
energies

Article

An Intelligent Task Scheduling Mechanism for Autonomous
Vehicles via Deep Learning

Gomatheeshwari Balasekaran 1,* , Selvakumar Jayakumar 1 and Rocío Pérez de Prado 2,*

����������
�������

Citation: Balasekaran, G.; Jayakumar,

S.; Pérez de Prado, R. An Intelligent

Task Scheduling Mechanism for

Autonomous Vehicles via Deep

Learning. Energies 2021, 14, 1788.

https://doi.org/10.3390/en14061788

Academic Editor: Hugo Morais

Received: 9 February 2021

Accepted: 15 March 2021

Published: 23 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronics and Communication Engineering, SRM Institute of Science and Technology,
Tamil Nadu 600026, India; selvakuj@srmist.edu.in

2 Telecommunication Engineering Department, University of Jaén, 23700 Jaén, Spain
* Correspondence: gomatheeshwari_balasekaran@srmuniv.edu.in (G.B.); rperez@ujaen.es (R.P.d.P.)

Abstract: With the rapid development of the Internet of Things (IoT) and artificial intelligence,
autonomous vehicles have received much attention in recent years. Safe driving is one of the essential
concerns of self-driving cars. The main problem in providing better safe driving requires an efficient
inference system for real-time task management and autonomous control. Due to limited battery life
and computing power, reducing execution time and resource consumption can be a daunting process.
This paper addressed these challenges and developed an intelligent task management system for
IoT-based autonomous vehicles. For each task processing, a supervised resource predictor is invoked
for optimal hardware cluster selection. Tasks are executed based on the earliest hyper period first
(EHF) scheduler to achieve optimal task error rate and schedule length performance. The single-layer
feedforward neural network (SLFN) and lightweight learning approaches are designed to distribute
each task to the appropriate processor based on their emergency and CPU utilization. We developed
this intelligent task management module in python and experimentally tested it on multicore SoCs
(Odroid Xu4 and NVIDIA Jetson embedded platforms). Connected Autonomous Vehicles (CAV)
and Internet of Medical Things (IoMT) benchmarks are used for training and testing purposes.
The proposed modules are validated by observing the task miss rate, resource utilization, and energy
consumption metrics compared with state-of-art heuristics. SLFN-EHF task scheduler achieved
better results in an average of 98% accuracy, and in an average of 20–27% reduced in execution time
and 32–45% in task miss rate metric than conventional methods.

Keywords: autonomous vehicles; deep learning; heterogeneous multicore; IoT; task mapping;
scheduling; energy consumption

1. Introduction

IoT is becoming ubiquitous that connects a million devices such as sensors, actuators,
gateways, and hubs over the Internet [1]. Many embedded applications are connected to
the physical world via the Internet, e.g., autonomous vehicles, avionics, home automation
systems, health monitoring systems, smart cities, etc. This will lead to new developments
in combining the embedded systems with IoT called real-time embedded IoT systems [2].
Of these applications, self-driving cars have received much attention in the recent past due
to connectivity and artificial intelligence. Self-driving cars are the primary example for
the real-time embedded IoT system, which includes multiple hardware sensors, actuators
are connected through the IoT for processing each function. The self-driving car market is
projected to grow by more than £ 7 trillion per year by 2050 [3].

However, there are many challenges in the transportation industry to make self-
driving cars as public transportation to create a safe environment. Many autonomous
vehicle manufacturers such as Uber, Waymo, and Google manufacturing are struggling
to implement smart cars in the market due to the high cost of the computational systems
and the lag of the software task management system [4]. According to a recent survey,

Energies 2021, 14, 1788. https://doi.org/10.3390/en14061788 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3008-6602
https://orcid.org/0000-0001-6097-4016
https://doi.org/10.3390/en14061788
https://doi.org/10.3390/en14061788
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14061788
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14061788?type=check_update&version=2

Energies 2021, 14, 1788 2 of 22

around 56% of accident rates are increased by autonomous vehicles due to uncontrollable
traffic, incorrect location, and mapping techniques [5]. Many recent articles are focused
only on traffic prediction optimizations via machine learning algorithms. There are many
other significant problems that need to be addressed in autonomous vehicle design in
hardware and software optimization. The core components of autonomous vehicles are
sensors, actuators, and processors to handle multiple functions based on the external
environment conditions. This requires an efficient hardware platform and software kernel
to achieve high performance and secure driving.

The real-time embedded IoT systems require an intelligent task management system
to control and monitor the real-time processes to withstand uncertain conditions. Generally,
real-time embedded systems are categorized as hard real-time systems, firm real-time
systems, and soft real-time systems based on their deadline constraints [6]. A system
with hard deadlines is considered high-criticality systems such as avionics, mission devices,
autonomous vehicles, etc. The system with soft deadlines is low-criticality systems called
multimedia, face recognition, etc. Deadline constraint is essential in real-time embedded
systems. For example, unmanned aerial vehicles, health monitoring systems mandatorily need
to follow the strict timing constraints and safety requirements to avoid catastrophic situations.

On the other hand, in an autonomous vehicle, many tasks have strict timing constraints
in the form of hard deadlines, and if the deadline of any single task is missed, it will
cause severe accidents. To minimize these accident rates, autonomous vehicles require
resourceful hardware and software to handle multiple tasks concurrently and efficiently.
The revolution on the hardware technology raised from uni-processor to multi-processor
system-on-chip (MPSoC). MPSoC is categorized as a homogeneous and heterogeneous
multiprocessor system-on-chip. Homogeneous multiprocessor chip includes a similar
category of CPUs on the same chip, and heterogeneous MPSoC (HMPSoC) comprises
of distinct category such as CPUs, GPUs, AI processors on the same system-on-chip [7].
These asymmetric multiprocessors are energy-efficient and perform multi-tasking with
low power consumption. In recent days, many real-time embedded IoT applications
adopt this energy-efficient MPSoC as a hardware configuration to improve the overall
performance with low-power consumption. Samsung Exynos 5422, Qualcomm snapdragon
hardware kits are examples of MPSoC [8]. Despite its benefits, designing intelligent
software to handle task distribution, resource utilization, and task scheduling are still
NP-hard problems in heterogeneous MPSoCs. Michael G. Bechte et al. developed a
low-cost autonomous vehicle using homogeneous quad-core MPSoC (Raspberry pi-3)
with a deep neural network prediction algorithm for car steering detection via camera
inputs [9]. Lu Cheng et al. exploited the heterogeneous MPSoC for autonomous driving
and developed an event-based task scheduler to handle the driving tasks [10].

Similarly, Xiebang Wang et al. adopted the HMPSoC computing system with openCL
software kernels for Advance Driver-Assistance System (ADAS) operations [11]. Tosiron et al.
studied the role of multicore processor optimization in IoT systems. A review article
comprises multicore processor enhancements, and its significant role in processing the
IoT tasks with logical and temporal correctness is discussed in detail. Microprocessor
configuration, which varies from single-core to multicore hardware units, is deliberated for
IoT systems. In-depth learning modules are adapted widely in IoT applications because of
their efficient data processing and intelligence in the decision-making process. The output
accuracy is enhanced that compared to conventional algorithms for the specified inputs [12].

