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Abstract: The paper presents a developed methodology of short-term forecasting for heat production
in combined heat and power (CHP) plants using a big data-driven model. An accurate prediction of
an hourly heat load in the day-ahead horizon allows a better planning and optimization of energy
and heat production by cogeneration units. The method of training and testing the predictive model
with the use of generalized additive model (GAM) was developed and presented. The weather data
as an input variables of the model were discussed to show the impact of weather conditions on the
quality of predicted heat load. The new approach focuses on an application of the moving window
with the learning data set from the last several days in order to adaptively train the model. The
influence of the training window size on the accuracy of forecasts was evaluated. Different versions
of the model, depending on the set of input variables and GAM parameters were compared. The
results presented in the paper were obtained using a data coming from the real district heating system
of a European city. The accuracy of the methods during the different periods of heating season was
performed by comparing heat demand forecasts with actual values, coming from a measuring system
located in the case study CHP plant. As a result, a model with an averaged percentage error for the
analyzed period (November–March) of less than 7% was obtained.

Keywords: heat demand prediction; generalized additive model; combined heat and power plant;
district heating network; heat production

1. Introduction

District heating systems (DHS) are common forms of heat distribution in large urban
areas. The largest systems consist of a district heating network (DHN) supplied by a
combined heat and power (CHP) plant. In recent years, combined-cycle gas turbine plants,
as well as gas turbines with heat recovery units, have become popular due to their high
flexibility, short start-up time, and lower environmental impact compared to coal plants [1].
In CHP plants, the basic product is useful heat, whose demand in a DHS must be covered at
any time. This means that actual electricity production depends on the current heat demand.
On the other hand, dynamic changes in electricity prices are observed. On the European
energy markets, the price changes every hour, with maximum daily variations of 50% and
more. An accurate prediction of an hourly heat load in the day-ahead horizon allows better
planning and optimization of heat and electricity production by cogeneration units.

New solutions to optimize electricity generation and keep the produced heat load on
the required level taking into account economic aspects are under constant development.
Fang et al. [2] proposed an optimization model, where the heat demand and electricity
price forecasts are used as an input to obtain a heat storage operation plan. Wand et al. [3]
studied the flexibility of two different CHP units considering the day-ahead market and
real-time wind power balancing. Nowadays, the progressive development of digitization
and the use of advanced data analysis methods is a trend in the so-called 4th generation
district heating [4,5]. The main element is short-term (up to several days) planning of
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energy production, based on the expected heat load profile [6]. An important issue is that
estimated production on an hourly basis must be contracted in a day-ahead electricity
market. Similarly fuel such as natural gas can also be purchased on the spot market.
Moreover, inaccurate estimates of expected volumes may result in the need to switch on
the peak units (e.g., heat only boilers), whose energy and environmental efficiency is lower.

Prediction of an hourly heat demand on a large urban scale is a complex problem.
The heat for heating of buildings depends mainly on the weather data, while domestic hot
water consumption is strongly related to consumers’ behavior over the day and week. An
important aspect are transient DHN effects such as heat losses, thermal inertia of buildings,
etc. [7]. Forecasting methods are based on a data-driven approach. It means that heat
demand and its relation to predictor variables is found in historical data. Spoladore et al. [8]
analyzed data of heat demand for town-level aggregation and developed a model of hourly
gas consumption for heating purposes. Nigitz et al. [9] proposed a model, where changes
in consumer behavior are covered by continuous adaptation by using historical data for
the ambient temperature and the heat load. Mosavi et al. [10] and Bourdeau et al. [11] gave
an overview of data-driven methods that can be applied to heat load forecasting. There
are models on a scale of individual buildings as well as the entire district heating network.
Generally, predictive models are based on the supervised learning technique and supplied
with weather data such as temperature, wind speed, cloud cover, among others. Dotz-
dauer [12] developed a simple model based on stepwise regression of ambient temperature.
Baltputnis et al. [13] used a multiple linear regression of meteorological parameters. Autore-
gressive integrated moving average ARIMA method of heat load and ambient temperature
time series were used by Grosswindhager et al. [14] and Fang et al. [15]. Artificial Neural
Networks ANN have been shown by Wojdyga [16] to be effective approach to analyze data
from previous heating seasons. In recent years, there has been a clear increase in interest in
the use of machine learning methods, such as support vector machines (SVM) [17], random
forest [18], deep learning [19] and gradient boosting [20]. This results from the intensive
development of IT tools used in large industrial installations, database capacity, and the
availability of data acquisition systems. An important issue in the data-driven models
is the selection of input variables and the way of training the model. Machine learning
techniques enable analyzing many variables besides weather data, such as operating data
from DHN or calendar data [21,22].

