
energies

Article

Adaptive Driving Cycles of EVs for Reducing
Energy Consumption

Iwona Komorska 1,* , Andrzej Puchalski 1 , Andrzej Niewczas 2 , Marcin Ślęzak 2 and Tomasz Szczepański 2
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Abstract: A driving cycle is a time series of a vehicle’s speed, reflecting its movement in real road
conditions. In addition to certification and comparative research, driving cycles are used in the virtual
design of drive systems and embedded control algorithms, traffic management and intelligent road
transport (traffic engineering). This study aimed to develop an adaptive driving cycle for a known
route to optimize the energy consumption of an electric vehicle and improve the driving range.
A novel distance-based adaptive driving cycle method was developed. The proposed algorithm
uses the segmentation and iterative synthesis procedures of Markov chains. Energy consumption
during driving is monitored on an ongoing basis using Gaussian process regression, and speed
and acceleration are corrected adaptively to maintain the planned energy consumption. This paper
presents the results of studies of simulated driving cycles and the performance of the algorithm when
applied to the real recorded driving cycles of an electric vehicle.

Keywords: electric vehicle; driving cycle; energy consumption; Markov chains; driving range

1. Introduction

The popularization of electric vehicles may decrease air pollution, particularly in cities.
The more fossil-fuel-burning vehicles are replaced with electric vehicles, the less harmful
substances (pollutants in particulate matter and gases, mainly nitrogen oxides and sulfur
oxides) are released into the air. This is the most significant benefit of electromobility from
the perspective of environmental impact. It will also reduce the emissions of greenhouse
gases (particularly carbon dioxide and ozone). For vehicle owners, the primary advantage
is significantly lower operating costs compared to those of conventional vehicles. An
energy management system is critical for the development of electric vehicles because
it directly affects their capacity to save energy. Power management aims to create the
optimum policy for controlling power supplied to the vehicle. The applied driving cycle is
required to optimize and assess power management in electric vehicles.

Predicting the driving cycle of a vehicle is becoming increasingly important in modern
intelligent transport, particularly for controlling energy consumption in electric vehicles,
planning the trajectory of autonomous terrestrial vehicles, energy management in hybrid
electric vehicles, etc. In general, driving cycles illustrate changes in vehicle speed as a
function of time. They are of fundamental importance to vehicle engineering. Originally,
the primary application of driving cycles was to identify the performance characteristics
of a vehicle, such as exhaust emissions and fuel consumption for cars with an internal
combustion engine. Along with the development of HEVs, PHEVs and EVs, many studies
have addressed the adaptation of driving cycles to these types of vehicles [1–6].

Driving cycles should reflect actual road conditions as well as local conditions in a
particular country or region. Driving cycles with equivalent properties can be generated
only using a dataset with recorded information about a vehicle or fleet operation as the
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basis for generating time signals and final assessment of the quality of induced cycles.
Many properties of the driving profile characterizing local driving cycles, such as the
average, maximum and minimum values and standard deviations of speed, acceleration
and delay, have been defined in the listed articles [1,3,7–12]. The impact of the velocity
profile on energy consumption in EVs is analyzed in [13].

There are various methods for generating driving cycles, and they are still being
developed. In general, however, three primary approaches can be identified: segmentation,
Markov chain method and mixed method (a combination of the first two methods). Each
method requires a sufficiently large dataset. The cycle is divided into microtrips in the
segmentation method, defined as the speed trace between two successive stops [10] or as
sections of the route grouped according to specific criteria, such as different road types,
traffic conditions or speed limits. Segments are combined stochastically to generate new
driving cycles.

The Markov chain method represents another mathematical approach to driving cycle
generation. In the simplest algorithm, speeds are divided into classes, and the probability of
transition from class to class is included in the TPM. Then, the TPM and speed probability
distribution are used to generate new driving cycles. Their equivalence to the reference
cycle is verified based on specific criteria [14–23].

The mixed method combines the two methods mentioned above so that the segment
classes (e.g., cruising, idling, acceleration, deceleration or other defined classes) are selected
according to the Markov chain algorithm [1,6,24,25]. The methods used for generating
driving cycles in this study are discussed more specifically in Section 2.

