .

x
)

is then selected as

L2
( .

x
)
=
[ .

x1
.
x2

.
x3

] −79.75
−76.25
−17.50


Consequently, using (62) yields

φ
( .
x
)
=
[

40.00 38.00 9.00
] .
x = −K∞

.
x

Therefore, the obtained full state derivative feedback gain is

K∞ =
[
−40.00 −38.00 −9.00

]
.

Applying this control law, the closed loop system poles locate at −0.5 ± 0.5i and −1.
Since their real parts are all negative, the closed loop system are stable.

The state responses and control effort of both SMC and IOC are plotted in the following
figures for comparisons.

The unstable system in this example can be properly controlled by both sliding
mode control (SMC) and inverse optimal control (IOC) to have bounded closed loop
state responses. As shown in Figures 7–10, for matched disturbance case in this example,
when SMC is properly designed, its performance could be better than that of IOC because
SMC can have smaller state responses in Figures 7–9 by applying smaller control effort in
Figure 10.
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Figure 7. State ×1 responses.

Figure 8. State ×2 responses.
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Figure 9. State ×3 responses.

Figure 10. Control u responses.

4. Discussion

The proposed design methods are inspired by other previous work [26,27,31] in inverse
optimal control in state space system with state feedback design approach. The results
show that the use of state derivative feedback for control design in an SDS system is as
simple as the use of state feedback for control design in a state space system.

Therefore, with the understanding of SDS systems, many design tools developed in
state space system with state feedback can be modified and adapted for control designs in
SDS system with state derivative feedback. Since the Hamilton–Jacobi–Bellman equation
is not always solvable to obtain the control Lyapunov function, the existence of optimal
control solution is not always guaranteed. On the other hand, if we can solve for a control
Lyapunov function from HJB equation, we can find from it a control law that achieves the
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minimum of performance functional and the resulting closed loop system has a unique
solution forward in time. Please refer to Chapter 6 in [27] for details, the descriptions and
formula derivations are analogous to those for SDS system case. Since the control Lyapunov
function is predefined in inverse optimal control design process and no need to solve HJB
equation, it is very suitable to find stabilizing control laws for unstable nonlinear systems.

Regarding the examples to verify the proposed methods, Example 1 demonstrates the
design steps for the design approach of inverse optimal control for affine SDS systems with
state derivative related feedback. In the same example, it also suggests that people should
free their mindset in control designs. No matter the system in state space form or SDS form,
the possibilities of applying state feedback or state derivative feedback should be both
checked so that the controller can be simple while perform well. The DC motor tracking
control without tachometer in Example 2 discusses the possibility of using alternative mea-
surement of inductor voltage in DC motor control based on the obtained state derivative
feedback algorithms. This idea seems promising, because the method we propose can
construct a cheap and compact controller without the need for an expensive tachometer.
Furthermore, unlike resistor sensor, the average power of inductor sensor is zero, it will
not damage the armature circuit or cause power loss. Example 3 is a singular system with
impulse mode. This is a very challenging design problem in previous researches using state
feedback in control design of the generalized state space system. Since it can be expressed
in SDS system, the design approach is straightforward. Therefore, some systems that
are difficult to control through state feedback can be controlled through state derivative
feedback in SDS system form.

Since both sliding mode control (SMC) [19,20] and the inverse optimal control in SDS
system form are developed based on Lyapunov stability theorem and their performances
are dependent on tuning their design parameters, we compare them in terms of condi-
tions to use and limitations. SMC methods in [19,20] have low sensitivity to parameter
uncertainties, can work with matched uncertainties as well as matched disturbance that
enter into control inputs and apply discontinuous switching control law to ensure the
finite time convergence. Those are their advantages. However, SMC methods in [19,20]
may suffer from chattering phenomenon and when uncertainties and disturbance are not
matched ones, the performance could be downgraded. On the contrary, the inverse optimal
control method in Section 2.4 can handle bounded disturbance which are not from control
inputs. As shown in Example 4, for system with matched disturbance, the SMC controller
could use smaller control effort to obtain smaller state responses than IOC controller.
However, from the implementation point of view, the structure of IOC controller is simpler
than that of SMC controller and consequently the implementation cost of IOC controller
could be cheaper. The inverse optimal control methods in this paper are suitable for con-
trolling the system with precise parameters, such as the DC motor used for tracking control
in Example 2. Therefore, designers can make tradeoff between IOC and SMC in terms of
performance and cost.