This paper focuses on the use of the generalized additive model (GAM) method to
develop the heat demand model in a medium-sized heating system supplied from a CHP
plant. In the GAM method, the forecast variable is estimated by smoothing the input
variables with functional relationships [23]. It is useful extension of the generalized linear
model (GLM), able to effectively map the seasonality and non-linearity which is normally
presented in the heat load data. In the literature, there are many applications of the GAM
method to forecast electricity load [24]. Kim et al. [25] decomposed the load into the
components on different temporal scales, related to the annual, weekly and daily cycles.
The non-linear impact of ambient air temperature on the load level was incorporated with
the cubic spline by Sigauke [26]. Pathak et al. [27] used GAM to forecast gas usage for
buildings taking into account weather data supplemented by features such as hour of
the day, day of the week, month, etc. Khamma et al. [28] interpreted the relationships
between predictors using GAM and evaluate their impacts on energy consumption in office
buildings.

In this paper, the GAM method was applied to build an hourly heat demand model
based on the weather data as ambient temperature, solar irradiation and wind speed. The
presented method was extended by the use of variable representing the hour of the day.
Application of day hour variable can improve accuracy of predicted heat load, taking
into account DHN behavior changes during normal and weekend days. Additionally, the
optimal size of the sliding window with data selected to the calibration layer was analyzed
as a function days number. Particular attention was paid to parametrization and calibration
of the model in order to obtain high accuracy in the day-ahead time horizon.
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2. Case Study District Heating System

The case study DHS consists of a heating network with a total length of about 260 km.
The network is supplied from a CHP plant with two identical gas turbines (total 106 MWe)
equipped with heat recovery units (total 238 MWt). The flexibility of heat production in
the summer season is provided by a 600 MWh heat accumulator. Four heat-only-boilers
are used as the peak source. The share of individual units in total heat capacity of the plant
is presented in Figure 1. The presented state refers to the period when the maximum value
of produced heat in the CHP is delivered to the DHN. During the whole year, the diverse
scenarios of heat production are realized and values presented in Figure 1 can rich different
values. The operation strategy is strongly dependent on current heat demand as well as
the overhaul time of the selected unit.

Figure 1. The structure of thermal power of the analyzed combined heat and power (CHP).

The dependence between the instantaneous heat load and the ambient air temperature
during the entire heating season is depicted in Figure 2. The maximum heat load of the
analyzed DHN does not exceed 250 MWt, when the minimal value of heat delivered to the
final consumers during summertime is always above 20 MWt.

Figure 2. Heat demand variation with ambient air temperature.

Obviously, the heat load increases as the temperature drops. A strong correlation can
be seen, however there is a relatively large spread for the same temperature level. Produced
heat can vary in the range of around 50 MW. It results from the influence of other factors
such as a month, day of the week, hour of the day and other meteorological parameters.
Therefore, it is required to include additional input data in order to increase accuracy of
the heat forecasts.

2.1. Physical Model of the District Heating System

The heat is supplied to the district heating network, where it is distributed to the end-
users through heat distribution centers. Additional installations in the system are heating
substations that connect individual sections of the network and ensure heat distribution to
specific areas of the city. The instantaneous heat output transferred to the heating network
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by the CHP plant depends on the mass flow rate of network water and the temperature
difference between supply and return side, according to Equation (1):

.
Qs(t) =

.
m(t) cp (Ts(t) − TR(t)) (1)

where
.