Previous studies on driving cycles were used to synthesize the type of drive and the
city region’s test cycle characteristic. The new approach proposed in this article consists of
modifying the driving cycle during its duration to the driving range extension based on
well-known Markov process models. Here, energy consumption is estimated based on a
statistical model (machine learning method), which is easily determined for each vehicle
based on an exemplary driving profile. We go a step further by proposing a modification
of the velocity profile during its duration using the new DBADC (distance-based adaptive
driving cycle) method. The purpose of this study is to predict the driving cycle and correct
it on an ongoing basis depending on road conditions and the vehicle energy consumption.
Because of this purpose, driving cycles will be considered as distance-based velocity
and not as time-based velocity, as is usually the case. The transition probability matrix
(TPM) will be corrected on an ongoing basis during driving, not exceeding the energy-use
boundary of a particular route. This method is dedicated to electric vehicles with autopilot
feature and driven on specific routes, such as cars rented for a short time in the form of
car-sharing and delivery vehicles, buses, etc.

2. Methods

This study uses the segmentation method and iterative Markov chains. Figure 1 shows
an illustration of the method, referred to as distance-based adaptive driving cycle (DBADC),
which consists of the following components: data collection and their synchronization
based on distance, route segmentation and determination of the TPM for the segments,
generation of a representative driving cycle and estimated energy consumption using
Gaussian process regression (GPR; model-based energy calculation), and on-line correction
of the current cycle (an adaptation of the current driving cycle).



Energies 2021, 14, 2592 3 of 18Energies 2021, 14, x FOR PEER REVIEW 3 of 20 
 

 

 
Figure 1. Illustration of the DBADC method. 

First, it is necessary to collect a dataset of driving cycles on routes in the particular 
region or on planned routes and associated instantaneous or average electricity consump-
tion during these driving cycles. 

2.1. Cycle Segmentation 
A typical microtrip in a driving cycle is presented by Austin et al. [26] as the speed 

trace between two stops. The cycle begins with the idling phase, followed by the acceler-
ation, cruise and deceleration phases. The entire driving cycle consists of such microtrips. 
The duration of the driving cycle varies depending on average speed and acceleration. 
Austin et al. suggest three methods for combining microtrips: random, best incremental 
(based on the Watson plot) and hybrid. The set of driving cycle candidates thus generated 
is used to select the driving cycle for which the probability distribution of acceleration and 
speed most closely resembles the actual driving dataset. Further versions of this method 
are based on improved methods for stochastically combining microtrips. Determination 
of the optimum combination of microtrips using a genetic algorithm (GA) is proposed in 
[10]. In this, segments with differing numbers of microtrips are combined until the desired 
driving cycle duration is reached. In [27], Nesamani et al. used microtrips based on road 
type to develop a driving cycle for PHEV city buses. A computer program was devised to 
select microtrips at random until the target distance was reached. The percentage of mi-
crotrips depending on road type and time spent on every road type was also calculated 
to further represent the observed data. In [6], kinematic segments were divided depend-
ing on the distance between successive bus stops, whereas the two-dimensional Monte 
Carlo Markov chain (MCMC) method was used to synthesize driving cycles between each 
interval of subsequent bus stops. 

In the segmentation method, real driving cycles are divided into driving segments 
grouped according to similar average speed, road surface, traffic conditions or other cri-
teria. The segments are connected stochastically. Lin and Niemeier [24] used the acceler-
ation signal and the maximum likelihood estimation (MLE) method to divide the cycle 
into segments to associate the segment with specific modal operating conditions (e.g., 
cruise control, idling, acceleration or deceleration). Here, every class characterizes the 
driving style and, consequently, also represents a possible state in the Markov chain. 

Figure 1. Illustration of the DBADC method.

First, it is necessary to collect a dataset of driving cycles on routes in the particular re-
gion or on planned routes and associated instantaneous or average electricity consumption
during these driving cycles.

2.1. Cycle Segmentation

A typical microtrip in a driving cycle is presented by Austin et al. [26] as the speed trace
between two stops. The cycle begins with the idling phase, followed by the acceleration,
cruise and deceleration phases. The entire driving cycle consists of such microtrips. The
duration of the driving cycle varies depending on average speed and acceleration. Austin
et al. suggest three methods for combining microtrips: random, best incremental (based on
the Watson plot) and hybrid. The set of driving cycle candidates thus generated is used
to select the driving cycle for which the probability distribution of acceleration and speed
most closely resembles the actual driving dataset. Further versions of this method are
based on improved methods for stochastically combining microtrips. Determination of the
optimum combination of microtrips using a genetic algorithm (GA) is proposed in [10]. In
this, segments with differing numbers of microtrips are combined until the desired driving
cycle duration is reached. In [27], Nesamani et al. used microtrips based on road type to
develop a driving cycle for PHEV city buses. A computer program was devised to select
microtrips at random until the target distance was reached. The percentage of microtrips
depending on road type and time spent on every road type was also calculated to further
represent the observed data. In [6], kinematic segments were divided depending on the
distance between successive bus stops, whereas the two-dimensional Monte Carlo Markov
chain (MCMC) method was used to synthesize driving cycles between each interval of
subsequent bus stops.