1.1. Conventional Scheduling Algorithms on Real-Time Embedded IoT Systems

Liu and Layland et al. introduced the Rate monotonic and earliest deadline first
algorithms for real-time embedded systems [13]. These traditional algorithms are recently
adopted for realtime IoT systems for accessing each job. Hongjun Dai et al. proposed
two scheduling approaches for autonomous vehicle driving services [14]. The tasks are
modeled as periodic task sets with computational constraints in terms of execution cost,
communication cost, waiting time, deadline constraints in a matrix format. These tasks

Energies 2021, 14, 1788 3 of 22

are scheduled based on the two heuristics called direct execution strategy and task re-
placement model, allocating the tasks on mobile edge servers for execution. Hussein et al.
developed a dynamic voltage frequency scaling-based task scheduling algorithm called
Energy Saving-Dynamic Voltage Frequency Scaling(ES-DVFS) for autonomous systems.
The proposed algorithm modeled the driving tasks as aperiodic tasks with soft dead-
lines [15]. Xiaoqiang et al. reshaped the Petri nets with Ant Colony Optimization (ACO)
swarm-based optimizer for enhancing the performance of IoT networks. The job schedul-
ing problem is analyzed with a schedule timed transition Petri net (TTPN) and search
space optimization algorithm to enhance the makespan (overall schedule length) [16].
The IoT tasks are modeled as directed acyclic graphs (DAG) with precedence dependency
constraints. The genetic algorithm is utilized to optimize the search space during the allo-
cation and execution of real-time IoT tasks on virtual machines. Makespan is minimized,
and the infrastructure’s performance as a service (IaaS) model is improved using Genetic
Algorithm (GA) scheduling modules by Xiaojin Ma et al. [17]. Bini et al. proposed the
branch-bound search based task scheduler with fixed priorities in order to maximize the
system performance without violation of deadlines [18]. Likewise, Hyun-Jun Cha et al.
developed a deadline monotonic task scheduler for optimality of deadline and period
constraints in automotive systems [19].

Research Gap on Existing Models

These methods’ limitations are less efficient for multiprocessor system-on-chip and
not suitable for high-complexity tasks such as object detection, path planning, localization,
lane detection, etc. In recent days, hardware technology has become more efficient in
combining multiple CPUs, GPUs, AI, and IoT processors in the same chip to handle
multiple tasks simultaneously. The existing software kernel is less efficient in handling these
heterogeneous resources that require the intelligent task management system to improve
resource utilization with high-performance and low-energy consumption. Moreover,
recently traffic prediction problems are focused much on autonomous vehicle systems.
The proposed intellectual task management system resolved the hardware/software co-
design challenges and provided the optimal solutions in resource utilization, task miss rate,
and execution time.

1.2. Challenges on Conventional Task Scheduling Policy for Self-Driving Cars

The conventional algorithms are most suitable for uni-processor hardware computing
systems that are not readily adaptable for multiprocessor systems. Moreover, recently au-
tonomous vehicles are designed with HMPSoCs to provide efficient performance at runtime.

• Task miss ratio is the significant constraint to be minimized in the autonomous vehi-
cles to minimize the accident rates, which is not considered in any previous schedul-
ing methods.

• Hardware resources in autonomous vehicles to be efficiently utilized to maintain the
lifetime of the devices, such as sensors, actuators, and processing units.

• Time complexity (overall execution time) is another essential metric for optimizing
autonomous vehicles due to the battery-based device.

• A trade-off between task miss ratio and overall execution time in task scheduling is
an NP-hard problem.

These are hardware/software co-design challenges that need to be solved in au-
tonomous vehicles to provide safe driving and high-performance.

1.3. Significant Contributions

The proposed intellectual task management system developed on addressing the chal-
lenges mentioned above and evaluated on two different HMPSoC hardware configurations.
A supervised resource predictor with a scheduling algorithm is designed and validated
with standard autonomous vehicle benchmarks.

Energies 2021, 14, 1788 4 of 22

Resource Predictor using Supervised Learning Model: Smart vehicles comprise mixed-
critical workloads in terms of sensors, image processing, high computational workloads
to complete a single task. The challenge that arises in real-time is (i) Identification of task
criticality and selection of best resources for execution is still lagging, which degrades
the performance at runtime. In the proposed framework, we addressed this issue by
developing an intellectual learning neural network to predict the best hardware cluster for
each autonomous vehicle workload on the HMPSoC platform. Single Layer Feed-forward
Network (SLFN) [20] and lightweight deep neural network (LW-DNN) are low-complex
predictors designed and compared with traditional learning algorithms such as SVM, RF,
decision tree.

Task Scheduling Mechanism: Another challenge is arisen on ordering the tasks for
execution. Many existing scheduling approaches are more time-complex. We developed a
low-complex “Earliest hyper period first (EHF)” algorithm and executed the tasks on the
base cluster to resolve this. Consequently, tasks are executed based on their emergency and
earliest hyper period to achieve better task miss rate (TMR) and performance.

Implementation Module: A heterogeneous multicore SoC module “Odroid Xu4,
and NVIDIA jetson” platforms are used to implement the scheduling algorithm and
provide real-time solutions for autonomous vehicle services. CAV and IoMT benchmarks
are used for the evaluation of the proposed task management system. The hardware
module is connected with a cloud server to maintain the regular monitoring and storage
of obtained results for future use. SLEN-EHF task scheduler achieved better results in an
average of 98% in prediction accuracy. An average of 2027% was reduced in execution time
and 32–45% in task miss rate metric than conventional methods.

1.4. Outline

The remaining sections are illustrated as follows: Section 2 detailed relevant works
performed on Scheduling algorithms for IoT-based AV applications. In Section 3, the Pre-
liminary system and application modules are discussed with the proposed architecture.
SLFN mathematical model and resource predictor with internal working structure is il-
lustrated in Section 4. EHF algorithm with workflow diagram is explained in Section 5.
In Section 6, an Experimental setup with validated results is described with performance
charts—the conclusion with the proposed limitations as detailed in Section 7.

2. Related Works

Autonomous vehicle research emerges from the past decade. It has recently become
ubiquitous due to IoT, artificial intelligence, and high computational platforms’ availability.
Meanwhile, they boost the research topic on hardware architecture and intelligent task
scheduling mechanisms to satisfy the timing constraints and safety requirements with low
power consumption. Chien-Ying et al. (2018) researched real-time IoT systems regarding
architecture, security, and processing issues. The autonomous vehicle driving workloads are
framed as real-time periodic and aperiodic jobs with various timing constraint are modeled,
and different case studies of Real-Time(RT)–IoT is deliberated in detail. RT-scheduling for IoT
devices with its open problems and challenge is explained [21]. Nasri et al. (2015) have
developed a model to capture the harmonic coupling between the periods. After calculating
the harmonic subinterval in the range of possible periods for a given set of tasks that can
easily calculate and assign a harmonic period. To further reduce the hyper period’s value for
the harmonic period’s resulting assignment [22]. Liu et al. (2017) developed an autonomous
driving system architecture that can run tasks on a heterogeneous Advanced Risc Machine
(ARM) mobile system-on-chip [23]. They partition autonomous vehicle workloads into
three categories in terms of sensing, perception, and decision-making.

