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Abstract: The development of data driven methods for Li-ion battery diagnosis and prognosis is
a growing field of research for the battery community. A big limitation is usually the size of the
training datasets which are typically not fully representative of the real usage of the cells. Synthetic
datasets were proposed to circumvent this issue. This publication provides improved datasets for
three major battery chemistries, LiFePO4, Nickel Aluminum Cobalt Oxide, and Nickel Manganese
Cobalt Oxide 811. These datasets can be used for statistical or deep learning methods. This work also
provides a detailed statistical analysis of the datasets. Accurate diagnosis as well as early prognosis
comparable with state of the art, while providing physical interpretability, were demonstrated by
using the combined information of three learnable parameters.

Keywords: V vs. Q curves; synthetic data; LFP; NCA; NMC 811; BDG tier 1 challenge

1. Introduction

With the urgent need to reduce the emissions of fossil fuels, energy storage is going
to play a key role in the future of transportation and grid services. Within all the known
storage solutions, intercalation batteries appear to be good candidates for the task despite
some durability and safety concerns. Li-ion battery aging is path-dependent [1,2] and
distinct degradation mechanisms could be inhibited or exacerbated by different stress
factors. This could drastically affect reliability and adds a lot of complexity to onboard
diagnosis and prognosis. A possible way to handle this complexity is to use artificial
intelligence (AI), a technique that has shown tremendous potential for improving energy
storage materials [1] as well as diagnosis and prognosis [3–5]. For the latter, the primary
challenge area is that the training data is, in most cases, not representative of the projected
usage and thus does not encompass the sporadic spectrum of degradation that can occur
in the field [4,6]. This might render the proposed algorithms inapplicable in deployed
systems. Due to the cost associated with the gathering of experimental data, most studies
that employ AI for commercial cell diagnosis or prognosis only used training datasets with
under 20 samples which is not enough. Among the outliers [6–14], Severson et al. [6,12,15]
tested 124 different conditions, although only varied the charging parameters and did not
perform any reference performance testing.

While the growing online databases [6,16–21] and the newly proposed Battery Data
Genome [22] are providing steps in the right direction, they are still vastly insufficient to
provide enough data to cover the changes that could be associated with small differences in
duty cycle [23]. This path dependence of deployed systems is a determining aspect for the
validation of online diagnosis and prognosis tools [24,25] and is the largest knowledge gap
in scientific data for the AI community. To circumvent this issue, we proposed the use of
synthetic cycling data [26] to complement existing datasets and accelerate the development
of new and unique data-driven tools by providing the community with supplementary
data on a wider array of degradation paths.

This publication is building on our previous methodological work [26] where we used
the mechanistic modeling approach [27–30] to generate a proof of concept dataset for a
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commercial graphite (Gr)/LiFePO4 (LFP) cell containing more than 500,000 unique voltage
versus capacity and 125,000 different duty cycles. In this work, we refined the technique and
will be offering updated datasets with five times more resolution and for additional battery
chemistries. We synthesized data for a Gr//LFP cell at C/25, as an update of our previous
dataset, for a Gr//Nickel Aluminum Cobalt Oxide (NCA) cell, and for a Gr//Nickel
Manganese Cobalt Oxide (NMC811) cell at C/30 and C/25, respectively [31–34]. In addition
to the data synthesis, we also performed a statistical analysis of the results to address early
prognosability and proposed meaningful learnable parameters [15] in order to provide
physical and statistical interpretability, another significant challenge areas for AI algorithms.
For this purpose, we investigated the correlation of various features of interest (FOI) with
state of health (SOH) [24].

A recent prospective study [22] highlighted different challenge problems necessary
to accelerate the impact of AI methods on the battery field. This work is addressing tier 1
challenges. We believe our synthetic cycles can be used for diagnosis, for the determination
of the minimum number of cycles to predict cycle life, and to address how well predictions
can transfer from one technology to the other. In this work, degradation is defined as
changes in loss of lithium inventory (LLI) and/or loss of active material (LAM). Diagnosis
will be defined as a single point estimation of capacity loss, LLI, and LAM on the positive
and negative electrodes (PE and NE, respectively) without prior information. SOH and
prognosis will be referencing to the remaining useful life determination (i.e., how many
more cycles before 20% capacity loss) and not the evolution of capacity loss. This is to take
into consideration the second stage of battery degradation [6,23,35–39].

2. Materials and Methods
2.1. Half-Cell Data

The voltage response of commercial cells was reconstructed using half-cell data from
PE and NE. The commercial cells used for this study were comprehensively studied in
previous work. The Gr//NCA cell was based on the Panasonic 3350 mAh NCR 18650B
batteries studied in [35,40–43]. The Gr//NMC811 cell was based on the PE from a Samsung-
SDI 3500 mAh INR18650-35E battery [44] and a stock NE, and the Gr//LFP cell was based
on an A123 2300 mAh ANR26650M battery [23,45]. Interested readers are referred to the
original publications for more details. Since all the cells are using a Gr NE, they will be
referred to by their PE only in the rest of this work.

Before being opened in an Argon-filled glove box, all the batteries were discharged to
a 0% state of charge (SOC) [46]. Electrode discs (18 mm in diameter) were then punched
and rinsed in a dimethyl carbonate (DMC) solution. N-methyl-2-pyrrolidone (NMP) was
used to wipe the backside of the electrodes. The electrodes were tested on a multi-channel
Bio-Logic VMP3 potentiostat (Bio-Logic, Claix, France) against a lithium counter electrode
with a 1.0 M LiPF6 in ethylene carbonate + DMC (1:1 by weight) and 2% wt. vinylene
carbonate electrolyte as well as one Whatman GF-D fiberglass disc (12.7 mm in diameter,
Whatman, Kent, UK) as a separator. The complete testing protocol can be found in [46].