In the segmentation method, real driving cycles are divided into driving segments
grouped according to similar average speed, road surface, traffic conditions or other criteria.
The segments are connected stochastically. Lin and Niemeier [24] used the acceleration
signal and the maximum likelihood estimation (MLE) method to divide the cycle into
segments to associate the segment with specific modal operating conditions (e.g., cruise
control, idling, acceleration or deceleration). Here, every class characterizes the driving
style and, consequently, also represents a possible state in the Markov chain. Zähringer
et al. [28] present the enhanced modal cycle construction (EMCC) method, which is a
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modification of the method described in [24]. Here, the global driving state acceleration,
deceleration and cruising are subdivided into substates. This enables development of
a complete driving cycle using a first-order Markov chain with a constant transition
matrix. The control segments to be combined are constructed parametrically based on
characteristic values.

This paper proposes dividing a route into segments. Depending on the type of vehicle,
segments range from one to several microtrips, which do not have to begin or end with
the idling phase. For instance, for cars or delivery vehicles, the segment may include the
route between intersections or longer, even though the idling phase may be absent when
passing through an intersection. For a bus, the segments may include the route from one
stop to another, with traffic lights on the way and a segment beginning and ending with
the idling phase.

Figure 2 shows a sample segment of a driving cycle, recorded between traffic lights and
covering a distance of approximately 700 m, frequently driven in heavy, congested traffic.
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The two sample segments between traffic lights shown in Figure 2 have different maximum
speeds, accelerations and travel times. This makes it difficult to compare them in the time
domain (Figure 2a,c). However, cycles analyzed in the distance domain (Figure 2b,d) are more
transparent. Because driving cycles are recorded at equal time intervals, it is necessary to use a
cycle synchronization procedure based on travel distance.

The length of the segment is selected individually depending on the route and the
type of vehicle. A single microtrip between traffic lights is shown in Figure 2. However,
the segments should contain more microtrips, grouped according to road conditions such
as driving on the ring road, route with heavy traffic (city center) and a built-up zone
(residential). This allows for more effective cycle correction.

When the segments are analyzed in the distance domain, the idling phase is hidden.
However, idling in electric vehicles affects only energy consumption unrelated to driving,
used to power HVAC (heating, ventilation and air-conditioning) systems, radio or lights.
Energy consumed during the idling phase can be statistically considered in each segment, if
necessary. In this study, the idling phase was omitted from the development of the driving
cycle. However, the energy consumption during this phase was statistically included.
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When driving cycles are analyzed in the distance domain, known cycle lengths based
on the planned route can be used to synthesize Markov chains.

2.2. Markov Chain Method

A Markov chain is the process wherein computation of the random variable future
value is based on the current value, irrespective of the previous value. In mathematical
terms, the random process X = {X1, X2, X3, . . .} in the discrete space of states E is the
first-order Markov chain; if for each j ∈ E and n = 0, 1, 2, . . . the conditional distribution
Xn+1 is a function of the Xn variable only [15]:

Pr{Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn = in} = Pr{Xn+1 = j|Xn = in}, (1)

for each set of states i0, i1, . . . , in.
Suppose a Markov chain is stationary, with probabilities not changing depending on

time. In that case, the distribution of probabilities of transitions between particular k-states
can be presented as a matrix called the transition probability matrix (TPM) P ∈ Rkxk. This
is a stochastic matrix:

P =

 P11 · · · P1k
...

. . .
...

Pk1 · · · Pkk

 (2)

The elements of the P matrix Pij can be calculated using the following equation:

Pij =
Nij

∑j Nij
(3)

where Pij is equal to the probability of transition from state i to state j, when j 6= i or remains
in state i, when j = i. Nij is the number of transitions from state i and to state j. All entries
of this matrix Pij ≥ 0, and the sum of the values of entries in each row, i.e., probabilities of
remaining or leaving a given state, is equal to one.