Energies 2021, 14, 1788 5 of 22

Smruti et al. (2019) focused on IoT networks that assess various layers in terms
of sensors, actuators in the application layer connected with hardware through efficient
scheduler modules. Global and local preferable algorithms were designed for IoT devices.
The proposed technique utilizes the multicore processors with a DVFS power optimizer to
adjust the computational elements’ voltage and the frequency at runtime [24]. Resource
aware scheduler is framed for RT-IoT devices by Shabir et al. (2019) [25]. RT-Tasks are
modeled in a periodic format in terms of execution time, period, and deadline constraints.
The proposed module initially identified the hyper period for each periodic task set and
executed by conventional schedulers such as Earlierst Deadline First(EDF), Rate Monotonic
(RM). Resources such as processor energy consumption are considered for optimization
and achieved by minimizing each periodic task set’s hyper period during runtime. Sehrish
Malik et al. (2019) developed an emergency first algorithm for real-time embedded work-
loads with hard and soft deadline constraints. Real-time IoT tasks are modeled with four
diverse tags: emergency, regular, and most emergency periodic and aperiodic. Based on the
tag attached to each task that multicore processors execute in [26]. Sensor tasks are modeled
as periodic with a soft deadline, and actuator tasks are modeled as most emergency tasks
prioritized first. The proposed model also includes the Artificial Neural Network (ANN)-
based prediction module with urgency and failure measure metrics that helps in allocation
and execution. Farzad Samie et al. (2019) published a survey on machine learning models
for embedded IoT systems. The significant role of machine learning and deep learning
algorithms in IoT applications in various categories is discussed generously [27].

Jie Tang et al. (2020) proposed the low-cost real-time autonomous vehicle (Dragonfly
Pod) with three modules, such as LoPECS (Low-Power Edge Computing System) and
CNN for real-time object detection and speech recognition module with the heterogeneous
multicore platform at an affordable price of $10,000 [28]. Recently many autonomous
vehicles are connected with mobile edge computing servers, and mobile devices are used
to monitor and control the services in real-time. Xu et al. (2020) [29] developed a scheme
based on a small adjustment of these problems’ resulting periods. The adjusted periods of
the task may not be entirely harmonious. However, they are closely linked, facilitating the
entire schedule’s calculation up to the execution time for the periodic task’s final planning.

3. Groundworks
3.1. Autonomous Vehicle Service Module

Primary services of autonomous vehicles are five modules: (i) Sensor and Actuator
module, (ii) Perception, (iii) Localization and Mapping, (iv) Path Planning, and (V) Con-
trol Module. Each module consists of monitoring (periodic), controller (event-driven),
and complex tasks (large computational tasks). Figure 1 illustrates the basic structure of
the proposed task management system.

Figure 1. The building block of the proposed Intelligent Mapping System.

Energies 2021, 14, 1788 6 of 22

3.1.1. Application Layer Structure

In this work, the proposed framework is designed for all three category task sets.
We assumed these tasks are represented as tree structures with nodes and edges [30].
A periodic (Sensor) task is represented as a single tree with its precedence tasks as child
threads. Likewise, aperiodic and complex tasks are modeled as trees. Figure 2 (left)
represents the sample periodic task graph. Figure 2 (right) denotes the aperiodic task
graph, and the complex graph includes both periodic and aperiodic tasks, which are
modeled as the same.

Figure 2. (left) Periodic workload “getemp” sensor processing task is represented with subtasks, (right). Aperiodic
workload “fire alarm” task with its subtasks.

Periodic Task Graph: Each periodic task set includes these four subtasks such as
sensing, processing, monitoring, and uploading at regular time instance ‘t’.

Definition 1. Each node in the periodic tree is denoted as Peri = {ATi, ETi, Di, ti, Tokeni} that
need to be executed at regular time instance ′t′i (i.e., period). Where ′Per′i denotes the periodic task
graph, ′AT′ is the arrival time of a periodic task, ET is the execution time of a periodic task, D is the
deadline of a periodic task, ‘t’ is the period of a periodic task, Token is the priority bit associated to a
periodic task were Token = 0 it is a regular task if Token = 1 emergency task.

Aperiodic Task Graph: Aperiodic tasks are event-based tasks that are highly prior-
itized in IoT-based Autonomous vehicle applications. Generally, aperiodic tasks are not
periodic (i.e., not steady job). Here, we represent the time instance as execution instance
time of event triggered.

Definition 2. Each node in the Aperiodic tree is denoted as Aperi = {ei, ATi, ETi, pi, Di, ti, E′ i}
that needs to be executed ′t′i when triggered. Where ′APer′i denotes the aperiodic task graph ′e′i
is the event triggered for a particular task, ′AT′i is the arrival time of a periodic task, ′ET′i is the
execution time of a periodic task, ′D′i is the deadline of a periodic task, ′t′i is the event trigger instance
in nanoseconds, E′ is the priority bit associated to an aperiodic task were E′ = 1 always because
aperiodic is a control task that to be executed first in real-time systems to avoid the catastrophic
situation.

Complex Task Graph: Complex tasks are Localization, Path planning, obstacle detec-
tion, etc.

Energies 2021, 14, 1788 7 of 22

Definition 3. WTi denotes a large computational complex task Compli={ATi,ETi,Di,ti,E
′
i} It should

be executed repeatedly by CPUs or GPUs to control the entire system and safe driving.

For example, Object tracking, localization tasks are emergency tasks that need to be
monitored and controlled continuously.

3.1.2. Constraints Involved in the Application Layer

Arrival time—Tasks arrived at the processor for execution are denoted by ‘AT’,
which varies dynamically for each task.

Deadline—Worst case completion time of each task is denoted by ‘D’, which has been
pre-defined before execution.

Response time—The time duration between released time and finish time is the total
response time of task ‘i’ at processor ‘j’.

Execution time—Worst case processing time of task ‘i’ is denoted by ‘ET’ during
processor execution.

RT: Task-to-processor Mapping: Each node (i.e., task) is allocated to a particular
processor for execution is a mapping problem; designing an optimal mapping for an RT–
IOT system is critical due to limited resources in terms of memory, processors, and network
availability. In this paper, a dynamic core mapping algorithm based on the SLFN predictor
is developed for task allocation on multicore processors in real-time.

RT-Task scheduling: A feasible or optimal sequence order of task execution pre-
defined in the RT–IoT system. In this paper, the earliest hyper period first (EHF) scheduling
sequence is designed and experimentally validated with real-time periodic and aperiodic
task sets.

3.2. Hardware Layer Multicore Processor System-On-Chip

In this paper, we assumed that CPU’s are represented as Little cores = {L1, L2, . . . ,
Lk}, GPU’s as big cores = {B1, B2, . . . , Bg}, with respective operating frequencies and
voltage levels. Two different heterogeneous multicores SoC are targeted as hardware
clusters named as (Hardware configuration:1 (“Odroid Xu4 SoC: 4L1b, 3L1b, 0L1b”) and
(Hardware configuration: 2 (Nvidia Jetson SoC- “8L0b, 0L384b, and 8L384b”) which is
used for the implementation of the proposed intelligent task management framework.
The targeted heterogeneous multicore architecture comprises 16 CPU cores and 384 GPU
cores. The number of big and little cores in each cluster differs based on the core combi-
nations. These are the clusters we used for dataset preparation Clusters (CL): where “L”
denotes the CPU core and “b” represents the GPU core. The operating voltage for the entire
system is denoted as, Vl = {Vl1, Vl2, . . . VlV}, v ∈ k, g and the frequencies are denoted as
f l =

{
f l1, f l2, . . . , f l f

}
, f ∈ k, g respectively.

4. Intelligent Task Management for IoT Based AV

In this proposed framework, tasks are allocated on an optimal hardware cluster that is
predicted by learning networks, and it has been scheduled based on the EHF algorithm.
The SLFN and LW-DNN supervised learning predictors select the best hardware cluster
based on the task and execution constraints listed in Table 1. The overview structure of the
proposed model is illustrated in Figure 3.

Energies 2021, 14, 1788 8 of 22

Table 1. Summarizing the Existing models with key findings.