2.2. Simulations

The synthetic voltage vs. capacity curves concept was extensively described in [26]
and will not be repeated in detail here. In our approach, we use experimental data
for the PE and NE to reconstruct the electrochemical behavior of full cells aged under
different degradation scenarios without the need for electrochemical equations [27–30].
Both electrodes are matched with a loading ratio (LR) that corresponds to the capacity ratio
between the electrodes and an offset (OFS) that corresponds to their slippage, along with
resistance and kinetic adjustments if necessary [30], Table A1.

With degradation, LR and OFS are predictably affected by the LAMs and LLI [30]. Us-
ing this knowledge, the LAMs and LLI can be varied and the projected changes of LR and
OFS, and thus the full-cell electrochemical response, can be calculated without the need for
knowledge of the conditions leading to this degradation. In our initial dataset, more than
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5000 combinations of LAMs and LLI were computed, each up to 85% of each degradation
mode with 0.85% intervals [26]. To better visualize the impact of the degradation, only the
C/25 charges were calculated. This is equivalent to performing a reference performance
test at a given SOH and at room temperature. In addition, to test different duty cycles,
more than 125,000 different evolutions of LAMs and LLI values were calculated from prede-
termined equations involving linear and exponential evolution for each degradation mode,
delayed exponential acceleration for LLI, and different reversibilities for lithium plating
(see Appendix A). Since the publication of our proof-of-concept synthetic datasets [26],
we and others have utilized the data for different purposes and found that some of the
features could be improved. This publication addresses some of the improvements.

The initial datasets provided 201 points for each voltage vs. capacity (V vs. Q) curve
(1 point every 0.5% capacity) and the step was set at 0.85% of each degradation mode.
This proved problematic to simulate early cycles for duty cycles with low degradation. In
such cases, multiple cycles were using the same V vs. Q curve leading to the prediction
of no voltage variations and constant capacity. To solve the problem, the resolution of the
data was increased to 0.1% capacity (1001 points per voltage vs. capacity curves) and the
step for the degradation was changed to non-constant with a resolution multiplied by 10
between 0 and 2% degradation, by 4 between 2.25% and 5%, and by 2 between 5 and 15%
degradation. Overall, this added 38 simulations per path which increased the number of
V vs. Q curves in the V vs. Q matrix by almost 200,000 to more than 700,000.

Increasing the number of points by 500% and the number of simulations by 35%
increased the size of the V vs. Q matrix from roughly 500 MB to 6 GB. This was later
halved by changing the floating-point numbers precision from double to single. This did
not alter the quality of the data since only three decimals are needed to reach the mV
resolution of the initial half-cell data. The increase in the number of points per voltage
curve was however more problematic for the duty cycle dataset which contained more
than 3,000,000 V vs. Q curves (>125,000 duty cycles with one V vs. Q curve every 100 cycles
for 3000 cycles) and was already above 3 GB in the proof-of-concept data. This issue was
solved by pushing our initial concept further. As explained in [26], and to avoid lengthy
calculation time, the duty cycle data was not calculated but harvested from the V vs. Q
matrix by finding the V vs. Q curve with the closest mix of LLI and LAMs to the one to
simulate. In the new version of the duty cycle matrix, only the index of the V vs. Q curve is
harvested which precludes the need for a large array and reduced the dataset size from
3 GB to only 15 MB for 125,000 duty cycles. This now allows to simulate duty cycle datasets
two orders of magnitude larger for the same file size. In this work, we limited the new
data to an increase of the cycle resolution by offering data with 10-cycle intervals up to
200 cycles. Coupled with the higher resolution of the voltage vs. capacity curves, this
allows to visualize well-defined changes early in the duty cycle prediction, an essential
feature for early prognosis. This should offer more possibilities for the development of
early prognosis tools. All the datasets synthesized in this work are freely available for
download [31–34].

2.3. FOI Definition and Selection

Figure 1 presents the incremental capacity (IC) and differential voltage (DV) curves
associated with the three chemistries at two different SOHs. Based on our previous
analysis of the changes of voltages associated with degradation, FOIs were defined for
each chemistry, Table A3.
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Figure 1. LFP, NCA, and NMC811 incremental capacity and differential voltage curves for the pristine and aged cell with
18% LAMNE with detail on the selected features of interest (FOI).

For the LFP simulations, the area under peak 1© was used as FOI1, the area under
peaks 2© to 5© as FOI2, the position and intensity of peak 5© as FOI3 and FOI4, and the
area under peak 0© as FOI5. This should provide information on LLI plus LAMNE (FOI1),
LAMNE (FOI2), LAMPE (FOI3 and 4), and reversible lithium plating (FOI5) [23,45].

For the NCA and NMC cells, the intensity of the minimum between peaks 1© and
2© was used as FOI1, the position and intensity of the minimum between peaks λ and 4©

as FOI2 and FOI3. FOI4 was defined as the capacity difference between peaks
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on the DV curves. FOI5 was defined as the area under peak 0© and the position and the
intensity of peak 5© will be used as FOI6 and FOI7. Based on our previous work [35,40–43],
FOI1 should be representative of LAMPE, FOI4 of LAMNE, and FOI5 of reversible plating.

Diagnosis with physical integrability is calculated from single FOIs and from the
combined variations of three FOIs following the palapala-aina method we proposed in
2017 [24] in which the evolution of three FOIS are combined in a 3D map with a 100 × 100
× 100 mesh. The mesh size for each FOI is indicated in Table A3.

3. Results

Figure 2 presents an example of one of the more than 125,000 duty cycles provided
for the LFP cell (#20050). In this example, LAMNE is the main degradation mode. Looking
at the evolution of the associated IC curves, Figure 2b, peak 1© intensity increased before
plateauing and decreasing, whereas peaks 2© to 5© only decreased. This was expected for
a degradation involving more LAMNE than LLI [23,30]. The peak position also shifted
towards higher voltages because of a polarization increase associated with the increase of
the local current density (same current on less active material). Moreover, because LAMNE
was higher than LLI, plating started to occur and the peak 0© started to grow [23,30].
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Figure 2. Example of duty cycle #22050 for the Gr//LFP cell with (a) the evolution of capacity loss, LLI, LAMPE, and
LAMNE, (b) the associated incremental capacity curves, and (c) the evolution of the 5 FOIs selected for the Gr//LFP cell.