Regarding the future works, for implementation of the DC motor application in
example 2, as seen in Figure 1, there is large electric inductance L in armature circuit in the
model of DC motor. No matter what kind of sensor we use, one potential problem that is
common in DC motor control is inductive kick (kickback) phenomenon or so called Ldi/dt
voltages [39]. Since the windings of the DC motor will produce current conversion during
commutation, the current conversion will cause the inductive kickback that disturbs both
the voltage and current of armature circuit as shown in Figure 11. Therefore the measured
voltage of L1 sensor in Figure 1 will also be disturbed.
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Figure 11. Disturbances due to inductive kickback.

Conventionally, in implementation, various absorption circuits of inductive load
kickback [40] can be used as the countermeasure for disturbance caused by inductive kick.
Other than applying absorption circuits, we are considering another solution of eliminating
disturbance of L1 sensor voltage due to inductive kick in our future research. The basic idea
is as follows. Since the inductive kick is formed by periodic commutation, it has an average
of 0 characteristics, if the T is the time of every commutator segment passes through a
brush, selecting the signal window of L1 sensor voltage with a period as a multiple of T
and calculating the average voltage value of window, the L1 voltage disturbance caused by
the inductive kick of commutators could be considerably decreased. The control voltage is
then generated by feedback of L1 voltage with reduced disturbance. In addition, since this
disturbance of L1 sensor voltage is through control input channel, it can be considered as
matched disturbance. Hence, we will also consider to apply sliding mode control with
state derivative measurement feedback to control it in future.

In this paper, we have proven that the inverse optimal control can be carried out in
SDS system form with state derivative feedback. In future, more challenging problems
such as stochastic systems can be explored. If a system has randomness associated with it,
it is called a stochastic system and does not always produce the same output for a given
input. Stochastic systems exist in many applications such as communication systems,
markets, social systems, and epidemiology. Optimal control [41,42] and inverse optimal
control [42,43] for stochastic systems in state space system form have been solved with
stochastic Hamilton–Jacobi–Bellman equation to obtain state related feedback control laws.
In future, for people who want to develop inverse optimal control for stochastic systems
with state derivative feedback, it is highly recommended to first study [42] because the
design approaches in [42] and this paper are both built on [27].

5. Conclusions

In this paper we have discussed about how SDS system with state derivative feedback
can be supplement of state space system with state feedback in control designs. Followed by
developing inverse optimal control methods in SDS systems with solely state derivative
feedback. As far as the authors know, no similar results have been reported. Inverse optimal
control can construct a stable closed-loop system while nonlinear optimal control may not
have exact solution. Hence, inverse optimal control should be collaboratively used together
with optimal control for designs. The proposed methods are very suitable to find stabilizing
control laws for unstable nonlinear systems. The correctness of proposed methods has
been properly verified by numerical examples and simulations. Especially, in the third
example, a classic difficult problem in control, namely singular system with impulse
mode is fully controllable by state derivative feedback in SDS system form and satisfy the
non-expansivity constraint when the system is subjected to disturbance. On the contrary,
the same system can only be stabilized by state feedback control. The above is the summary
of academic contributions of this paper.
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From application points of view, in vibration systems of vehicle dynamics and smart
structure, accelerations and velocities are available measurements of state derivative vector.
In addition, the inductor voltages in electrical systems are also state derivative related
measurement. For those systems, using state derivative feedback design in SDS system
form are very likely to have more simple, cheap and compact controllers because integrators
or numerical integrations are not needed. Therefore, the idea of connecting a small inductor
in series with an armature circuit as the only sensor of a DC motor control system in
Example 3 is very promising because average power loss of inductor is zero and no
tachometer is needed. DC motors are widely used in many industries and facilities for daily
life. For example, in automotive body electronics, the estimated demand for automotive DC
motors in body domain was 2 billion units in 2020 [44]. So the proposed design approach
of this paper can have a wide range of practical applications.

With understandings and awareness of SDS system form, state derivative feedback
and inverse optimal control, designers can solve more control problems and develop more
new applications based on their previous knowledge and experience in state feedback
designs in state space system without applying too much of advanced mathematics.

6. Patents
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