Qs—thermal power, kW; cp—water specific heat, kJ/(kg·K);
.

m—mass flow rate,
kg/s; Ts—supply temperature, K; TR—return temperature, K and t—time, s

The regulation of thermal power consists of changing both the supply temperature
and the mass flow rate at the output [29]. The water temperature at the outlet from the
CHP plant is in accordance with the regulatory table according to Equation (2). Supply
temperature depends on the ambient temperature and a coefficient depending on the
wind speed and solar radiation. For example, if the weather is windy and cloudy, the
coefficient c takes values above 1, increasing the supply temperature. The maximum supply
temperature in the analyzed system is 115 ◦C, at −20 ◦C ambient air temperature. During
summertime, the supply side is maintained at 70 ◦C:

Ts= c(Ws, Ir)· f (Ta) (2)

where: Ts—supply water temperature, K; c—coefficient; Ws—wind speed, m/s; Ir—solar
radiation, W/m2; Ta—ambient air temperature, K and f —individual system function based
on the DHN regulatory table, K.

2.2. Operation of the District Heating System

During operation of the system, heat production in the source is continuously adapted
to the real demand in the DHN. Due to the thermal behavior of buildings as well as
transient operation of DHN there is a time delay between the current parameters at the
supply and return side. The time course of parameters for selected periods during the
heating season and the summer period is presented in Figures 3 and 4, respectively. There
is a strong correlation of the ambient air temperature with the generated thermal power,
as well as the mass flow rate of water can be observed. In the summertime, dynamic
fluctuations in the water mass flow rate and heat load are visible. Outside the heating
season, heat demand results from the domestic hot water consumption. Peaks associated
with increased hot water consumption in the evening and morning can be observed.

Figure 3. District Heating Network (DHN) parameters for the heating period.
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Figure 4. District heating network (DHN) parameters for summer period.

3. Heat Demand Model with the Use of GAM

Generalized Additive Model (GAM) is a class of statistical models in which the usual
linear relationship between the response and predictors are replaced by several non-linear
smooth functions [30]. The equation becomes as follow (Equation (3)):

yi= α0 + f 1(x1, i)+ f 2(x2, i)+ . . . + f p
(
xp, i

)
+εi (3)

where: yi—dependent variable; α0—intercept; x1, . . . , xp—independent variables; f1, . . . ,
fp—smoothing functions and εi—random error

The GAM model is able to capture the non-linear effect of individual variables. The
response variable is obtained as a summation of individual effects, represented with
one or more terms. The smoothing function f consists of the base functions b and the
corresponding regression coefficients β (see Equation (4)). The base function b can take the
form of a linear or cubic spline, P-spline, and other [31]. The smoothing function can also
include two input variables, according to Equation (5), where δ is a vector of regression
coefficients:

f (x) = ∑I
i = 1 βi bi (x) (4)

f (x1, x2) = ∑I
i = 1 ∑J

j = 1 δij b1i(x1) b2j(x2) (5)

where: I, J—the dimension of the spline basis; b(x)—the corresponding spline function;
β—the corresponding regression coefficient and δ—the corresponding vector of regression
coefficient.

One of the advantages of GAM models is their flexibility. The method summarizes
the contribution of each predictor using smoothing terms. In addition, a GAM algorithm
captures nonlinearity and interactions in a learning dataset. Predictive methods with more
complex mathematical approach, such as artificial neural networks (ANN) are typical
black-box models. In an ANN model, interactions with a forecasted variable are created
implicitly when propagating through the hidden layers as each hidden unit is a non-
linear combination of the input. Besides, in order to build an accurate model with black
box models, many variables, especially over a long period of time, must be taken into
account [16]. In the study presented in this paper, the investigated gas-fired power plant is
relatively new and there are no data from the heating seasons of previous years. For this
reason, the training window is relatively short (the last several days), due to the needs of
permanent adaptation to the current operation of the system, and this can be achieved by
the use of GAM methods.