Over the last decade, the Markov chain method has been used in an ongoing effort to
improve driving cycles. Stochastic and statistical methods were combined by Lee and Filipi
in [16]. They proposed a procedure for synthesizing real driving cycles to model naturalistic
driving patterns for any distance. In [17], Gong et al. collected a large dataset of speed
measurements for PHEV. The speed profiles were grouped into classes. Driving patterns
were identified based on the grouping results, and the Markov chain model was used
for the stochastic generation of speeds for different driving patterns. Souffran et al. [18]
proposed a stochastic model of driving cycles based on a Markov matrix of three variables—
vehicle speed, acceleration and road slope—representing real driving conditions. In [6], Liu
et al. considered speed, road slope and passenger load for a real bus route with a plug-in
hybrid electric bus (PHEB). Kinematic segments were divided according to the distance
between successive bus stops, whereas the two-dimensional MCMC method was used to
synthesize the driving cycle between each interval of successive bus stops. A transition
based on multidimensional Markov chains is presented by Silvas et al. in [19]. After the
generation process, the result was verified according to the selected criteria. Moreover,
this method can generate a driving cycle of the desired length by compressing the original
driving cycle. Nyberg et al. [14] defined the mean tractive force (MTF) to verify equivalent
driving cycles. When the individual components of MTF are used to generate driving
cycles using Markov chains, equivalent driving cycles can be generated, sharing the same
vehicle power usage based on real driving data. In [20], Zhao et al. synthesized a stochastic
driving cycle based on their model. They combined the Markov chain process with the
transition probability based on driving data input to determine the next possible state of the
vehicle. In particular, speed and road slope were generated at the same time using a three-
dimensional Markov chain model. After the generation process, the result was verified
according to selected criteria. Puchalski et al. [21] used a multifractal criterion to verify the
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equivalence of driving cycles. Shi et al. [22] provided validation of the Markov property of
the driving cycle. They used the theory of ergodicity to determine the relationship between
speed and acceleration probability and the state transition matrix.

In the approach presented in this paper, the vehicle speed change process is regarded
as a discrete Markov chain. During autonomous or partially autonomous driving, the
driving cycle is determined step by step, as in a Markov chain. The next state v(i+1)
depends on the previous state v(i) and disruption caused by road conditions.

Markov chains are efficient when the length is known in advance. Obviously, the
longer the chain, the easier it is to achieve a given probability distribution. In the presented
literature, Markov chains were used to represent a travel cycle with given duration. As
the segment travel time is unknown and the distance is known, this article proposes a
modification of the TPM. Transitions from one state to another take place in the distance
domain, not the time domain.

2.3. Data-Driven Model of Energy Calculation

A mathematical model is needed to estimate electricity consumption. A backward
model is generally used to compute the energy consumption of the vehicle from travel.
Electric vehicle energy models are described in [10,13,29,30]. For this study, it was necessary
to determine the relationship between the driving cycle parameters (speed and acceleration)
and electric energy. We decided to use the statistical model developed with the machine
learning method.

Regardless of the parameters of the vehicle, assuming a constant friction coefficient, it
can be further assumed that instantaneous energy is a function of the kinematic variables
of the vehicle and the slope of the road:

E = f
[

a(t), v(t), v(t)2, a(t)·v(t), slope
]

(4)

where v(t) is velocity and a(t) is acceleration of the vehicle.
Machine learning methods were used to identify the function representing the kine-

matic variables of the vehicle.
Taking into account energy recovered from braking, energy consumption is integrated

both in the tracking and braking phases:

E =
∫
t

Pvdt (5)

Average energy consumption E is defined as:

E =
E
s

(6)

where s is the mileage.
There are many ways of modelling continuous signals using experimentally derived

datasets. The most frequent method is linear regression, where the set of estimating
functions is limited to linear forms, and the values of the parameters are inferred using
the least-squares method. Other polynomial, logarithmic, exponential or logistic functions
and other loss functions different from the sum of the squares of deviations of real values
relative to the theoretical values are also used. An equally popular method is to estimate
the signals’ parameters by determining the maximum likelihood that a specific sample will
occur (MLE). This method can be used to analyze nonlinear signals represented even by
short time series, and the estimators thus obtained are asymptotically unbiased.

The Gaussian process regression (GPR) method was used in the study [31] to estimate
the system’s response, represented by current energy consumption, to input in the form of
speed and acceleration measurement signals.
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The vectors created from the signal input measurement and the signal output were
adopted due to a random experiment, which means that the probability density function
for their distribution includes complete information about their values.

When constructing a regression model, we assumed that the expected observed value y
can be written as a specific monotonic linear transformation of a combination of independent
variables corresponding to the model parameters θ = θ1, θ2, . . . θk. This means that it is
possible to determine the likelihood f(y|θ), which is a function of parameter θ.

In the maximum likelihood estimation method, the values of the estimated parameters
are selected to maximize the likelihood function. In practice, this task requires solving the
analytically equivalent problem of maximizing the logarithm lnf(y|θ). Using Bayesian
inference in estimating the discussed regression model requires determining the posterior
probability f(θ|y) of parameter θ under the condition of observation y. The posterior
distribution density function of the parameters is obtained from the Bayesian formula:

f (Θ/y) =
f (y/Θ) f (Θ)

f (y)
(7)

where f (Θ) is the prior probability of the parameters, and f (y) is the factor normalizing
the posterior probability—independent of Θ—the so-called global likelihood or evidence.