Existing
Models Inference System Structure Application Model Resource Utilization Execution Time

Optimization
Task Miss Ratio

Optimization

[21]

Formation of RT–IoT with the embedded
system is deliberated with its current

challenges in hardware/software,
task scheduling, and security issues.

Multicore platforms, IoT
networks are studied.

IoT tasks with
mixed-criticalities - - -

[22]
Fixed-priority and Rate monotonic

scheduling algorithms designed with
optimized period bounds

Hardware is not focused
on this work.

IoT tasks with
mixed-criticalities (control
applications are modeled

as periodic task sets)

Resource utilization is
improved with harmonic

period selections.
- -

[23]
Autonomous driving workloads are

experimentally tested on various
HMPSoC platforms.

HMPSoCs are utilized
for evaluation.

Autonomous vehicle
workloads are considered.

Resources are utilized up
to 100%

Execution time is
improved based on the
appropriate selection

of processors.

-

[24]
Energy consumption is targeted in this work.
DVFS based heuristics are developed for the

RT-IoT system
HMPSoC RT–IoT workloads are

considered for evaluation. -
25–30% of execution
time is minimized
based on the DVFS

adjustment

Task miss rates
are reduced with

a penalty

[25] A resource-based task scheduler is designed
to optimize the hyper-period metric.

Raspberry pi-3 HMPSoC
used for evaluation

Sensor tasks are modeled
as Periodic task sets with a

mixed-period range.
- 20% improved -

[26] Fair emergency first scheduling algorithms is
designed with ANN resource predictor.

Intel PC has been used
for evaluation.

Sensor and actuator tasks
are modeled with
mixed-criticalities.

- 30% improved 35% task miss
ratio is improved

[27] Various machine learning algorithms
are discussed

MPSoC platform used
for analysis

Embedded workloads
are used - - -

[28]
Dragonfly’s low-cost autonomous vehicle is

designed and executed with an inter-core
scheduling algorithm.

HMPSoC Autonomous vehicle
workloads are utilized. - 10–27% minimized the

overall execution time -

[29] Task periods are minimized using the
DVFS technique. MPSoC Embedded workloads

are considered. - 10% minimized -

Proposed
Framework

Two heuristics are modeled, such as EHF,
SLFN-EHF with intelligent resource

predictors to solve hardware/software
challenges of autonomous vehicles.

The proposed modules are evaluated on two
HMPSoC testbeds.

HMPSoC
The autonomous vehicle,

IoT workloads as a
Tree structure

Resources are clustered
and utilized fully

35% compared with
traditional methods

CFS and fairness
algorithms

65%
improvement

is achieved

Energies 2021, 14, 1788 9 of 22

Figure 3. Overview structure of Proposed Intelligent System.

4.1. Resource Prediction Model

Researchers recently developed deep learning-based optimization algorithms to en-
hance application mapping performance on multicore architectures [31]. The limitation of
traditional scheduling techniques was targeted only a single metric like energy or power
or time constraints, and task miss ration is not observed in the existing techniques which is
most significant in RT-IoT systems. In this paper, we developed two different supervised
learning algorithms named LW_DNN and SLFN. The DNN network is adopted from the
previous work, which is utilized for comparison.

Feature Extraction

We executed IoT based Autonomous vehicle tasks on two different hardware con-
figuration clusters named as (Hardware config:1 (“Odroid Xu4 SoC: 4L1b, 3L1b, 0L1b”)
and (Hardware config: 2 (Nvidia Jetson SoC- “8L0b, 0L384b, and 8L384b”) with a mixed
category of CPUs and GPUs. Table 2. describes the significant features utilized for selecting
the appropriate cores for execution.

IoT and autonomous vehicle benchmark programs are repeatedly executed in each
cluster and examined the execution characteristics. Workload characteristics are extracted
in terms of execution features and optimized in this phase.

As mentioned above, each workload is executed on every hardware cluster and ob-
served PC values, which in total 10 K data. The primary purpose of the feature preprocess-
ing algorithm is to minimize the time complexity and training complexity. We developed
a feature optimization algorithm similar to the previous work [31]. Table 1 shows the
optimized features used for core selection. These are the significant features utilized as
input for resource predictors on selecting optimal core at runtime. The application and
execution features are automatically recognized and feedforwarded into the modeling
process as input vector values.

Energies 2021, 14, 1788 10 of 22

Table 2. Optimized Feature of Workloads [31].

Data Type Workload Features

performance Instruction per count (IPC)
Time Deadline, period

Emergency value Token ID
Runtime utilization No of active CPUs and GPUs

Load No of assigned processes count on each core
Threshold limit CPUs and GPUs capacity (pre-defined)

memory L1-D cache, L1-I cache, L2-cache access
and cache miss ratio

Instructions (%) Arithmetic integer/float/add/mul
branch Branch misprediction data’s

TLB dTLB misses, iTLB misses
power average power consumption in watts for a time slice
Time The overall execution time of the workload

Total tasks Total no.of tasks on each queue
Queue id Each task queue id

4.2. Modeling of SLFN Predictor

Single Hidden Layer Feedforward Neural Network Prediction Model is developed to
predict the best hardware cluster for each task execution to optimize resource utilization
and power consumption. Machine and Deep learning classifiers, predictors have become
popular in IoT, computer vision, medical devices, and autonomous vehicle applications.
In this work, we adopted a single-layer feedforward network (G.B. Hung 2006) to predict
the multicore in terms of “4L1b, 3L1b, 0L1b, 8L0b, 0L384b, and 8Lb”. Each task’s best
hardware cluster is selected based on the task emergency value and core utilization value.
Based on this prediction, each ready task arrived from queues is allocated and executed
on respective cores. In this network, ‘J’ neurons in the concealed layer are expected to
operate with a widely differentiable activation function (e.g., the Relu, sigmoid function).
However, the output layer is straight. The concealed layers in ELM do not have to be
tuned obligatorily. Loads of the concealed layer are given blindly (inclusive of bias loads).
Figure 4 depicts the basic structure of the SLFN resource predictor with its input features
are represented as ‘X’, concealed layer nodes are denoted as ‘H’, and otuput score is denoted
as ‘t1 to tm’.

Figure 4. Basic structure of single-layer feedforward neural network (SLFN) predictor.

The condition is not that the hidden neurons are inapplicable; instead, there is no
need for tuning. Even in advance, the hidden node’s parameters can be chaotically gen-
erated. The concealed neurons’ parameters can be randomly produced even in advance.

Energies 2021, 14, 1788 11 of 22

Before taking care of the training set data, for an SLFN resource predictor, the system yield
is given by

SLFNL(k) =
J

∑
i=1

µi∂i(k) = ∂(k)µ (1)

where k ∈ Rd denotes the input layer vector of ‘d’ dimension, µ = [µ1 µL]
T

denotes the vector between hidden to output weights, J is the No. of neurons in the new
layer, and ∂(k) =

[
∂i(k) ∂J(k)

]
is the hidden layer output vector.

The following Equation provides the ‘J’ unknown layer output vector. ∂i(k)

∂i(k) = G(ai, bi, k) =
1

1 + exp(−(aik + bi))
(2)

Based on Equation (9), ‘G’ is considered the general sigmoid function with (a,b) node
values. The hidden output layer vector µ is utilized to diminish the training dataset error
that connects the output as

Hµ = T (3)

µ = H+T (4)

Based on the Equations (10) and (11), ′∂′ remain hidden or unknown layer output
matrix, ‘T’ denotes the target training set data matrix and H+ denotes the Moore Penrose
inverse of H. The above equation. can also be given as

µ = HT
(

1
c

HHT
)−1

OP (5)

Hence the output function can be found using the above equation.

