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Abstract: We examine energy efficiency in the European Union (EU) using an integrated model
that connects labor and capital as production factors with energy consumption to produce GDP
with a limited amount of environmental emissions. The model is a linear output-oriented BCC data
envelopment analysis (DEA) that employs variables with non-negative values to calculate efficiency
scores for a sample of 28 EU member states in the period 2010–2018. We assume variable returns to
scale (VRS) considering the natural inclination of countries to adopt technologies that allow them to
produce higher outputs over extended periods of time, which we observed through the trends of
increasing labor productivity and decreasing energy intensity over the analyzed period. The average
EU inefficiency margin in the sample period is 16.0%, with old member states being significantly
more efficient (4.2%) than new member states (29.5%). Energy efficiency management does not
improve over time, especially in new member states that had substantially worse efficiency by 2018
than in 2010. New member states could increase energy efficiency through the liberalization of
the energy market, the support of energy-saving and technologically advanced industries, and the
introduction of measures aimed at increasing the productivity levels in the economy.

Keywords: energy efficiency; production function; primary energy; electricity; DEA analysis

1. Introduction

To achieve both economic growth and sustainable development, more focus on ex-
plicit energy inputs and green GDP has occurred in the literature. Although the use of
clean energy is gradually increasing, about 80% of the energy consumed globally comes
from fossil fuels while about 50% of power generation depends on coal causing severe
environmental pollution [1]. The evaluation of the energy efficiency of different regions
and industry sectors is an essential component of formulating energy and environmental
policies aimed at efficiency improvement. One of the major objectives of the EU’s economic
policy and development strategy is to become a low-carbon and resource-efficient economy.
Towards this, the EU set a goal to increase the efficiency of energy use by 20%, decrease
CO2 emissions by the same amount, and have 20% of overall energy consumption coming
from renewable energy resources by 2020 [2]. Although primary energy (−2%) and final
energy consumption (−1%) in the EU has been gradually decreasing, this progress is not
enough to achieve these objectives. The lag is probably due to a lack of political will to cut
energy consumption and the failure of non-binding targets, as member states shirk their
obligations as they have done in the past with debt/GDP targets [3].

Since the assessment of energy efficiency in diverse regions may pose as a direction
for further development, our study is focused on the EU in order to evaluate each of the
countries’ performances as well as to examine practical implications and shape overall
energy policies. Managers will find our results helpful in selecting effective management
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and investment strategies. Policymakers, on the other hand, can use our results to generate
appropriate action plans and strategies. Energy efficiency is potentially one of the most
important and cost-effective means by which industries can mitigate their greenhouse gas
emissions for sustainable development. Despite the availability of cost-effective energy
efficiency measures in industries, their implementation is not always assured due to various
barriers and obstacles [4].

Energy efficiency is often measured relatively rather than absolutely. Three common
types of indicators are used to measure energy efficiency, namely thermodynamic, physical,
and monetary factors [5]. As production involves both energy as an input and pollution as
an undesirable output, a total-factor efficiency evaluation model is necessary to measure
both energy and environmental efficiency. This paper provides insight and future direction
in applying a DEA model to examine energy efficiency in the EU.

Within the sample, we can also compare efficiency results over time and space (e.g.,
old vs. new members) as well as how the results correlate with other production indicators.
Providing our aim is to present the most recent indicators and trends, our study covers the
time period between 2010 and 2018, due to the availability of data. Hence, it covers the
member states in the given period, excluding more recent events (such as Brexit). The core
of the model is the development of a production function with labor, capital, and primary
and secondary energy consumption (electricity) as inputs; GDP as a desired output; and
CO2 emissions as an undesired output. The model yields an efficiency score for each
country/year in the sample.

Our paper adds to the literature in the following ways. Firstly, it provides a quantita-
tive scoring of the EU’s recent macroeconomic energy efficiency. Secondly, our approach
in dividing the EU into groups of old member states and new member states allows us
to explore if differences in levels of development and the structure of different economic
systems have an impact on the results. Third, the DEA methodology contributes to further
evidence of the utility of using this approach to measure energy efficiency. Fourth, the panel
nature of the results highlights the necessity of conducting a comprehensive approach
towards smart, sustainable, and inclusive growth.

The rest of the paper is structured as follows: Section 2 provides a detailed literature
review of the DEA studies pertaining to energy and environmental efficiency evaluation in
general—both on a macro and micro level. Section 3 provides an overview of the data and
variables included in the empirical analysis and Section 4 presents the descriptive statistics.
The DEA methodology used in the analyses is introduced in Section 5 while the results are
discussed in Section 6. Finally, Section 7 concludes.