The heat demand model for the case study DHS was built using the mcgv package [32]
containing the implementation of libraries with the GAM method in R programming
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language. The forecasts generated by the model were compared with real values using the
root mean square error RMSE and the mean absolute percentage error MAPE (Equations
(6) and (7), respectively):

RMSE =

√
1
N ∑t

(
Qpred, t − Qreal, t

)2
(6)

MAPE =
1
N ∑t

∣∣∣∣Qpred, t − Qreal, t

Qreal, t

∣∣∣∣ (7)

where: N—number of hours in the analyzed period; t—hour; Qpred —predicted heat load,
kW and Qreal—real heat load, kW

RSS =∑N
i = 1

(
yi − α0 −∑I

j = 1 β j bj
(
xij
))2

+ ∑I
j = 1 λj

∫
f ′′j
(
tj
)2dtj (8)

where: λ—penalty parameter.
The model is fitted by minimalizing a penalized residual sum of squares RSS pre-

sented in Equation (8) for one dimensional basis functions. The fitting involves finding all
coefficients to minimize residual sum of square with the use of the general cross validation
(GCV) criteria proposed by Craven et al. [33]. The degree of smoothness in a spline can
be controlled by a penalty parameter λ in order to avoid overfitting. The iterative process
of minimalization is stopped when the change of value of GCV between successive itera-
tions are less than 0.01. The function minimizing RSS provides a compromise between a
regression spline fit and a linear fit. When λ is near to zero the fit will be close to the data.

3.1. Input Variables

The weather data listed in Table 1 were taken into consideration as predictors. The
table contains the calculated Pearson’s correlation coefficient, which is a simple statistic
that measures the linear correlation between two variables. Coefficients were calculated
using the data of the entire heating season. It has a value between +1 and −1, where 1 is a
total positive linear correlation, and −1 is a total negative linear correlation. Correlations
for forecasted and actual weather data are presented. There is less correlation with the
forecasted values due to additional forecast errors. It should be noted that in a real
application, the predictive model determines output based on the weather forecasts in a
forthcoming day horizon.

Table 1. Weather variables with the correlation coefficient with heat demand.

Variable Symbol Unit Pearson’s Coefficient
–Real Data

Pearson’s Coefficient
–Forecasted Data

Ambient temperature Temp ◦C −0.81 −0.76
Solar irradiation Rad W/m2 −0.42 −0.41

Wind speed Wind m/s −0.20 −0.15

3.2. Flow Diagram of the Model

In Figure 5 a flow chart that includes input and output of the predictive model is
presented. The model generates an hourly heat load forecast in a day-ahead time horizon,
starting from 00:00. This time horizon results from the conditions related to participation
in the electricity market. The model operation on the timeline diagram is illustrated in
Figure 6.
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Figure 5. Flow chart of the model with calibration and prediction layer.

Figure 6. Timeline diagram of the heat demand model.

The model works as follows:

• Before issuing the results, the model is calibrated with the real weather data and
corresponding heat output from CHP within the moving time window.

• When the weather forecast file comes at 7:00, the previously calibrated model generates
load forecasts for the assumed time horizon.

3.3. Model Parametrization and Validation

Three variants of the model depending on the set of input data were considered
(Equations (9)–(11)). For the first case, the model is supplied with ambient temperature,
radiation and wind speed (Equation (9)). In addition to climatic parameters, variable
representing the hour of the day was used, which takes values from 0 to 23. In the model
M2, ambient temperate and hour of the day were implemented (Equation (10)). The model
M3 only considers ambient air temperature (Equation (11)):

QM1= αM1 + fM1(Temp)+ fM1(Rad)+ fM1(Hour)+ fM1(Wind, Temp) (9)

QM2 = αM2 + fM2(Temp)+ fM2(Hour) (10)