Maximum a posteriori estimation (MAP) can take into account both the past probabil-
ity and earlier data concerning the event. The confidence intervals can also be interpreted
more intuitively.

For a more accurate model, the cycles were divided into three parts: tractive phase,
regenerative braking and idle phase. The energy consumption/recovery model in each
phase was considered separately. The model identification result is expressed by one of the
errors, e.g., RMSE (root mean squared error) or the R2 coefficient for the predicted response
vs. true response dependence. The results of model identification using the GPR method
for the real object, as well as the quality of this mapping, are discussed in Section 3.2.

2.4. Adaptation of the Current Driving Cycle

The dataset of driving cycles collected on the investigated route is used to determine
representative driving cycles to estimate average electricity consumption. It is not the pur-
pose of this study to develop driving cycles representative for the region; rather, the study
aims to select adaptive driving cycles that can be used to optimize electricity consumption.

This entails the necessity of defining the values of typical driving cycles. Twenty-seven
variables describing the driving cycle were summarized in [3]. The following parameters
characterizing the segments of the cycle were selected for the purposes of this study (Table 1).

In the set of monitored parameters, va was introduced, which is the speed and
acceleration product. It is one of the inputs in the data-driven energy calculation model
and significantly impacts energy consumption. The main component of the tractive force is
the inertial force of the vehicle (ma(t)), and the mechanical power is the product of force
and speed. Therefore, the product of speed and acceleration (va) is a significant component
of the model.

Boundary energy values are determined individually for each segment of the route.
These parameters can be used to select energy-efficient cycles or cycles with average
electricity consumption. They may be averaged values for a typical driving cycle on a
particular route, values depending on the battery capacity, etc.

The boundary energy course is determined based on averaged energy consumption
courses for a given vehicle and route. It means the total electricity consumption from the
beginning of the segment to which the actual energy consumption of the car should aim.
It consists of three phases: acceleration, cruising and braking. It is assumed that energy
consumption increases linearly in the cruising phase, but in reality, this is not the case.
Multiple microtrips can take place during this time. However, energy consumption should
be around the assumed limit. In the last phase, braking, zero consumption is assumed,
although energy is recovered. This makes it possible to make up for any energy losses in



Energies 2021, 14, 2592 8 of 18

the segment without additional cycle corrections. The limit of energy consumption may be
additionally limited due to the driving range caused by the battery capacity, distance from
the charging station, etc.

Table 1. The calculated parameters in driving cycles.

Number Parameter

1 Average speed
2 Average speed (only cruising)
3 Standard deviation of speed
4 Maximum acceleration
5 Average acceleration
6 Standard deviation of acceleration
7 Maximum deceleration
8 Average deceleration
9 Standard deviation of deceleration

10 % of time when idling
11 % of time when speed is 0–15 (km·h−1)
12 % of time when speed is 15–30 (km·h−1)
13 % of time when speed is 30–50 (km·h−1)
14 % of time when speed is >50 (km·h−1)
15 % of time when va 1 is <0 (m2·s−3)
16 % of time when va is 0–3 (m2·s−3)
17 % of time when va is 3–6 (m2·s−3)
18 % of time when va is 6–10 (m2·s−3)
19 % of time when va is >10 (m2·s−3)
20 Total duration
21 Time of cruising without idling
22 Average energy consumption

1 va is the product of vehicle velocity and acceleration.

The adaptive method involves the continuous monitoring of average energy con-
sumption in each segment of the cycle, comparing this consumption with the boundary
energy in a particular segment and appropriate correction of speed and acceleration. If
energy consumption in a given segment exceeds the boundary energy, the vehicle speed
is corrected. A 1000 m driving segment was simulated to illustrate the applied DBADC
method. The algorithm plot is shown in Figure 3.

The red line in Figure 3b refers to the boundary energy, which triggers a correction
of vehicle speed if it is exceeded. Due to road conditions during the cycle, the vehicle
accelerated three times and braked three times, and it was only during the third acceleration
that the boundary energy was exceeded. During speed correction, energy oscillated around
the boundary energy, only to fall below the boundary energy at the end of the microtrip
due to energy recovery during braking. If the correction had been insufficient, the next
correction would have reduced the vehicle speed and acceleration.