∂(x)µ = ∂(x)HT
(

1
c

HHT
)−1

OP (6)

SLFNL(x) : OP = min′CL′ (7)

where ‘c’ is the approximate constant, and ‘OP’ is the output matrix.
ELM uses the kernel function to yield good accuracy for better performance. The sig-

nificant advantages of the ELM are minimal training error and better approximation.
Since ELM uses the auto-tuning of the weight biases and non-zero activation functions,
a detailed description of ELM equations can be found in the literature [32]. The pseudo-
code for the ELM is shown in Algorithm 1.

Algorithm 1: SLFN Resource Predictor

Input: Trained dataset with a random number of weights and bias values
Output: Predicted Score in terms of optimal core and frequency parameter
1: The network is initialized with input neurons ‘X’.
2: A set of concealed neurons are generated as a single layer.
3: Sigmoid and relu functions are defined as activation functions.
4: Synapse parameters are generated through the gaussian random method.
5: After each iteration concealed matrix are updated
6: The output matrix values are calculated.
7: Final prediction scores are observed for the entire system.

Ready tasks parameters such as arrival time, Worst Case Execution Time (WCET)
values with a respective deadline, and period with execution parameters are entered as
input features to the developed SLFN network, which deviated from {1 to N}. The proposed
SLFN resource predictor is a supervised learning network that is trained with several sen-
sors and actuator workloads execution characteristics along with hardware configuration

Energies 2021, 14, 1788 12 of 22

labels were trained statically. Figure 5 illustrates the working procedure of SLFN resource
predictor executed for sample task set. Initially, the task features are feed-forwarded into
SLFN modeling to obtain the best processor. The sample task graph is executed on the
hardware configuration 1.

Figure 5. SLFN Resource Predictor Results for periodic task graph mapped on hardware configuration-1 (Odroid XU4).

4.3. Task Scheduler Method
Earliest Hyperperiod First Scheduling Sequence

In this work, mixed category workloads are allocated on optimal cores for execution.
Liu and Layland et al. developed optimal uni-processor algorithms such as RM and
EDF, which computes the hyper period of ready tasks to the total processor utilization
(i.e., total execution cycles). Likewise, Sherik et al. acknowledged individual task periods
play a vital role in resource consumption complexity. To address this issue, the author
developed an adaptive hyper period generator to optimize each task period. We are
motivated by this; our algorithm initially identifies the optimized hyper period for each
task based on the earliest hyper period, each task is executed on the allocated processor.
The optimal core executes aperiodic tasks. If the optimal core is running a high-priority
periodic or complicated task, it will enter into the suspended state, and aperiodic tasks are
executed whenever it arrives. This pre-defined condition is assumed to avoid the RT-IoT
system devastation. Each task graph includes the ‘N’ number of task nodes represented
by periodic, aperiodic, or complex sets. A task node includes essential parameters such as
WCET of taskω_1 denoted by task inter-arrival instance is denoted by period and hyper
period (i.e., the completion time of each task set), and core utilization is calculated based
on Equation (8).

Cui = ETi/ti (8)

The Cluster utilization is denoted by Equation (9),

CUi =
cl

∑
i=1

Cui (9)

These two factors find whether a given task set ω is schedulable on a given CPU of
‘M’ cores.

Hωi = {LCM(ti = t1, t2 . . . tn)} (10)

The hyper-period ′Hω′i of a set of n tasks ′ω′ can be found by Equation (9), where LCM
is the least common multiple of tasks’ period, and ‘ti’ is an individual task. Task nodes with
the “earliest hyper period are executed first” from the allocated queue. As we mentioned,

Energies 2021, 14, 1788 13 of 22

Liu and Layland fixed the schedulability criteria as ′TU′ ≤ 1. The problem arises when
the algorithm passes the schedulability test. However, the embedded IoT objects do not
have sufficient resources to execute tasks due to the requirement of higher clock cycles
than devices can support. In this work, we assumed Hωi ≤ ThresholdM; then, the entire
task set is schedulable, where the threshold is the total load capacity of core ‘M’ at runtime.

5. Proposed SLFN_EHF Scheduling Algorithm

Three modules form the entire RT-IoT system, which is elaborated below (Algorithm 2).

Algorithm 2 Task Scheduling Mechanism

Input: Periodic, Aperiodic, and Complex tasks

Peri={ATi,ETi,Di,ti,Tokeni}APeri=
{

ei,ATi,ETi,Di,tiE
′
i

}
Compli=

ATi,ETi,Di,ti,E
′
i With respective arrival time, Average case Execution time, deadline, period,

priority list.
Outcome: Prediction Accuracy, Task Miss rate, Execution time metrics

1: Ready tasks = []
2: Arrival time = []
3: The average Case Execution time of each task is calculated by ET = WCEC/period.
4: Task parameters are modeled as neurons (i.e., features), which enter the core prediction model.
5: Single Hidden Layer Feedforward Neural Network core prediction network
6: X1 . . . Xn = []
7: Randomly generated bias and weights for SLFN at runtime.
8: Activation function = relu, optimizer = adam,
9: Trained with workload characteristics which executed using Nvidia SoC
10: Ready tasks are feedforwarded to the SLFN resource predictor in order to predict the optimal
hardware processor.
11: Predicted optimal core in the final layer using the softmax function
12: Tasks are allocated in the optimal core (i.e., queue), given the SLFN network.
13: The pre-assumed condition is Aperiodic tasks alone executed immediately on current
processors to avoid devastation.
14: Periodic and complex tasks on each core are scheduled and executed based on the hyper
period method.
15: Hyperperiod (Hp) = {LCM(ti) 1 < 0 < n}
16: Tasks are sorted in non-decreasing order of Hp.
17: If Hwi < ThresholdM condition has been checked
18: The task set is schedulable and executed on a predicted processor
19: else
20: The task set is moved to the waiting queue, and the same is executed on the base cluster
21: end
22: Task miss deadline = miss/Total tasks on each queue
23: Execution time is calculated based on CPU processing time for the entire process.
24: Every iteration results are updated to the cloud server automatically at a regular 2: time
interval.
25: End

The tasks are allocated on the predicted processor, which is optimal for each task at
runtime based on the two conditions verified by the task manager. The hyper-period metric
needs to be less than the active cluster threshold, and its emergency is very high. If this
condition is satisfied, then the task graph is allocated on the optimal cluster selected by
the proposed SLFN resource predictor. Otherwise, the task graph will be allocated to the
waiting list and executed on the base cluster. The optimal clusters are activated only if the
tasks are allocated to them. Otherwise, it will be deactivated (idle state). Both hardware
configurations are activated initially, and high-processing tasks such as obstacle detection,
lane detection, path planning are executed on the hardware configuration 2. Figure 6
illustrate the working procedure of SLFN_EHF task management technique.

Energies 2021, 14, 1788 14 of 22

Figure 6. Flowchart of proposed task management system for autonomous vehicles5. Performance
Analysis of Task Management Framework.

This section presents three sub-modules called simulation environments, implementa-
tion setups, and real-time test descriptions to develop and test the proposed mechanism.
Results and discussion follow, and the corresponding performance graphs are shown below.

5.1. Simulation Environment

The famous “Python IDE-version 3.8” with machine learning libraries is used to
develop the learning predictors and installed on two embedded kits and PCs. Task Graph
For Free (TGFF) [33] is used to generate the synthetic real-time task graphs and their
constraints. The “psutils and Perf” tools are used to evaluate the performance metrics after
each execution.