The chosen FOIs, Figure 2c, accurately tracked the changes in the IC curve as FOI1
increased before decreasing, FOI2 and FOI4 decreased, and FOI3 and FOI5 increased.
However, it must be noted that FOI4 lost accuracy after 2200 cycles. This is because of its
definition; FOI3 was defined as the maximum intensity between a limited potential range
(3 and 3.25 V, Table A3) in order to catch the intensity of peak 5© without englobing peak

4©. With the increase of the polarization, the peak was shifted to a potential larger than
3.25 V and its intensity can therefore no longer be tracked. This is a common limitation
for FOI tracking and it needs to be taken into consideration when choosing learnable
parameters [24]. This highlights that more work is needed for automated FOI tracking. In
this work, we hope to avoid this issue as much as possible by focusing our effort on the
diagnosis and early prognosis based on cycles 10, 50, 100, 200, 400, and 1000.

3.1. FOI vs. Diagnosis

Based on our previous studies on the commercial cells used in this work [23,35,40–45],
some FOIs were already established to provide good a diagnosis over the tested experi-
mental conditions. For the LFP cell, FOI1 was shown to be sensitive to LLI and LAMNE,
and FOI2 changes were found to be correlated to LAMNE. For the NCA and NMC811 cells,
FOI1 was shown to be representative of LAMPE and FOI4 of LAMNE. Using the synthetic
cycles, the potential of those FOIs over a wider range of conditions can be tested.

As expected [24], although they were valid choices in the aforementioned studies, their
applicability for diagnosis cannot be extended to all the possible aging conditions. Table 1
summarizes the correlation coefficient between the different FOIs and the percentage of
LLI, LAMPE, LAMNE, and the capacity loss at cycle 100 for the LFP cell. Figure 3 showcases
the associated evolution of the most adapted FOI for all four components of the diagnosis
at cycle 100 for each duty cycle. As expected, FOI1 is sensitive to both LLI and LAMNE with
Pearson correlation coefficients ρ of −0.74 and 0.62. It also has a relatively high correlation
with capacity loss (−0.72) which is not surprising since capacity loss is usually induced by
LLI [25] in graphite-based cells. However, even if the correlation is rather high, Figure 3a,d
showcases that FOI1 cannot be used for LLI or capacity loss diagnosis as the distribution
is broad (close to ±10% around the average). For LAMNE, while all FOIs have absolute
correlation coefficients with LAMNE above 0.6, FOI2 is, as expected, the best choice with
a correlation coefficient of −0.99, Figure 3c. For LAMPE, the best FOI seemed to be FOI3
with a ρ equal to −0.36 but Figure 3b showcases that the peak voltage shift was small, and
that sub millivolt accuracy would be necessary to take advantage of this FOI.
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Table 1. Correlation table for the LFP cell at cycle 100. Light gray: |ρ| > 0.5 and dark gray: |ρ| > 0.8.

LLI LAMPE LAMNE Capacity Loss

FOI1 −0.74 −0.03 0.62 −0.72

FOI2 −0.03 0.09 −0.99 −0.06

FOI3 0.04 −0.36 0.73 0.07

FOI4 0.38 −0.17 −0.79 0.36

FOI5 −0.51 −0.26 0.78 −0.47

FOIs (1,2,3) 0.99 0.44 0.98 0.99

FOIs (1,2,4) 0.99 0.80 0.99 0.99

FOIs (1,2,5) 0.99 −0.07 0.98 0.99

Figure 3. Correlation between the most adapted FOI and the percentage of (a) LLI, (b) LAMPE, (c) LAMNE, and (d) the
capacity loss for the Gr//LFP cell at cycle 100. Each point corresponds to one duty cycle at cycle 100.

For the NCA and NMC811 cells (Appendix B, Table A4, Table A7, Figure A1, Figure A5),
FOI1 was found to be the most representative of LAMPE (ρ > 0.95) and FOI4 of LAMNE
(ρ = −0.64 for NCA and −0.96 for NMC811) as expected. For LLI, FOI3 seemed the most
adapted (ρ = −0.89 for NCA and 0.63 for NMC811). For the capacity loss, the best FOI
seemed also to be FOI4 with ρ of ~0.5 but the overall correlation is rather small.

Table 1 also showcases the correlations associated with considering three FOI together,
as proposed in [24]. Using this technique and FOIs 1, 2, and 4, correlation coefficients
over 0.99 were obtained for LLI, LAMNE, and the capacity loss with a coefficient of 0.8 for
LAMPE. For the NCA and NMC811 cells, the same combination of FOIs gave correlation
coefficients of 0.89 or above for all four components (Appendix B, Tables A4 and A7).
Table 2 presents the mean estimation errors for LLI, LAMPE, LAMNE, and the capacity loss
at cycles 10, 50, 100, 200, 400, and 1000 for the LFP cell using the three FOI together. The
same data is plotted as histograms in Figure 4. The mean diagnosis error for more than
125,000 duty cycles was always below 0.8% and the standard deviations were found to
increase with the cycle number while they were all below 1% except for LAMPE up to
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cycle 400. The inset in Figure 4 presents the standard deviations for different mixes of
degradation at cycles 100 and 400 plotted on a ternary diagram in order to visualize the
impact of the degradation mix on the accuracy of the approach. Overall, the standard
deviations are rather homogeneous over the entire spectrum of degradation although they
seem slightly lower for high LLI ratios and surprisingly high for LAMPE except for LAMPE
estimation after 400 cycles where high LLI has more deviation. Table A5 and Figure A2
as well as Table A8 and Figure A6 in Appendix B present the same analysis for the NCA
and NMC811 cells, respectively. The results are similar with average errors below 1% even
at cycle 1000 except for LAMNE in the NCA cell which is above 1% only after 1000 cycles.
The calculated standard deviations were slightly higher than those of the LFP cell but were
always below 10%. Looking at the insets, the distribution of the standard deviations at
cycles 100 and 400 are smaller for the degradation with a high percentage of LLI in the
degradation mix and worst for high LAMPE for the NCA cell and high LAMNE for the
NMC811 cell.