3. Results
3.1. Experiment Description

Road tests were performed by the Motor Transport Institute in cooperation with Tesla
Warsaw. The Tesla Model X vehicle with 90D drive was used for the tests presented in this
article. The vehicle had three electric motors with a total 540 HP, driving both axles. The
battery had a capacity of 90 kWh and a maximum power of 350 kW. The unladen mass
of the vehicle was 2475 kg. The vehicle also had a second-generation autopilot, software
version 9.0 (partially autonomous driving), which was used in the tests. The route included
city traffic in the very center of Warsaw. The streets formed a closed loop with a shape
resembling a square, with a total travel distance of approximately 6.5 km. The altitude was
137 m, varying within a range of +/− 6 m. Road slope did not exceed 1◦, which means
that the area was relatively flat. A map with the travel route is shown in Figure 4.
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included city traffic in the very center of Warsaw. The streets formed a closed loop with a 
shape resembling a square, with a total travel distance of approximately 6.5 km. The alti-
tude was 137 m, varying within a range of +/− 6 m. Road slope did not exceed 1°, which 
means that the area was relatively flat. A map with the travel route is shown in Figure 4. 

Figure 3. Simulation of a sample driving cycle (a) and energy consumption (b) during a cycle with
and without correction.

Energies 2021, 14, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 4. Travel route. 

The tests were conducted in February on working days from 2:00 p.m. to 5:00 p.m., 
i.e., when traffic in the area was fairly heavy. The duration of a single cycle ranged from 
15 to 22 min. The weather conditions during the test cycles varied only to a small extent 
because testing days were chosen to meet specific conditions, namely temperature be-
tween 8 and 13 °C, pressure between 970 and 995 hPa, humidity between 30 and 50%, 
wind speed of 10 km/h or less, no rain and dry pavement. Interior heating was on during 
the tests, with the temperature set at a constant 22 °C. Exterior lighting and the main 
screen, which was used to track the vehicle with a GPS and show messages from the 
onboard computer, were also turned on. The remaining devices were off. Battery charge 
status before each test was no less than 50% and no more than 80%. The vehicle was driven 
by two test drivers, each of whom represented two driving styles: calm and dynamic. The 
autopilot feature was used as well, and it drove the vehicle for at least 67% of the travel 
time. During the remaining time, the test drivers controlled the vehicle themselves, driv-
ing calmly. The cycles during which the autopilot drove the vehicle were treated in the 
statistical calculations as if a third, independent driver was driving, although this driver 
was not able to change the driving style from calm to dynamic. 

Figure 5a shows travel speeds as a function of time, and Figure 5b shows travel 
speeds as a function of travel distance. The figures show a comparison of cycles driven by 
the dynamic driver, the calm driver and the autopilot. 

Figure 4. Travel route.

The tests were conducted in February on working days from 2:00 p.m. to 5:00 p.m., i.e.,
when traffic in the area was fairly heavy. The duration of a single cycle ranged from 15 to
22 min. The weather conditions during the test cycles varied only to a small extent because
testing days were chosen to meet specific conditions, namely temperature between 8 and
13 ◦C, pressure between 970 and 995 hPa, humidity between 30 and 50%, wind speed of
10 km/h or less, no rain and dry pavement. Interior heating was on during the tests, with
the temperature set at a constant 22 ◦C. Exterior lighting and the main screen, which was
used to track the vehicle with a GPS and show messages from the onboard computer, were
also turned on. The remaining devices were off. Battery charge status before each test was
no less than 50% and no more than 80%. The vehicle was driven by two test drivers, each of
whom represented two driving styles: calm and dynamic. The autopilot feature was used
as well, and it drove the vehicle for at least 67% of the travel time. During the remaining
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time, the test drivers controlled the vehicle themselves, driving calmly. The cycles during
which the autopilot drove the vehicle were treated in the statistical calculations as if a third,
independent driver was driving, although this driver was not able to change the driving
style from calm to dynamic.

Figure 5a shows travel speeds as a function of time, and Figure 5b shows travel speeds
as a function of travel distance. The figures show a comparison of cycles driven by the
dynamic driver, the calm driver and the autopilot.
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Figure 5. Recorded driving cycles (a) as a function of time, (b) as a function of travel distance for
dynamic driving, eco-driving and autopilot.

Natural segments of the route separated by traffic lights can be easily distinguished in
Figure 5b. It is possible to compare the speeds of the drivers in individual segments. Places
with slower traffic are easy to identify.

Further analysis was carried out for speeds as a function of distance. The travel
distance may differ in real segments by several or several dozen meters due to differences
in lane lengths.

3.2. Energy Consumption

The recorded cycles were used to determine a statistical model of energy consumption
using Gaussian process regression (GPR) depending on vehicle speed and acceleration.
Figure 6 shows model verification results on the same route with a 95% prediction interval,
a fragment of which has been magnified in Figure 6b, with the fit of the model shown
in Figure 6c. The R2 coefficient for the predicted response vs. true response dependence
(Figure 6c) was close to 1.