2. Literature Review

DEA is the dominant method for measuring environmental efficiency according
to a recent literature review [6] of 50 environmental and energy economics journals in
the period 2006–2015 covering 144 studies. Within the DEA literature, both parametric
and nonparametric models are used with the advantage of the latter being that if the
relationship between inputs and outputs is unknown there should be no structure imposed
a priori. Therefore, the use of a parametric production function is relatively rare given
the unclear relationship between inputs and outputs. Studies of China’s energy efficiency
dominate the application of the DEA method in the literature. The conclusions of this first
review of the literature were supported by a second review covering 145 articles between
2000–2018 [7]. The keywords which come up repeatedly in published papers dealing
with the application of DEA in the assessment of energy and environmental economics
in the Web of Science database are “energy efficiency”, “environmental efficiency”, and
“efficiency performance”. A third review covering 1206 articles published throughout
2018 [8] shows that the literature has grown rapidly since 2011, with China dominating
this output in terms of most often being the subject of the analysis and having the most
citations and largest number of authors and where they work. The most recent overview of
the DEA application in the field of energy efficiency covers the literature published during
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2011–2019 [1]. Due to the technical heterogeneity of energy efficiency between different
research goals, the existing research adjusts the models to improve the accuracy of the
efficiency assessments. Most analysis is at a macroeconomic region level of aggregation or
higher due to data availability. A summary of these reviews is shown in Table 1.

Table 1. Summary of literature reviews using the DEA approach to study energy efficiency.

Author(s) and Year Time Interval Scope Results and Outcomes

Mardani et al. (2017) 2006–2015 144 articles

DEA models, especially non-parametric ones are appropriate
for evaluation of the energy efficiency. China was shown to
have the biggest contribution to the publication of DEA-related
papers on this topic.

Mardani et al. (2019) 2000–2018 145 articles
The applications of DEA have increased in the area of
environmental and energy economics, especially energy
efficiency, environmental efficiency, and efficiency performance.

Yu and He (2020) 2011–2018 1206 documents The annual volume of publications has grown rapidly since
2011 with China dominating the research in this area.

Xu et al. (2020) 2011–2019 281 articles

Energy efficiency analyses at the regional level prevail. The
energy efficiency DEA model has improved, the accuracy has
increased, and the model has evolved from static to dynamic
and complex.

While early studies treated energy consumption as an input with GDP as a desirable
output, ignoring undesirable outputs such as pollution, more recent DEA literature evalu-
ates energy and environmental efficiency with an integrated method using many inputs
and explicitly modelling undesirable outputs reflecting growing concerns over climate
change. Including additional inputs, such as capital and labor, acknowledges that energy
must be complimented with other inputs and not stand alone [9–11]. Carbon emissions,
wastewater, and the overuse of natural gas are examples of undesirable outputs. The inte-
grated approach measures both the operational efficiency of producing desirable outputs
and the environmental efficiency regarding the production of undesirable outputs within a
single model. Therefore, DEA examinations of energy efficiency have evolved from a single
factor index to a total-factor framework, from radial to non-radial and slack-based models,
and from simple static models to dynamic panel models. The rationale for this is that the
non-radial DEA model has higher discriminatory power compared to the traditional DEA
model [12]; the inputs and outputs are not restricted to improve uniformly [13] and the
efficiency indicator for each variable in the process can be identified in order to increase the
efficiency of the DMU being studied [14]. The DMUs in most studies are entire countries or
regions, as firm-level microeconomic studies are fewer in number (e.g., [15–18]) and are
not the focus of this paper.

Our approach towards measuring energy efficiency implies the categorization of
energy as primary and secondary, as proposed in one study [19] which focuses on energy
usage trends in the world. Primary energy consists of fossil-fuel energy (oil, natural gas,
and coal) and non-fossil energy (renewable and nuclear), while secondary energy refers to
electricity. DEA can be seen as a holistic methodology, recognizing the balance between
economic development and environmental protection by combining desirable outputs (e.g.,
electricity) and undesirable outputs (e.g., GHG emission) in performance assessment.

As there are many studies that use the DEA method in China, and bearing in mind
that China’s CO2 emissions not declining fast enough [20], taking a closer look at some
of these studies constitutes an essential part of addressing global climate change and is
important in understanding our approach [20]. One recent study utilizes improved DEA
models to measure the total-factor energy and environmental efficiency of 29 administrative
regions of China during the period of 2000–2008, taking into account both desirable outputs
(GDP) and undesirable outputs (CO2 and SO2) while including both an energy input (total
energy consumption) and non-energy inputs (labor and capital stock) [21]. The dynamic
panel results show that the eastern coastal provinces maintain a higher energy efficiency



Energies 2021, 14, 2619 4 of 19

and advanced production technology in comparison to the central and the western areas,
despite a general increase in environmental efficiency across all three areas. The efficiency
differences of the three areas may arise from the imbalance of economic development and
a technology gap [21–23]. An independent study [24] using the same sample in a similar
time frame (2000–2007) confirmed the results, indicating that China has a real problem with
energy inefficiency as one moves away from the coast. One paper [25] uses a non-radial
DEA approach that combines energy structure adjustment and DEA-based target setting
together to measure energy saving and energy-related carbon dioxide emission reduction
in China. Importantly, since non-fossil energy incorporated as a fixed factor cannot be
decreased in the efficiency optimization process [25], regional technological heterogeneity
and carbon emissions must be addressed when developing solutions for energy efficiency
improvement [26].