Table 2. Mean estimation errors for the Gr/LFP cell (from FOIs 1, 2, and 3).

LLI LAMPE LAMNE Capacity Loss

Cycle 10 0.03 ± 0.12 0.20 ± 0.21 0.05 ± 0.14 0.04 ± 0.14

Cycle 50 −0.06 ± 0.19 −0.15 ± 0.78 −0.05 ± 0.22 −0.06 ± 0.22

Cycle 100 −0.06 ± 0.20 −0.22 ± 1.06 −0.06 ± 0.27 −0.06 ± 0.24

Cycle 200 −0.01 ± 0.22 −0.29 ± 1.43 0.00 ± 0.28 −0.01 ± 0.24

Cycle 400 −0.03 ± 0.35 −0.28 ± 2.31 −0.03 ± 0.33 −0.04 ± 0.36

Cycle 1000 −0.80 ± 3.80 −0.55 ± 5.17 −0.27 ± 2.97 −0.70 ± 3.79

Figure 4. Mean diagnosis errors for the >125,000 duty cycle as a function of cycle number for (a) LLI, (b) LAMPE, (c)
LAMNE, and (d) the capacity loss for the Gr//LFP cell. Inset ternary diagrams represent the standard deviation between
the diagnosis and the real value for different degradation paths at cycles 100 and 400.
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3.2. Learnable Parameters vs. Early Prognosis

AI algorithms often rely on learnable parameters to reduce the complexity of training
the algorithms and a lot of different parameters were proposed in the literature. Although
some studies seem to fit the full constant current voltage data [47], most studies focused
on a specific part of the electrochemical response such as the resistance [11,48–52], the
curvature of the capacity evolution [53,54], the capacity of a specific section of the voltage
response [9,55–57], electrochemical impedance spectroscopy [58–60], the variance of the
voltage response [6,12], or electrochemical voltage spectroscopies [47,61–72]. In this work,
we focused on the variance, the capacity loss, and the FOI most sensitive to capacity loss.
Figure 5 presents the relationship of the variance between cycle 100 and cycle 1, the variance
between cycle 400 and cycle 1, the capacity loss at cycle 100, and of FOI1 at cycle 100 with
the end-of-life cycle (i.e., the cycle at which the capacity loss reached 20%) for the LFP
cell. Figures A3 and A7 in Appendix B present the same results for the NCA and NMC811
cells, respectively. The correlations are summarized in Table 3. The insets showcase the
correlation coefficient for specific degradation paths.

Figure 5. Evolution of (a) the variance of voltage between cycles 100 and 1 for the LFP cell, (b) the voltage variance between
cycles 400 and 1, (c) the capacity loss at cycle 100, and (d) the area of the IC peak 1© at cycle 100 as a function of cycle life.
Inset presents correlation as a function of degradation mix. End-of-life is defined as 20% capacity loss.
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Table 3. Correlation table for early prognosis.

LFP NCA NMC811

∆Variance (10-1) −0.05 −0.22 −0.47

∆Variance (50-1) −0.52 −0.41 −0.73

∆Variance (100-1) −0.55 −0.50 −0.80

∆Variance (200-1) −0.37 −0.64 −0.74

∆Variance (400-1) −0.23 −0.74 −0.49

∆Variance (1000-1) −0.33 −0.74 −0.40

Capacity loss (%) −0.60 −0.69 −0.72

FOI 0.29 0.49 0.33

Overall, the variance between cycles 100 and cycle 1 is not a great indicator of EOL
with correlations between −0.55 (LFP) and −0.80 (NMC811) whether calculated on the
voltage (V100–V1) or the capacity (Q100–Q1, lower correlation, not shown). However, the
correlation coefficients are much higher (ρ > 0.9) for duty cycles with a high LLI ratio.
The lowest coefficients are observed for duty cycles with high ratios of LAMPE or LAMNE.
The difference between our results and the literature [6,12] could be explained by the
broader testing conditions but also by the difference in rate. Our results were obtained
from C/25 charges whereas 4C discharges were used in the literature [6,12]. At 4C, changes
in polarization will induce more changes than at C/25 which would likely change the
correlation. Similar results can be observed for the three other tested parameters. Overall,
strait capacity loss is the best indicator closely followed by the variance between cycle
100 and cycle 1. It has to be noted that the correlation coefficients for the capacity loss are
higher than reported in the literature for smaller datasets (~0.5) [73,74].

4. Discussion
4.1. Diagnosis

The diagnosis obtained by using the method proposed in [24] could be considered
successful with average errors almost all below 1% when tested on more than 125,000 duty
cycles, up to 1000 cycles and on three chemistries. Compared to our previous work [26],
a better definition of the FOI for the LFP cell improved the LAMPE estimation but this
diagnosis will always be difficult for LFP cells because of the flat voltage response. LAMPE
estimation is much easier for NCA and NMC811. This work pushed the analysis of the
results deeper than in [26] and the standard deviations were studied on various subsets of
the entire degradation path matrix from high LLI to high LAMPE and LAMNE ratios or a
mix of everything. It was found that slightly lower standard deviations were observed for
high LLI as well as high LAMPE for LFP and NMC811 and high LAMPE for NCA, although
the differences were small at cycle 100. At cycle 400, the standard deviations are higher
and the differences between the different degradation mixes are more visible. Overall, the
method can be considered robust and applicable to multiple chemistries.