QM3= αM3 + fM3(Temp) (11)

where: QM1, QM2, QM3—forecasted heat load from model M1, M2 and M3, respectively,
MW; αM1, αM2, αM3—intercept in model M1, M2 and M3, respectively, MW; fM1(Temp),
fM1(Rad), fM1(Hour)—one-dimensional additive functions of model M1, dependent on
ambient air temperature, radiation, and hour of the day respectively, MW (see Figure 7a,b
and Figure 8a); fM1(Wind, Temp)—two-dimensional additive function of model M1, de-
pendent on wind speed and ambient air temperature, MW (see Figure 8b); fM2(Temp),
fM2(Hour )—one-dimensional additive functions of model M2, dependent on ambient air
temperature and hour of the day respectively, MW; fM3(Temp)—one-dimensional additive
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function of model M3, dependent on ambient air temperature, MW; Temp—ambient air
temperature (Temp = Ta), ◦C; Rad—solar radiation (Rad = Ir), W/m2; Hour—hour of the day
(Hour = h), h and Wind—wind speed (Wind = Ws), m/s

Figure 7. The additive effect on the heat load in the M1 model. The dashed line marks the 95%
confidence interval (a) the air temperature effect f (Temp) (b) solar radiation effect f (Rad).

Figure 8. The additive effect on the heat load in the M1 model. The dashed line marks the 95%
confidence interval (a) the hour effect f (Hour) (b) two-dimensional air temperature and wind speed
effect f (Wind, Temp).

The detailed description of calculation QM3 using M3 model (Equation (11)) is pre-
sented in Equation (12). The calculated coefficients are can be found in Table 2, where value
of heat demand obtained from the model was also presented for the selected ambient air
temperature:

QM3= αM3 + fM3(Temp) = αM3 +
I = 9

∑
i = 1

βT,M3,i·bT,M3,i(Temp) (12)

where: I—dimension of the spline basis (number of knots, I = 9); βT,M3,i—the corresponding
regression coefficient for M3 model (see Table 2) and bT,M3,i(Temp)—the corresponding
cubic-spline regression function for M3 model

Table 2. The corresponding regression coefficients together with intercept value in model M3 (for selected training dataset).

βT,M3,i
αM3,
MW

QM3, MW
(Temp = −0.7 ◦C)

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9
8.55 −14.10 2.71 −6.03 1.46 4.73 2.03 27.86 −11.79 97.23 130.80

When calibrating the model (see Figure 5), input variables are fitted using smoothing
terms. The signal from the heat meter on the output from the CHP to the DHN was used
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as the instantaneous heat load. Base functions are in the form of cubic spline functions.
Other smooth functions such as thin plate regression spline or P-splines were examined. It
was found that with a sufficiently high number of knots for splines, the type of function is
of marginal importance. The additive term in M3 model, dependent on the ambient air
temperature is shown in Equation (12). Other functions used in the remaining models (M2
and M1) are analogous. After the calibration stage, Equations (9)–(11) are used to find the
forecasted heat load based on the new weather data.

In each model variant, a combination of input data and additive functions were
selected to obtain the most accurate result in a day-ahead horizon. For example, it was
observed that taking into account wind speed by using the two-dimensional additive
function f (Wind, Temp) gives a better fit. Table 3 presents the most relevant parameters
used (as an argument for calculations within the mgcv package) [32].

Table 3. Input parameters for mgcv package used for building the predictive model.

Parameter Description Value

Family The family object specifying the distribution and link
to use in fitting. Gaussian

Method The smoothing parameter estimation method. GCV (generalized cross validation)

Optimizer The numerical method to optimize the smoothing
parameter estimation criterion. Newton

Smoothing functions Indicating the smoothing basis to use. Cubic regression splines

Figure 7 shows the impact of individual variables on the heat load for a sample
training dataset in moving window (12 days) for the M1 model which contains four input
variables. It can be clearly seen that as the ambient temperature together with solar
irradiation increase, the values of the additive functions take lower values. For the variable
representing hour, the daily variability of heat production is visible as a reduced power at
night and increased in the evening (Figure 8a). The two-dimensional smoothing function,
including the combined effect of wind speed and air temperature, can be seen in Figure 8b,
where contour plot of additive term on the heat load is presented. The estimated value
of the two dimensional additive function is marked on individual contour lines. One can
notice that increasing the wind speed in the low temperature range leads to an increase in
the heat load.