The energy consumption of the HVAC during the test was 1.074 kW.
The GPR model can be used to monitor electricity consumption during any driving

cycle. To analyze the impact of speed and acceleration on electricity demand, four 1
km segments of driving cycles were simulated (Figure 7a). Figure 7b shows the energy
consumption for the simulated cycles, which increased together with distance travelled.

The highest energy consumption corresponded to cycle 1 due to the highest vehicle
speed. Cycle 3 showed a quick initial increase in energy consumption due to high accelera-
tion, yet lower overall consumption in the microtrip because the average speed was lower
than in cycle 1. Alternate braking and acceleration did not significantly impact the total
energy used during the microtrip. During cycle 2, in which speed and accelerations were
reduced to approximately 80% of those in cycle 1, energy consumption was approximately
73% of that in cycle 1. Cycle 4, which simulated driving in congested traffic, showed that
such driving was very energy-efficient, although it excessively prolonged travel time.
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3.3. Representative Driving Cycle

The characteristic parameters specified in Table 1 were determined for the cycles
described in Section 3.1 and averaged for dynamic driving, calm driving and autopilot
driving. The results are presented in Table 2. Due to the small number of recorded cycles,
they cannot be regarded as representative of local driving and only illustrate the method.
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Table 2. Driving cycle parameters.

No. Parameter Dynamical Driving Eco-Driving Autopilot

1 Average speed 22.90 19.86 19.06
2 Average speed (only cruising) 35.15 29.03 28.84
3 Standard deviation of speed 25.45 19.38 19.32
4 Maximum acceleration 5.69 2.43 2.20
5 Average acceleration 1.18 0.62 0.62
6 Standard deviation of acceleration 0.47 0.48 0.47
7 Maximum deceleration −4.22 −2.61 −3.12
8 Average deceleration −0.95 −0.63 −0.67
9 Standard deviation of deceleration 0.74 0.47 0.55

10 % of time when idling 36.7 33.3 35.9
11 % of time when speed is 0–15 (km·h−1) 13.5 15.1 14.9
12 % of time when speed is 15–30 (km·h−1) 15.2 18.3 17.4
13 % of time when speed is 30–50 (km·h−1) 17.0 24.8 24.8
14 % of time when speed is >50 (km·h−1) 17.6 8.5 7.0
15 % of time when va1 is <0 (m2·s−3) 33.6 31.8 29.1
16 % of time when va is 0–3 (m2·s−3) 8.5 15.1 14.7
17 % of time when va is 3–6 (m2·s−3) 5.7 9.9 9.1
18 % of time when va is 6–10 (m2·s−3) 4.1 5.7 5.8
19 % of time when va is >10 (m2·s−3v 10.9 3.2 3.8
20 Total duration (s) 999.3 1147.2 1214.0
21 Time of cruising without idling (s) 648.8 780.5 789.0
22 Average energy consumption (Wh·km−1) 427.6 260.7 309.4

Parameters 10–14 are shown in Figure 8a, and parameters 15–19 are shown in Figure 8b.
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The driving profiles for autopilot and eco-driving were similar. However, the autopilot
was found to have a slightly higher va, which resulted in higher energy consumption.
Dynamic driving displayed a noticeable increase in the share of speeds over 50 km·h−1

and an increase of va >10 [m2·s−3], which resulted in a significant increase in average
energy consumption. Interesting conclusions can be drawn from comparing average energy
consumption and cruising time (Figure 9).
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Figure 9. Cruising time (without idling) vs. average energy consumption.

As noted above, the lowest consumption was recorded for eco-driving, slightly higher
for autopilot and the highest for dynamic driving, which had the broadest distribution.
Travel times for eco-driving and autopilot were comparable; they were shorter for dynamic
driving, although they too were characterized by significant breadth of distribution.

The recorded cycles were used to determine the speed acceleration probability density
(SAPD) for the entire route, taking into account only the eco-driving and autopilot phases
(Figure 10).
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The average distributions of vehicle speeds (Figure 11) and TPM (Figure 12) were also
recorded. The resolution of vehicle speeds was found to be 2.0875 km/h.
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After the route was divided into segments consisting of groups of microtrips or
grouped according to traffic volume, speed limit etc., the TPM was determined for each
segment and boundary energy.

3.4. Simulation Results

This method is dedicated to autonomous vehicles or vehicles with an autopilot feature
(driving in semiautonomous mode). The test route was divided into four segments. The
TPM was used to generate the next state that determines speed and acceleration. This state
can be interrupted at any time by road conditions and traffic. Thus, the TPM is corrected
on an ongoing basis, assuming that microtrips between traffic lights are driven at the speed
limit and acceleration is additionally limited by energy consumption.