Energies 2021, 14, 1788 15 of 22

5.2. Implementation Setup’s

In this work, we have used two different embedded multicore boards, such as the
“Odroid Xu4 and Nvidia Jetson xavior” [34] board for evaluation and validated the pro-
posed models. Jetson modules include an on-board power monitor, the INA3221, to mon-
itor the voltage and current of curtain rails. Table 3 shows the hardware configuration
board details.

Table 3. SLFN resource Predictor testing parameters.

Network Type Single-Layer Neural Network

Activation variable Sigmoid and Relu functions
No of the hidden nodes 20

Input parameters N (Ready Task parameters form Allocation Queue)
Output parameters 1 (Optimal Hardware cluster)

5.3. Realtime Benchmark Programs

IoMT [35] and autonomous vehicle application comprises of taskset-1: Object Tracking,
and Path planning programs are developed in python. These are the standard autonomous
vehicle application which is mentioned on the CAV benchmark [36]. The IoMT database
includes nine programs named taskset-2: Activity, Imhist, Aes, Iradon, Squ_wab, Hrv, Lzw,
and Adpet. These programs are frequently executed on both embedded kits to observe
the different characteristics in terms of features are listed in Section 3. Various sensors
and actuators based programs such as taskset-3: “getpressure, gethumidity, getmotion,
gettemp, LED” are used for data collection. The synthetic database also generated using
TGFF and pseudorandom values that are listed in Table 4. In total, more than 10k data
have been used for training and testing purposes. The synthetic task graphs are generated.
Tables 5 and 6 depicts the parameters used for synthetic and benchmark workloads with
its task description.

Table 4. Hardware Configuration Details.

Hardware Configurations Multicore Processor Config.1 Multicore Processor Config.2

No. of. cores
(CPUs and GPUs)

8 (‘ARM Cortex-A15, A7’)
Mali-T628MP6

384-core Volta GPU with 48 Tensor Cores, 6-Core ARM
v8.2 64-bit CPU, 8-MB L2 + 4 MB L3

Operating freq. max 2.0 GHz and 1100 MHz and 1.4 GHz
Operating voltage. max 5 V 5 V

Power 10–20 W 10–15 W
Memory 8 GB 16 GB

Cache used L1-64 KB & L2-2 MB 16 GB 256-bit LPDDR4x| 137 GB/s
Execution order Out-of-order In-order

Table 5. Synthetic Task Graphs used for validation.

Synthetic Task
Graphs Task Graphs Task Nodes Task Edges Deadline

(s)
Period

(s)

Synthetic Tasks-20 Graphs {0–20} {1–20} {1–20} {0.0001–30} {0.0001–30}

Synthetic Tasks-40 Graphs {0–40} {1–40} {1–39} {0.0001–60} {0.0001–60}

Synthetic Tasks-60 Graphs {0–60} {1–60} {1–59} {0.0001–90} {0.0001–90}

Synthetic Tasks-80 Graphs {0–80} {1–80} {1–79} {0.0001–50} {0.0001–50}

Energies 2021, 14, 1788 16 of 22

Table 6. Real-world Benchmark Task Graphs with Constraints.

Real-Time
Benchmark Programs Task Graphs Task Nodes Task Edges Deadline

(s)
Period

(s)

Object_tracking-graph Graph-0 165 164 280 400

Video_Analysis-graph Graph-0 120 119 165 250

Path_planning-graph Graph-0 145 144 233 300

Navigation-graph Graph-0 100 99 120 500

AES-graph

Graph-0 4 4 0.01 0.01
Graph-1 6 6 0.01 0.02
Graph-2 6 6 0.01 0.02
Graph-3 3 2 0.001 0.001
Graph-4 3 2 0.001 0.001
Graph-5 2 1 0.0004 0.0003
Graph-6 2 1 0.0001 0.0005
Graph-7 2 1 0.0004 0.0005
Graph-8 2 1 0.0004 0.0005

Imhist-graph
Graph-0 8 8 0.002 0.002

Graph-1 5 4 0.004 0.004

Activity-graph
Graph-0 6 6 0.05 0.05
Graph-1 4 3 0.004 0.004
Graph-2 7 5 0.06 0.08

Iradon-graph
Graph-0 4 3 0.001 0.002
Graph-1 4 4 0.004 0.003
Graph-2 3 3 0.003 0.003

Squ_web-graph
Graph-0 8 8 0.002 0.002

Graph-1 5 4 0.004 0.004

HRV-graph Graph-0 6 6 0.05 0.05
Graph-1 4 3 0.004 0.004

LZW-graph Graph-0 8 10 0.08 0.08

Apet-graph
Graph-0 15 14 0.2 0.5
Graph-1 10 9 0.4 0.4
Graph-2 8 7 0.8 0.8

gettemp-graph Graph-0
6 6 0.05 0.05
4 3 0.004 0.004
7 5 0.06 0.08

gethumidity-graph Graph-0 3 2 0.01 0.03

getmotion-graph Graph-0 3 3 0.01 0.03

Getpressure-graph Graph-0 3 3 0.01 0.03

LED-graph Graph-0 8 7 0.5 0.8

6. Results and Discussion

The proposed algorithms are validated using an estimated few scheduling metrics
such as task miss rate, execution time (makespan), cluster utilization, and prediction
accuracy were estimated as per the below equations.

φ =
µ

ρ
× 100 (11)

where ′φ′ accuracy rate of core prediction ′µ′ denotes the predicted number of cores divided
by ′ρ′ an actual number of active cores.

Energies 2021, 14, 1788 17 of 22

TMR =
missi

ω
(12)

where TMR is called the missed task rate, which is calculated by dividing the missed task
instance by the total number of completed task instances on that particular task graph (ω).

Makespan = max (completiontime(ω)) (13)

where makespan is the total time taken to complete the entire set of tasks (‘M’) on the entire
set of allocated cores (‘N’). These metrics are estimated for each task graph and normalized
the values.

Tables 7 and 8 clarifies that the proposed SLFN network achieved better results com-
pared to other machine learning algorithms, where all the strategies have been optimally
tuned for the problem in hand. LW-DNN and SLFN achieved nearly 96–98% accuracy
for both synthetic and real-time benchmarks. SLFN achieved better performance for sen-
sors, actuator workloads in real-time. These results are obtained based on the intellectual
selection of processors and the best order of execution. Few workloads such as object
detection, edge video analysis only utilized the hardware configuration.2 and the resources
are optimized through this appropriate selection and utilization.

Table 7. Normalized Execution time obtained standard benchmark workloads Hardware configura-
tion -1.

Task Models Normalized Execution Time (s) Task Miss Rate (%)

Hardware Clusters Base Cluster Optimal Cluster Base Cluster Optimal Cluster

IoT based AV Workloads
{1–150 nodes} 1800 1400 0.21 0.026

IoMT workloads {1–50 nodes} 1000 855 0.18 0.22
Synthetic task workloads

{1–80 nodes} 200 120 - 0.01

Table 8. Normalized Execution time obtained for synthetic and AV workloads on Hardware configu-
ration -2.