4.2. Early Prognosis

For early prognosis, this study confirmed our previous observations [26] that some of
the proposed learnable parameters might not be valid on the entire spectrum of possible
degradations. Surprisingly, the best indicator overall seems to be simply the capacity loss
but the correlation is still much lower than needed (ρ ~ 0.6–0.8) to have full confidence in the
early prognosis. However, a closer analysis showed that the correlation is highly dependent
on the mix of degradation and that degradation with a high share of LLI seems to be more
predictable using the proposed learnable parameters or capacity loss (ρ ~ 0.8–0.9). This
highlights that the synthetic cycles are offering information that would be difficult to obtain
experimentally. It could also be argued that they might have the opposite problem than that
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of the literature by covering too broad of a degradation panel compared to what is possible
in real life. However, the technique is still young, and the equations used to generate
the duty cycles could be tuned to reflect more real life, especially since the improved
approach for duty cycle generation now allows to simulate more cycles. The results of the
experimental design proposed as the Tier 2 challenge of the battery data genome [22] as
well as access to more field data would be invaluable to define limits on the conditions to
scan. In the meantime, we still believe our synthetic cycles are a transformative solution to
prospect for meaningful early diagnosis and prognosis indicators, whether for statistical or
deep-learning data-driven methods.

With our diagnosis approach showcasing promising results, a possible solution for
early prognosis could be to use the diagnosis at different early cycles to extrapolate the
evolution of LLI and the LAMs individually to reconstruct the voltage curves using the
mechanistic approach (see SI in [26]). This technique was already used to forecast the
evolution of capacity loss for large experimental studies [41,75,76]. To best capture the
possible acceleration of the degradation, the evolution of LLI and LAMs with cycle number
were fitted with equation A1 (L + E) but also with a power equation (A4, P) and a linear
equation (A5, L) using different ranges of cycles including cycles 1 to 1000 but also cycles
1 to 400, 1 to 200, and 1 to 100. Figure 6 presents an example of the fits (with different
line styles for the cycle range used) for cycle #22050 to be compared to the simulated

parameters presented in Figure 2a and represented by markers in Figure 6 (
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The trends observed from duty cycle #22050 are confirmed by the statistical study of
the cycle life estimation obtained from the different fits over the entire duty cycle databases,
Table 4. Figure 7 presents the relationship between the estimated end of life cycle (EOL)
and the simulated one for the LFP cell and four different fits (L + E 1–1000, P 1–400, L
1–200, and L 1–100) with the impact of path dependency as inset. Similar data for the NCA
and NMC cells are provided in Appendix B Figures A4 and A8, respectively. Results are
summarized in Table 4 where the early prognosis cycle life estimations are compared in
terms of correlation coefficients, root-mean-square error (RMSE), mean absolute percentage
error (MAPE), and coefficient of determination (R2). This is to compare the results with
literature, notably [6,12,77]. As explained in [77], RMSE is more sensitive to large errors
and describes the variations in data errors, MAPE measures the relative error and depicts
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the error in terms of percentages, and R2 represents better performance. Unsurprisingly,
since equation A1 was the one used to simulate the duty cycles, the fit using the L + E
function and cycles 1 to 1000 is showing high correlation with the simulated duty cycles
for all three chemistries (ρ > 0.9, RMSE < 200 cycles, MAPE < 20%, R2 > 0.73) but the
correlation goes down quickly for earlier prognosis, down to ρ < 0.45 with RMSE > 500
cycles, MAPE > 45%, and bad R2. The power fits perform slightly worse than the L +
E fits with a maximum ρ of 0.85 and a minimum of 0.20. Looking at the linear fits, the
performance is on par with the L + E fits for the 1 to 1000 range but better for the earlier
prognosis with correlation coefficients around 0.7 for the cycles 1 to 100 fits, although the
RMSE, MAPE, and R2 remained similar to the ones of the L + E fits.

Overall, the statistics reported in Table 4 might seem to be worse than the ones reported
in the literature for an early prognosis at cycle 100 (RMSE ~100 cycles, MAPE ~ 10%, and R2

~ 0.9) [6,12,77] but it must be reminded that the dataset used in these studies only covered
a narrow set of experimental conditions and, therefore, cannot be compared to an early
prognosis on the entire degradation spectrum. To enable a better comparison, the statistics
were also computed for different paths of degradation. Results are reported in the insets
of Figure 7, Figure A4, and Figure A8 but also in Table 5, Table A6 as well as Table A9 for
LFO, NCA, and NMC, respectively, for cycles 1 to 200 and 1 to 100. The analysis shows that
for paths with high LLI or high LAMPE, correlations coefficients above 0.9 are possible for
early diagnosis at cycle 100 with RMSE below 100 cycles, MAPE below 10%, and R2 > 0.8,
therefore, at levels comparable to the literature.

Table 4. Correlation table for the early prognosis established from the FOI-based diagnosis.