Table 4 contain some results from the fitting procedure of the M1 model, obtained
for a selected training period. The table was generated as an output from mgcv package.
It can be seen that the default maximum degrees of freedom for the smoothers used in
the model are sufficient for all species, as the effective degrees of freedom (EDF) for all
estimated smoothers are below their maximum possible value (k′). The p-value for the
observed k-index is not significant. The k-index is a measure of the remaining pattern in
the residuals, and the p-value is calculated based on the distribution of the k-index after
randomizing the order of the residuals [34]. The data was fitted with GCV = 36.5 and
R2 = 0.95.

Table 4. Results of the fitting the M1 model.

Model Term k’ EDF k-Index p-Value

f(Temp) 9.0 5.62 11.87 1.02 × 10−10

f(Rad) 9.0 2.87 8.676 4.16 × 10−6

f(Wind, Temp) 28.0 12.79 4.408 4.28 × 10−8

f(Hour) 9.0 8.27 69.992 <2 × 10−16

EDF—effective degrees of freedom.
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3.4. Effect of the Moving Window Size with Learning Data

In order to determine the optimal size of the sliding window, the effect of the number
of days in the window was investigated. The analysis was based on the data from the entire
heating season, simulating the operation of the investigated models day by day for different
window sizes. The RMSE error was calculated for the test dataset (in the next day horizon),
for forecasted as well as actual weather data. The results are illustrated in Figure 9. The
graph shows that the optimal window size with the smallest corresponding RMSE error is
12 days. This window size allows the model to be adapted to the current DHN demand and
end-users’ behavior. The use of a time-shifting window potentially can lead to inaccurate
forecasts in the next day’s horizon (e.g., when the ambient air temperature is expected to
rapidly decrease outside the range in the learning window). In that case, the forecasts will
be extrapolated from smoothing functions.

Figure 9. RMSE(root mean square error) depending on the size of the training window for (a) M1
model (b) M2 model (c) M3 model.

4. Results of the Heat Demand Model during the Heating Season

The obtained heat load models have been tested using the data coming from the
DHS system during the heating season from November until March. The accuracy of the
method was determined by means of a comparison of the forecasts with real values at the
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corresponding time. Figure 10 presents the time course of forecasts obtained by considered
models along with the actual heat load for a selected period. It can be clearly seen that
the M3 model is inaccurate compared with the M1 and M2 model. Including a variable
representing the hour of the day significantly improves the results. This approach allows
taking into account the daily profiles of heat production (e.g., morning and evening peaks).

Figure 10. Actual and forecasted heat load over a several days.

From the point of view of optimizing the operation of the CHP plant, a high accuracy
forecast for the forthcoming days is needed. It should be borne in mind that a model that
fits well into the learning dataset may not give a good accuracy on the new data set. The
Figure 11 shows the aggregated MAPE error for each model. The MAPE was calculated
for the entire analyzed period (November–March). The metric was determined for the
training dataset in a learning window (12 days) and test dataset (day-ahead horizon). In
addition to weather data forecasts, simulation of model operation on real weather values
was also included. This approach enables to assess the accuracy of the predictive model
without weather forecast error. The M1 model gives a better fit to the training set because
of including more input data (solar radiation and wind speed). A significant improvement
can be observed while taking into account the hour of the day feature. This enables the
daily seasonality to be taken into account.

Figure 11. MAPE (mean absolute percentage error) for training and test dataset.

The box plot of absolute percentage errors for test dataset is presented in Figure 12. In
the M1 and M2 model, the vast majority of hourly percentage errors are between 2 and 12%.
The maximum observed errors exceed 20%. It can be seen that the M1 model gives slightly
better results, particularly outliers are on a lower level. The Table 5 presents the results
of the MAPE and RMSE metrics aggregated into individual months of the heating season
(including M1 and M2 model). In the period from December to February, the models have
similar accuracy. During transition periods such as November and March, where the heat
demand is lower, the M1 model gives more accurate results. In these months, due to the
relatively large daily amplitude of changes in ambient temperature as well as dynamic
changes of mass flow rate in DHN, there are additional difficulties in forecasting. Standard
deviation of the heat demand in these periods was greater than in typically winter months.
It also should be noted that in these periods the weather forecast error increases. For
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example, the RMSE error of forecasts in ambient air temperature in January and February
was approximately 1 ◦C. In March, RMSE increased to 1.5 ◦C.