Task Models Normalized Execution Time (s) Task Miss Rate (%)

Hardware Clusters Base Cluster Optimal Cluster Base Cluster Optimal Cluster

IoT based AV Workloads
{1–150 nodes} 1000 855 0.33 0.31

IoMT workloads {1–50 nodes} 500 399 0.22 0.25
Synthetictask workloads

{1–80 nodes} 110 89 - 0.01

Synthetic workloads are executed on appropriate processors selected by the proposed
resource predictor. The accuracy is achieved by nearly 96.3 to 98% for synthetic workloads,
which is highly utilized in the hardware configuration 1. Figures 7 and 8 illustrates the
resource prediction accuracy obtained for sythetic task sets and benchmark workloads at
runtime. The proposed SLFN_EHF task scheduler achieved nearly 97.5% in an average for
benchmark workloads.

Figure 9 illustrate the task miss instance rate observed for synthetic workloads ex-
ecution on hardware configuration 1. The TMR is minimized in an average of 15–22%
compared to traditional schedulers due to selection of best processors for ready tasks
at runtime.

Energies 2021, 14, 1788 18 of 22

Figure 7. Prediction Accuracy for Synthetic workloads on Hardware Configuration 1.

Figure 8. Prediction Accuracy for Benchmark workloads on Hardware Configuration 1.

Figure 9. Normalized Task Miss Ratio observed for Synthetic workloads on Hardware Configuration 1.

Figure 10 depicts the task miss instance rate on hardware configuration 1 for CAV and
IoMT benchmark workloads. SLFN_EHF and LW_DNN task schedulers are optimized the
TMR compared to the traditional algorithms.

Energies 2021, 14, 1788 19 of 22

Figure 10. Normalized Task Miss Ratio observed for Benchmark workloads on Hardware Configura-
tion 1.

Figures 11 and 12 represents the overall execution time (Makespan) observed for both
synthetic tasksets and benchmark workloads. The proposed task schedulers reduced the
makespan nearly 27–32% compared with traditional algorithms. The makespan of the
taskset −3 is nearly equal for all methods due to its low-level execution cost compared to
other tasksets.

Figure 11. Normalized Execution time observed for Synthetic workloads on Hardware Configuration 1.

Figure 12. Normalized Execution time observed for Benchmark Workloads on Hardware Configuration 1.

Energies 2021, 14, 1788 20 of 22

The overall schedule length has been measured as per Equation (12). Figures 13 and 14
represents the normalized task miss rate and execution time that is optimized using the
proposed predictor based task scheduler. Both synthetic and benchmarak workloads
are executed on hardware configuration.2 Few synthetic task sets are nearly executed
within micro seconds on hardware configuration.2 due to its high-speed and large number
of GPUs. The SLFN core predictor with EHF task scheduler outperformed traditional
CFS [37] and Fairness [38] algorithms. The proposed algorithm achieved better results on
each cluster in an average of 20–27% in makespan metric and 32–45% reduction in task
miss rate metric than CFS and fairness schedulers.

Figure 13. Task miss rate (TMR) analysis observed on Hardware Configuration-2 for the execution of
Benchmark Workloads.

Figure 14. Overall Execution time observed on Hardware Configuration-2 for the execution of
Benchmark Workloads.

7. Conclusions

Autonomous vehicle and IoT applications have become everywhere in recent days.
Sensors, actuators are the core components of the applications mentioned above. The soft-
ware challenges in terms of task distribution, appropriate allocation, execution on-time
without delay are still NP-hard issues in real-time. This paper developed an intelligent
kernel that comprises the SLFN core predictor and EHF task scheduler algorithm for IoT-
based autonomous vehicles. The essential purpose is to minimize the task miss rate and
overall schedule length by intelligent mapping and execution kernel. The proposed frame-
work improves the scheduling performance by selecting and executing optimal hardware
configuration in terms of core type, frequency–voltage level for each workload at runtime.

Energies 2021, 14, 1788 21 of 22

Additionally, two different hardware setups have been utilized for experimental
validation of the proposed system performance. The proposed SLFN core predictor is
compared with the previous work LW-DNN core predictor and achieved better accuracy
of nearly 96–98% approximately and in an average of 27% reduced in execution time and
45% in task miss rate metric. The limitation of the proposed method is targeted only
the IoT-based autonomous vehicle workloads and embedded workloads for training and
testing purposes which can be extended with other multimedia benchmarks in future work.

Author Contributions: The paper investigation, resources, data curation, writing—original draft
preparation, writing—review and editing, visualization, were done by G.B. The paper conceptu-
alization, methodology, software, validation, and formal analysis were done by S.J. Supervision,
project administration, and final approval of the version to be published were conducted by R.P.d.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amalraj, J.J.; Banumathi, S.; John, J.J. IOT Sensors and Applications: A Survey. Int. J. Sci. Technol. Res. 2019, 8, 998–1003.
2. Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems:

A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040.
[CrossRef]

3. Barabás, I.; Todoruţ, A.; Cordoş, N.; Molea, A. Current challenges in autonomous driving. IOP Conf. Ser. Mater. Sci. Eng. 2017,
252, 012096. [CrossRef]

4. Martínez-Díaz, M.; Soriguera, F. Autonomous vehicles: Theoretical and practical challenges. Transp. Res. Procedia 2018, 33,
275–282. [CrossRef]

5. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging
Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]

6. Mohammadi, A.; Akl, S.G. Scheduling Algorithms for Real-Time Systems; Technical Report; School of Computing Queens University:
Kingston, ON, Canada, 2005.

7. Wolf, W. The future of multiprocessor systems-on-chips. In Proceedings of the 41st Design Automation Conference, San Diego,
CA, USA, 7–11 July 2004; pp. 681–685. [CrossRef]

8. Singh, A.K.; Dey, S.; McDonald-Maier, K.; Basireddy, K.R.; Merrett, G.V.; Al-Hashimi, B.M. Dynamic Energy and Thermal
Management of Multi-core Mobile Platforms: A Survey. IEEE Des. Test 2020, 37, 25–33. [CrossRef]

9. Bechtel, M.G.; McEllhiney, E.; Kim, M.; Yun, H. DeepPicar: A Low-Cost Deep Neural Network-Based Autonomous Car.
In Proceedings of the 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
Hakodate, Japan, 28–31 August 2018; pp. 11–21. [CrossRef]

10. Cheng, L. Mixed-Criticality Scheduling of an Autonomous Driving Car. Master’s Thesis, Institute for Integrated Systems,
Technische Universitat Munchen, Munchen, Germany, 2016.

11. Wang, X.; Huang, K.; Knoll, A. Performance Optimisation of Parallelized ADAS Applications in FPGA-GPU Heterogeneous
Systems: A Case Study with Lane Detection. IEEE Trans. Intell. Veh. 2019, 4, 519–531. [CrossRef]

12. Adegbija, T.; Rogacs, A.; Patel, C.; Gordon-Ross, A. Microprocessor Optimizations for the Internet of Things: A Survey. IEEE Trans.
Comput. Des. Integr. Circuits Syst. 2017, 37, 7–20. [CrossRef]

13. Chetto, H.; Chetto, M. Some Results of the Earliest Deadline Scheduling Algorithm. IEEE Trans. Softw. Eng. 1989, 15, 1261–1269.
[CrossRef]

14. Dai, H.; Zeng, X.; Yu, Z.; Wang, T. A Scheduling Algorithm for Autonomous Driving Tasks on Mobile Edge Computing Servers.
J. Syst. Arch. 2019, 94, 14–23. [CrossRef]

15. El Ghor, H.; Aggoune, E.-H.M. Energy efficient scheduler of aperiodic jobs for real-time embedded systems. Int. J. Autom. Comput.
2016, 17, 733–743. [CrossRef]