LFP NCA NMC811

Fit Range ρ RMSE MAPE R2 ρ RMSE MAPE R2 ρ RMSE MAPE R2

L + E 1000 0.91 156 11 0.82 0.92 137 10 0.84 0.90 186 19 0.73

L + E 400 0.63 351 20 0.11 0.67 280 15 0.35 0.69 302 23 0.29

L + E 200 0.38 503 40 −0.83 0.45 461 34 −0.76 0.43 480 39 −0.78

L + E 100 0.35 597 56 −1.58 0.42 521 49 −1.24 0.41 715 46 −2.95

P 1000 0.60 542 12 −1.13 0.85 216 9 0.61 0.52 547 21 −1.31

P 400 0.77 324 15 0.24 0.79 278 11 0.36 0.26 1461 22 >|5|

P 200 0.33 1249 41 >|5| 0.32 2472 38 >|5| 0.20 8413 49 >|5|

P 100 0.17 17,182 297 >|5| 0.28 14,805 212 >|5| 0.33 20,573 273 >|5|

L 1000 0.92 183 13 0.76 0.92 165 10 0.77 0.89 199 20 0.69

L 400 0.82 325 14 0.24 0.92 204 11 0.66 0.89 200 17 0.69

L 200 0.77 401 26 −0.17 0.83 377 20 −0.17 0.86 244 16 0.54

L 100 0.68 666 43 −2.20 0.72 642 37 −2.40 0.74 510 22 −1.01
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Figure 7. Predicted vs. simulated EOL cycle correlation for (a) a linear and exponential fit of the diagnosis for cycles 1 to
1000, (b) a power fit of the diagnosis for cycles 1 to 400, (c) a linear fit of the diagnosis for cycles 1 to 200, and (d) a linear fit
of the diagnosis for cycles 1 to 100. Insert presents correlation as a function of the degradation mix.

Table 5. Correlation table for the early prognosis established from the linear diagnosis.

Linear Fit, Cycles 1–200 Linear Fit, Cycles 1–100

ρ RMSE MAPE R2 ρ RMSE MAPE R2

>50% LLI 0.98 86 3 0.93 0.94 131 7 0.85

>80% LLI 0.98 57 3 0.96 0.96 85 5 0.92

>50% LAMPE 0.90 219 15 0.39 0.80 506 27 −2.28

>80% LAMPE 0.89 132 17 0.39 0.68 357 19 −3.45

>50% LAMNE 0.60 709 58 −1.76 0.55 965 76 −4.12

>80% LAMNE 0.57 730 38 −1.50 0.41 733 36 −1.52

<50% all 0.83 280 21 0.38 0.67 618 43 −2.04

Based on our analysis, the early diagnosis based on a linear extrapolation of the
diagnosed LLI and LAMs seems to offer interesting results for degradation paths containing
mainly LLI or LAMPE. To be able to compare our early diagnosis methodology to the
literature [6,12,77], the dataset on which the statistics are tabulated must be adapted. In
the dataset provided in [6], the capacity loss is associated with LLI at a linear rate of about
0.005% per cycle. The acceleration of the degradation was associated with LAMNE. The fact
that the acceleration is delayed for most cells suggests that LAMNE is just slightly higher
than LLI. Moreover, since no evidence of peak 0© was reported, the lithium plating can
be considered 100% irreversible. There was also no suggestion of any impact of the PE.
In addition, the tested rate was 4C, far higher than our C/25. Unfortunately, our current
definition of the duty cycles does not cover these conditions enough to offer significant
statistics to compare. Further work is in progress to replicate the degradation observed
in [6] with the synthetic datasets.
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5. Conclusions

In this work, the strategy for the generation of synthetic datasets was refined to
increase the resolution of the data to 1001 points for each voltage vs. capacity curve
compared to 201 in the previous iteration, a fivefold increase. Moreover, changes in the
duty cycle generation process allowed to reduce the size of the dataset by a factor of 200
if the diagnosis dataset is attached. This enables to increase the number of simulated
duty cycles by two orders of magnitude without reaching the variable size limitation for
MATLAB© on a normal laptop. In addition to improvements in the synthetic duty cycle
generation and an update on the LFP dataset, we provided data for two other chemistries,
NCA and NMC. These datasets provide the community with additional data to better
validate diagnosis and prognosis tools on a wider array of possible degradations and they
could be used as a Tier 1 challenge for deep and statistical learning early prognosis in the
Battery Data Genome.

We also performed a statistical analysis of the datasets. Our investigation showcased
that although a single FOI-based diagnosis is not effective, considering several FOIs to-
gether can offer accuracies below 1% up to cycle 400 for LLI, LAMPE, LAMNE, and capacity
loss estimations. An extrapolation of this diagnosis allowed to prognose end-of-life with
accuracies comparable with state-of-the-art for degradation paths with high LLI or LAMPE.
It also showcased that the diagnosability and the prognosability are highly dependent on
the degradation paths and that new methodologies must be validated on diverse datasets
to be considered validated.
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Appendix A. Simulation Parameters

Appendix A.1. Cell Emulation

Table A1. Summary of alawa emulation parameters for the cells simulated in this work.

Parameter LFP NCA NMC811

PE ANR26650M [23,45] NCR 18650B [35,40–43] INR18650-35E [44]

NE ANR26650M [23,45] NCR 18650B [35,40–43] Stock electrode

Loading ratio 0.95 1.05 0.90

Offset 12.5 1.5 10

Resistance adjustment −0.07 −0.18 0

PE kinetic adjustment None None None

NE kinetic adjustment None 0.75 None

Appendix A.2. Duty Cycle Calculations

As detailed in [26], a duty cycle is defined as the unique evolution of the triplet (LLI,
LAMPE, LAMNE) with cycle number. In this work, the duty cycles are not associated with
any particular charge or discharge cycle, nor a specific current, temperature, cutoff voltage,

http://dx.doi.org/10.17632/bs2j56pn7y.3
http://dx.doi.org/10.17632/bs2j56pn7y.3
http://dx.doi.org/10.17632/6s6ph9n8zg.3
http://dx.doi.org/10.17632/2h8cpszy26.1
http://dx.doi.org/10.17632/2h8cpszy26.1
http://dx.doi.org/10.17632/pb5xpv8z5r.1
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etc. Varying these conditions will change how the cell degrades, and per our definition
of degradation, change the mix of LLI and LAMs the cell will experience. Since we are
scanning all the possible LLI and LAMs combinations, our focus is set on how the cell is
degraded independently of how it got there. The duty cycle dataset was calculated by
varying eight parameters, Table A1. For all three degradation modes (LLI, LAMPE, and
LAMNE, the degradation was chosen to follow Equation A1 where a and b corresponds to
parameters p1 and p2 for LLI, p3, and p4 for LAMPE, and p5 and p6 for LAMNE. Parameter
p7 addresses a delay for the exponential response for LLI.