The division into segments was made to illustrate the functioning of the algorithm. For
a longer route, a single segment could be used due to the road conditions. The application
of the method for a sample driving cycle is shown in Figure 13. The energy boundary
was determined based on average energy consumption during the driving cycles by the
eco-driver. The corrected cycle was determined by simulation. Figure 13a shows the
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uncorrected distance-based driving cycle (blue dashed line) for driving with the autopilot
and a cycle corrected by the algorithm (red line). In Figure 13b, the energy boundary for
each of the four segments and energy consumption during driving (from the beginning of
the segment) are added for the corrected and uncorrected cycle.
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Figure 13. Illustration of the method using the investigated driving cycle: (a) distance-based driving
cycle, (b) electricity consumption at successive route segments.

Figure 14 shows the corrected and uncorrected cycle as a function of time.
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Figure 14. Time-based driving cycles for Figure 13a.

Table 3 shows average energy consumption during each driving segment and for the
entire cycle. Reduced speed and acceleration results in approximately 15% reduction of energy
consumption, albeit an 82 s (approximately 10%) extension of travel time (without idling).

Data from Table 3 are shown in the chart below (Figure 15).
Electricity consumption should oscillate around the boundary energy because braking

at the end of each segment provides an opportunity to recover some of the energy expended.
In the first segment, the vehicle speed is corrected, but if energy consumption at the end of
the segment exceeds the boundary energy—as is the case in the first segment—the next
(second) segment begins with a correction of speed and acceleration. The correction is made
only with accelerations because decelerations result in energy recovery. The correction is
implemented only until energy consumption drops below the boundary energy. In the
fourth segment, speed is initially corrected; then, later in two microtrips, both speed and
acceleration are corrected. The last microtrip does not require any correction.



Energies 2021, 14, 2592 16 of 18

Table 3. Comparison of average electricity consumption during driving in each segment in relation to the assumed
boundary energy.

Parameter Segment 1 Segment 2 Segment 3 Segment 4 Total Difference %

Distance (km) 1.858 1.425 1.067 2.016 6.366
Average energy for autopilot (Wh/km) 285.5 314.8 237.0 302.7 289.4 11.0
Average boundary energy (Wh/km) 259.6 276.8 278.3 241.1 260.7 0

Average energy for cycle with
correction (Wh/km) 266.0 267.1 228.4 224.7 246.9 −5.3
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4. Conclusions

This article presents an adaptive method for optimizing the driving cycle with regard
to energy consumption. Compared to methods used to develop representative driving
cycles, the method described herein proposes distance-based driving cycles instead of
time-based driving cycles. Driving cycles are segmented based on a driving cycle dataset.
The next state, determined by speed and acceleration, is defined as the Markov chain
next stage. However, this state can be disrupted by traffic conditions. Thus, TPM is
updated on an ongoing basis and corrected where necessary if energy consumption is
greater than assumed. Energy consumption during driving is monitored and compared
with the assumed boundary energy. An autopilot driving cycle was verified in the study,
with the cycle adapting to very restrictive limits on energy consumption. Speed or product
of the speed and acceleration (va) were reduced when consumption was too high. Energy
consumption was reduced by approximately 15%, although travel time was prolonged by
approximately 10%.

The tests showed that driving was most energy-efficient at low speeds and acceler-
ations (e.g., driving in congestion). However, many users would not regard this as the
optimum driving cycle. It is also necessary to consider travel time, which is a significant
aspect in the case of buses, and traffic flow, although this parameter cannot be measured
directly. Further study should focus on the optimization criteria and the algorithm used to
determine the energy boundary.

The study does not deal in detail with the energy consumption of HVAC systems.
However, this energy has been statistically included in the design of the energy bound-
ary. While the motor consumes no electricity during the idling phase, HVAC energy
consumption is a real challenge in EV.

This paper is relevant to the topic of energy management in so-called intelligent public
transport. Energy management is important for the transport of people (car-sharing, public
bus transport) and goods (delivery vehicles).
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Abbreviations

DBADC distance-based adaptive driving cycle
DC driving cycle
EV electric vehicle
GPR Gaussian process regression
HEV hybrid electric vehicle
HVAC heating, ventilation and air-conditioning
MC Markov chains
MCMC Monte Carlo Markov chain
MLE maximum likelihood estimation
PHEV plug-in hybrid electric vehicle
SAPD speed acceleration probability density
TPM transition probability matrix
va velocity and acceleration product
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