16. Wu, X.; Tian, S.; Zhang, L. The Internet of Things Enabled Shop Floor Scheduling and Process Control Method Based on Petri
Nets. IEEE Access 2019, 7. [CrossRef]

17. Ma, X.; Gao, H.; Xu, H.; Bian, M. An IoT-based task scheduling optimization scheme considering the deadline and costaware
scientific workflow for cloud computing. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 249. [CrossRef]

18. Bini, E.; Buttazzo, G.C. Schedulability analysis of periodic fixed priority systems. IEEE Trans. Comput. 2004, 53, 1462–1473.
[CrossRef]

http://doi.org/10.1109/ACCESS.2020.2970118
http://doi.org/10.1088/1757-899X/252/1/012096
http://doi.org/10.1016/j.trpro.2018.10.103
http://doi.org/10.1109/ACCESS.2020.2983149
http://doi.org/10.1145/996566.996753
http://doi.org/10.1109/MDAT.2020.2982629
http://doi.org/10.1109/RTCSA.2018.00011
http://doi.org/10.1109/TIV.2019.2938092
http://doi.org/10.1109/TCAD.2017.2717782
http://doi.org/10.1109/TSE.1989.559777
http://doi.org/10.1016/j.sysarc.2019.02.004
http://doi.org/10.1007/s11633-016-0993-3
http://doi.org/10.1109/ACCESS.2019.2900117
http://doi.org/10.1186/s13638-019-1557-3
http://doi.org/10.1109/TC.2004.103

Energies 2021, 14, 1788 22 of 22

19. Cha, H.-J.; Jeong, W.-H.; Kim, J.-C. Control-Scheduling Codesign Exploiting Trade-Off between Task Periods and Deadlines.
Mob. Inf. Syst. 2016, 2016, 1–11. [CrossRef]

20. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.
[CrossRef]

21. Chen, C.-Y.; Hasan, M.; Mohan, S. Securing Real-Time Internet-of-Things. Sensors 2018, 18, 4356. [CrossRef]
22. Nasri, M.; Fohler, G. An Efficient Method for Assigning Harmonic Periods to Hard Real-Time Tasks with Period Ranges.

In Proceedings of the 27th Euromicro Conference on Real-Time Systems, Lund, Sweden, 7–10 July 2015; pp. 149–159.
23. Liu, S.; Tang, J.; Zhang, Z.; Gaudiot, J.-L. Computer Architectures for Autonomous Driving. Computer 2017, 50, 18–25. [CrossRef]
24. Sarangi, S.R.; Goel, S.; Singh, B. Energy efficient scheduling in IoT networks. In Proceedings of the 33rd Annual ACM Symposium

on Applied Computing, Pau, France, 9–13 April 2018; pp. 733–740.
25. Ahmad, S.; Malik, S.; Ullah, I.; Fayaz, M.; Park, D.-H.; Kim, K.; Kim, D. An Adaptive Approach Based on Resource-Awareness

Towards Power-Efficient Real-Time Periodic Task Modeling on Embedded IoT Devices. Processes 2018, 6, 90. [CrossRef]
26. Malik, S.; Ahmad, S.; Ullah, I.; Park, D.H.; Kim, D. An Adaptive Emergency First Intelligent Scheduling Algorithm for Efficient

Task Management and Scheduling in Hybrid of Hard Real-Time and Soft Real-Time Embedded IoT Systems. Sustainability 2019,
11, 2192. [CrossRef]

27. Samie, F.; Bauer, L.; Henkel, J. Iot Technologies for Embedded Computing: A Survey. In Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis, Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10.

28. Tang, J.; Yu, B.; Liu, S.; Zhang, Z.; Fang, W.; Zhang, Y. π-SoC: Heterogeneous SoC Architecture for Visual Inertial SLAM
Applications. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 1–5 October 2018; pp. 8302–8307.

29. Xu, J. A method for adjusting the periods of periodic processes to reduce the least common multiple of the period lengths in
real-time embedded systems. In Proceedings of the 2010 IEEE/ASME International Conference on Mechatronics and Embedded
Systems and Applications (MESA), Qingdao, China, 15–17 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 288–294.

30. Brüning, J.; Forbrig, P. TTMS: A Task Tree Based Workflow Management System. In Proceedings of the International Conference,
BPMDS 2011, and 16th International Conference, EMMSAD 2011, London, UK, 20–21 June 2011; Volume 81, pp. 186–200.

31. Gomatheeshwari, B.; Selvakumar, J. Appropriate allocation of workloads on performance asymmetric multicore architectures via
deep learning algorithms. Microprocess. Microsyst. 2020, 73, 102996. [CrossRef]

32. Akusok, A. Extreme Learning Machines: Novel Extensions and Application to Big Data. Ph.D. Thesis, University of Iowa,
Iowa City, IA, USA, 2016. [CrossRef]

33. Topcuoglu, H.; Hariri, S.; Wu, M.-Y. Performance-effective and low-complexity task scheduling for heterogeneous computing.
IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]

34. Tang, J.; Liu, S.; Liu, K.; Yu, B.; Shi, W. LoPECS: A Low-Power Edge Computing System for Real-Time Autonomous Driving
Services. IEEE Access 2020, 8, 30467–30479. [CrossRef]

35. Limaye, A.; Adegbija, T. HERMIT: A Benchmark Suite for the Internet of Medical Things. IEEE Internet Things J. 2018, 5, 4212–4222.
[CrossRef]

36. Wang, Y.; Liu, S.; Wu, X.; Shi, W. CAVBench: A Benchmark Suite for Connected and Autonomous Vehicles. In Proceedings of the
2018 IEEE/ACM Symposium on Edge Computing (SEC), San Jose, CA, USA, 14–17 December 2018; pp. 30–42.

37. Saez, J.C.; Pousa, A.; Castro, F.; Chaver, D.; Prieto-Matias, M. Towards completely fair scheduling on asymmetric single-ISA
multicore processors. J. Parallel Distrib. Comput. 2017, 102, 115–131. [CrossRef]

38. Van Craeynest, K.; Akram, S.; Heirman, W.; Jaleel, A.; Eeckhout, L. Fairnessaware Scheduling on single-is heterogeneous
multicores. In Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques, Boston,
MA, USA, 20–23 October 1996; pp. 177–187.

http://doi.org/10.1155/2016/3414816
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.3390/s18124356
http://doi.org/10.1109/MC.2017.3001256
http://doi.org/10.3390/pr6070090
http://doi.org/10.3390/su11082192
http://doi.org/10.1016/j.micpro.2020.102996
http://doi.org/10.17077/etd.i9q1uhwn
http://doi.org/10.1109/71.993206
http://doi.org/10.1109/ACCESS.2020.2970728
http://doi.org/10.1109/JIOT.2018.2849859
http://doi.org/10.1016/j.jpdc.2016.12.011

	Introduction
	Conventional Scheduling Algorithms on Real-Time Embedded IoT Systems
	Challenges on Conventional Task Scheduling Policy for Self-Driving Cars
	Significant Contributions
	Outline

	Related Works
	Groundworks
	Autonomous Vehicle Service Module
	Application Layer Structure
	Constraints Involved in the Application Layer

	Hardware Layer Multicore Processor System-On-Chip

	Intelligent Task Management for IoT Based AV
	Resource Prediction Model
	Modeling of SLFN Predictor
	Task Scheduler Method

	Proposed SLFN_EHF Scheduling Algorithm
	Simulation Environment
	Implementation Setup’s
	Realtime Benchmark Programs

	Results and Discussion
	Conclusions
	References