%degradation = a × cycle + (expb×cycle − 1) (A1)

The plating threshold (PT) [26,35] at which lithium plating starts to happen was
calculated using Equation (A2). Parameter p8 addresses the reversibility of lithium plating
following Equation (A3).

PT = 100 −
[(

100 − %LAMPE
100 × LRini − %LAMPE

)
× (100 − OFSini − %LLI)

]
(A2)

%LLIadjusted = %LLI + p8(%LAMPE − PT) (A3)

Fitting equations:
%degradation = a × cycleb (A4)

%degradation = a × cycle + b (A5)

Table A2. Summary of scanned parameters for the duty cycle dataset.

Parameter Description Values (% per Cycle)

p1 Linear Coeff. LLI 0.007, 0.010, 0.013, 0.017, 0.021, 0.027, 0.034, 0.048, 0.06

p2 Exp. Coeff. LLI 0.000001, 0.002, 0.0033

p3 Delay Exp. LLI 600, 1200, 1800

p4
Linear Coeff.

LAMPE
0.001, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.0375, 0.05, 0.07

p5 Exp. Coeff. LAMPE 0.000001, 0.001, 0.0013

p6
Linear Coeff.

LAMNE
0.001, 0.005, 0.0,1 0.015, 0.02, 0.025, 0.03, 0.0375, 0.05, 0.07

p7
Exp. Coeff.

LAMNE
0.000001, 0.001, 0.0013

p8
Plating

Reversibility 0, 50, 100

Appendix A.3. FOI Selection and Resolution

Table A3. Summary of selected FOIs with resolution in palapala‘aina [24] 3D maps.

FOI Description Resolution in 3D Map

LFP-FOI1 Area between 3.35 and 3.40 V 0.4% Q

LFP-FOI2 Area between 3.20 and 3.35 V 0.6% Q

LFP-FOI3 Position maximum between 3.00 and 3.25 V 0.002 V

LFP-FOI4 Intensity maximum between 3.00 and 3.25 V 3.5% Q/V

LFP-FOI5 Area between 3.42 and 3.50 V 1.0% Q

NCA-FOI1 Area between 4.02 and 4.05 V 0.04%Q

NCA-FOI2 Position minimum between 3.60 and 3.98 V 0.004 V
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Table A3. Cont.

FOI Description Resolution in 3D Map

NCA-FOI3 Intensity minimum between 3.60 and 3.98 V 1.2% Q/V

NCA-FOI4 Capacity difference between 2 peaks between
20 and 60% Q 0.4% Q

NCA-FOI5 Area between 4.15 and 4.255 V 0.1% Q

NCA-FOI6 Intensity maximum between 3.00 and 3.6 V 6% Q/V

NCA-FOI7 Position maximum between 3.00 and 3.6 V 0.006 V

NMC-FOI1 Area between 4.02 and 4.05 V 0.04% Q

NMC-FOI2 Position minimum between 3.60 and 3.98 V 0.004 V

NMC-FOI3 Intensity minimum between 3.60 and 3.98 V 1% Q/V

NMC-FOI4 Capacity difference between 2 peaks between
20 and 60% Q 0.4% Q

NMC-FOI5 Area between 4.15 and 4.295 V 0.18 % Q

NMC-FOI6 Intensity maximum between 3.00 and 3.59 V 3% Q/V

NMC-FOI7 Position maximum between 3.00 and 3.59 V 0.006 V

Appendix B. Supplementary Tables and Figures

Appendix B.1. Gr//NCA, C/33 Charge

Table A4. Correlation table for the NCA cell at cycle 100. Light gray indicates |ρ| > 0.5 and dark
gray |ρ| > 0.8.

LLI LAMPE LAMNE Capacity Loss

FOI1 0.08 −0.98 −0.08 −0.44

FOI2 0.73 −0.46 −0.41 0.24

FOI3 −0.89 0.18 0.11 −0.48

FOI4 0.08 −0.51 −0.64 −0.50

FOI5 −0.35 −0.65 0.64 −0.49

FOI6 −0.63 0.53 −0.24 −0.40

FOI7 0.68 −0.66 0.18 0.27

FOIs (1,2,4) 0.95 0.96 0.89 0.97

FOIs (1,3,4) 0.85 0.96 0.92 0.82

FOIs (1,5,4) 0.74 0.98 0.89 0.88

FOIs (1,6,4) 0.89 0.95 0.89 0.93

FOIs (1,7,4) 0.83 0.96 0.90 0.88

Table A5. Mean estimation errors for the NCA cell (from FOIs 1, 2, and 4).

LLI LAMPE LAMNE Capacity Loss

Cycle 10 0.07 ± 0.16 0.07 ± 0.17 −0.01 ± 0.20 0.06 ± 0.15

Cycle 50 −0.11 ± 0.27 −0.12 ± 0.43 −0.15 ± 0.41 −0.11 ± 0.30

Cycle 100 −0.10 ± 0.42 −0.02 ± 0.50 −0.18 ± 0.83 −0.01 ± 0.35

Cycle 200 −0.14 ± 0.95 0.13 ± 0.97 −0.16 ± 2.30 0.14 ± 0.76

Cycle 400 −0.09 ± 2.28 0.29 ± 2.57 −0.17 ± 4.37 0.42 ± 2.39

Cycle 1000 −0.67 ± 7.22 −0.02 ± 5.21 −2.64 ± 9.02 0.08 ± 4.96
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Table A6. Correlation table for the early prognosis established from the linear diagnosis.