Figure 12. The boxplot of error for the test dataset (with forecasted weather).

Table 5. Statistical metrics in individual months of the M1 and M2 model.

Month Mean Heat Load, MW
MAPE, % RMSE, MW

Model M1 Model M2 Model M1 Model M2

November 110.1 (SD 18.7) 6.3 6.9 9.1 9.8
December 118.7 (SD 16.9) 5.2 5.4 7.6 7.9

January 118.3 (SD 16.1) 6.1 6.4 9.3 9.8
February 108.3 (SD 17.3) 5.9 6.0 7.9 7.9

March 96.5 (SD 22.4) 7.5 8.8 8.4 9.5

SD—Standard Deviation; MAPE—mean absolute percentage error; RMSE—root mean square error.

Including solar radiation in the learning data set allows to obtain better accuracy in
March, when the influence of radiation in the thermal gains of buildings is greater. This can
be observed in Figure 13. During periods of increased radiation over a day, the M1 model
gives a better fit compared with the M2 model. The accuracy of two models is similar at
night. The plot shows the hourly errors during several days from the end of March. During
this period, the greatest instantaneous errors were observed. The time corresponds to the
transient period between heating season and summer. Poor repeatability of heat production
profile for similar climatic data was observed as a reason of inaccuracy. Therefore, the
instantaneous errors exceed 20%, however the daily mean values are below 10%.

Figure 13. Solar radiation and absolute percentage error of the M1 and M2 model (end of March).
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5. Conclusions

The paper presents the results of heat demand forecasting in the complex system
supplied from a gas fired combined heat and power (CHP) plant with seven independent
heat sources. The idea and results presented in the paper deal with the actual challenge
of increasing energy efficiency during heat and electricity production. To maintain high
production efficiency with reduced pollutants emission, high quality production forecasting
is needed. For the purposes of optimizing heat production in cogeneration, hourly forecasts
of the expected load demand in the forthcoming day are necessary. Accurate prediction
enables efficient planning of heat production, taking into account the cooperation of the
cogeneration heat sources with the district heating network. The main benefit comes from
effective planning of electricity sales on the spot market, keeping the heat production at the
required level. This is because the electricity production depends on the current heat load
in the investigated system, which is a gas-fired combined heat and power plant. Electricity
generation in gas-fired CHP plants allows reducing the emission of gaseous pollutants as
CO2, SOx, and NOx and stopping the emission of dust. The CO2 emission level is around
50% lower in gas-fired power plants than coal-fired power plants. The main benefit of
effective electricity generation planning in the gas-fired CHP plants is improving energy
generation efficiency and reducing CO2 emission level.

The generalized additive model (GAM) method was successfully used to build a
predictive model based on weather data and a variable representing an hour of the day.
The heat load profile can change over time because of thermo-modernization of buildings,
changing the regulation of heating nodes or new connections to the heating network. For
this reason, it is important to calibrate the model properly and continuously. In presented
paper the application of the adaptive training of the model using moving window was
investigated. The results confirmed that the last 12 days give the opportunity to take
into account the current conditions of DHN operation and heat consumption behavior
by end users. The moving window was adopted in all three variants of the heat demand
forecasting models. The model M1 is supplied with ambient temperature, radiation and
wind speed. Model M2 was additionally supplied with variable representing the hour
of the day, and model M3 only consider ambient air temperature. The results of model
M1, including additional weather data such as irradiation and wind speed gives the best
results, particularly between the winter and summer period when high fluctuations of
radiation during a whole day exist. It should be noted that the model is also burdened
with independent factors such as weather forecast error and uncertainty in measuring the
thermal power at the DHN supply side (about 1.5–2%).
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