Linear Fit, Cycles 1–200 Linear Fit, Cycles 1–100

ρ RMSE MAPE R2 ρ RMSE MAPE R2

>50% LLI 0.96 191 6 0.75 0.83 403 15 −0.12

>80% LLI 0.97 87 3 0.94 0.89 273 8 0.38

>50% LAMPE 0.96 102 7 0.78 0.82 321 11 −1.24

>80% LAMPE 0.98 32 5 0.92 0.93 71 7 0.63

>50% LAMNE 0.65 616 43 −1.41 0.54 968 69 −4.95

>80% LAMNE 0.60 487 22 −0.34 0.48 1059 38 −5.34

<50% all 0.86 335 17 −0.12 0.73 591 38 −2.48

Figure A1. Correlation between the most adapted FOI and the percentage of (a) LLI, (b) LAMPE, (c) LAMNE, and (d) the
capacity loss for the NCA C/33 charges at cycle 100.



Energies 2021, 14, 2371 17 of 24

Figure A2. Mean diagnosis errors for the >125,000 duty cycle as a function of cycle number for (a) LLI, (b) LAMPE, (c)
LAMNE, and (d) the capacity loss for the NCA C/33 charges. Inset ternary diagrams represent the standard deviation
between the diagnosis and the real value for different degradation paths at cycles 100 and 400.

Figure A3. Evolution of (a) the variance between cycle 100 and 1 for NCA C/33 charges, (b) the variance between cycles
400 and 1, (c) the capacity loss at cycle 100, and (d) the area of the high voltage IC peak at cycle 100 as a function of cycle life
(i.e., cycle at which 20% capacity loss is reached). Insert presents correlation as a function of degradation mix.
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Figure A4. Predicted vs. simulated EOL cycle correlation for (a) a linear and exponential fit of the diagnosis for cycles 1 to
1000, (b) a power fit of the diagnosis for cycles 1 to 400, (c) a linear fit of the diagnosis for cycles 1 to 200, and (d) a linear fit
of the diagnosis for cycles 1 to 100. Insert presents correlation as a function of degradation mix.

Appendix B.2. GIC//NMC811 C/25 Charges

Table A7. Correlation table for the NMC811 cell at cycle 100. Light gray indicates |ρ| > 0.5 and dark
gray |ρ| > 0.8.

LLI LAMPE LAMNE Capacity Loss

FOI1 0.10 −0.95 −0.08 0.05

FOI2 0.51 −0.24 −0.04 0.45

FOI3 0.63 −0.65 0.08 0.57

FOI4 −0.46 0.03 −0.96 −0.57

FOI5 −0.09 −0.89 0.36 −0.06

FOI6 0.41 −0.18 −0.13 0.35

FOI7 0.42 −0.41 0.44 0.45

FOIs (1,2,4) 0.98 0.94 0.94 0.98

FOIs (1,3,4) 0.89 0.92 0.94 0.90

FOIs (1,5,4) 0.65 0.96 0.94 0.69

FOIs (1,6,4) 0.70 0.92 0.94 0.72

FOIs (1,7,4) 0.94 0.93 0.94 0.95
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Table A8. Mean estimation errors for the NMC811 cell (from FOIs 1, 2, and 4).

LLI LAMPE LAMNE Capacity Loss

Cycle 10 0.11 ± 0.20 0.15 ± 0.19 0.08 ± 0.22 0.12 ± 0.22

Cycle 50 −0.11 ± 0.31 −0.14 ± 0.53 −0.11 ± 0.52 −0.12 ± 0.36

Cycle 100 −0.08 ± 0.32 −0.08 ± 0.57 −0.09 ± 0.59 −0.08 ± 0.38

Cycle 200 0.16 ± 1.37 0.14 ± 1.52 0.17 ± 1.82 0.27 ± 1.85

Cycle 400 0.45 ± 3.14 0.67 ± 3.73 0.91 ± 4.56 0.99 ± 4.07

Cycle 1000 −0.62 ± 5.58 0.23 ± 5.34 −0.59 ± 8.48 0.28 ± 5.06

Table A9. Correlation table for the early prognosis established from the linear diagnosis.

Linear Fit, Cycles 1–200 Linear Fit, Cycles 1–100

ρ RMSE MAPE R2 ρ RMSE MAPE R2

>50% LLI 0.97 117 7 0.87 0.96 131 8 0.84

>80% LLI 0.98 101 4 0.90 0.95 150 7 0.78

>50%
LAMPE 0.83 277 33 0.01 0.70 517 34 −2.45

>80%
LAMPE 0.96 217 36 −0.64 0.84 193 30 −0.30

>50%
LAMNE 0.86 308 14 0.55 0.62 786 22 −1.92

>80%
LAMNE 0.55 508 20 −0.38 0.50 530 23 −0.50

<50% all 0.86 238 13 0.47 0.79 484 21 −1.18

Figure A5. Correlation between the most adapted FOI and the percentage of (a) LLI, (b) LAMPE, (c) LAMNE, and (d) the
capacity loss for the NMC811 C/25 charges at cycle 100.
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Figure A6. Mean diagnosis errors for the >125,000 duty cycle as a function of cycle number for (a) LLI, (b) LAMPE, (c)
LAMNE, and (d) the capacity loss for the NMC811 C/25 charges. Inset ternary diagrams represent the correlation between
the diagnosis and the real value for different degradation paths at cycles 100 and 400.

Figure A7. Evolution of (a) the variance between cycle 100 and 1 for NMC811 C/25 charges, (b) the variance between cycles
400 and 1, (c) the capacity loss at cycle 100, and (d) the area of the high voltage IC peak at cycle 100 as a function of cycle life
(i.e., cycle at which 20% capacity loss is reached). Insert presents correlation as a function of degradation mix.
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Figure A8. Predicted vs. simulated EOL cycle correlation for (a) a linear and exponential fit of the diagnosis for cycles 1 to
1000, (b) a power fit of the diagnosis for cycles 1 to 400, (c) a linear fit of the diagnosis for cycles 1 to 200, and (d) a linear fit
of the diagnosis for cycles 1 to 100. Insert presents correlation as a function of degradation mix.
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