In a sample of 25 countries during the period 2010–2017, the use of the non-energy
and energy inputs revealed that developed countries (Australia, Canada, France, Germany,
Italy, Japan, South Korea, Spain, the United Kingdom, and the United States) are more
effective in promoting GDP growth and reducing CO2 emissions than developing countries
(Brazil, China, Egypt, India, Indonesia, Iran, Kazakhstan, Malaysia, Mexico, Poland, Russia,
Saudi Arabia, South Africa, Thailand, and Turkey) [20]. Two studies [27,28] that consider
many factors and pollutant emissions evaluate the environmental efficiency of 26 OECD
countries in the period 1995–1997 [27] and 21 OECD countries in the period 1997–2002 [28].
The first incorporates pollutants into the traditional DEA framework but uses a non-radial
DEA-based model for multilateral environmental performance comparisons. The labor
force and primary energy consumption are employed as two inputs, whereas GDP is
the only desirable output and carbon dioxide, sulfur oxides, nitrogen oxides, and carbon
monoxide are undesirable outputs. The second includes the capital stock and labor force
as non-energy inputs, GDP as the desirable output, and carbon dioxide emissions as the
undesirable output. Overall, both papers show that OECD countries have the potential
to reduce their energy consumption, but in fact did not. Using a longer time period and
more recent data for 30 OECD states in the period 2001–2018 demonstrated that those with
higher nominal GDP per capita use primary energy and electricity (secondary energy)
more efficiently [29]. Extending the time period even further (1995–2016), a very recent
DEA study [30] with 32 OECD countries found that measuring energy efficiency levels
without considering undesired outputs tends to lead to an overestimation of the energy
efficiency level of environmentally friendly countries and an underestimation of the energy
efficiency level of countries that value environmental protection.

Looking at just the EU, a study [31] assessing general energy inefficiency in the period
2001–2008 showed that countries such as Germany, Sweden, or Austria, who have strong
environmental protection standards, appear to be less energy and environmentally efficient
relative to Denmark, Belgium, Spain, France, or Ireland. Eastern European countries have
low efficiency scores as expected given their lower level of energy saving technology.
Yet [32] shows a wide range of environmental performance scores in the EU over the period
2001–2012, illustrating that differences in emissions persist and may be explained with the
share of renewable and non-renewable energy sources. They found that Ireland, Latvia,
Sweden, Hungary, and the United Kingdom are the five relatively efficient countries, while
Estonia, the Czech Republic, Poland, Bulgaria, and Germany are the five least efficient
countries. Further, the EU’s environmental taxes imposed on top of national tax regimes
cause distorting effects in eco-efficient countries. In general, efficiency scores tend to be
quite low across the EU [33] based on a sample of 28 EU member states for the years 2008,
2010, 2012, 2014, and 2016, with little improvement. A two-stage DEA model is used
in yet another study [34] in evaluating the evolution of eco-efficiency in the EU-27 over
the period 2008–2018, taking into account the dichotomy between economic growth and
environmental protection. In the first stage, through the use of a non-parametric DEA
model, eco-efficiency scores were computed for all the member states considering the ratio
of GDP per capita and greenhouse gas emissions (GHG) as outputs, whereas in the second
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stage the obtained scores were used as a dependent variable in the proposed fractional
regression model (FRM) with three greenhouse gases and five atmospheric pollutants as
explanatory variables. The outcomes of the present analysis pointed to different stages
of the eco-efficiency process in EU countries, with Ireland being the country that most
mitigated its emissions, whereas the lowest reductions in emissions are noted in Greece
and Spain. Following the adoption of the Energy Efficiency Directive by the EU member
states, the findings from the study assessing the annual reports submitted from 2013
to 2018 [35] show that although significant progress has been achieved in declining the
absolute values of primary and final energy consumption at national levels since 2005,
only 11 member states significantly reduced their total final energy consumption over the
period 2011–2016. Therefore, the results indicate that further commitment towards meeting
the Directive’s requirements is necessary, mainly with introduction of new national policy
actions and the straightening of the existing ones, as well as the regular monitoring of the
progress made towards the targets. Based on these EU efficiency studies, a move towards
alternative energy sources must be made in order to ensure reliable energy supplies at
rational prices and with the least environmental impacts. The conclusions of the studies
point to the importance of a heterogeneous approach of policy application on a country
level. Furthermore, the authors of [36] confirm the results that an increase in energy
efficiency can be achieved by a joint effort on the macro and micro level, the latter indicating
the necessity of implementing an energy management system with specific leadership skills
and top management support. When establishing energy management, the authors of [37]
propose that energy efficiency should be measured through the adoption of specific energy
consumption (SEC) as a key energy performance indicator, calculated as a ratio of the
energy used for producing a product and especially useful when undertaking longitudinal
benchmarking, i.e., the same company, sector, or country, over time.

In this section we have integrated the contributions of many authors to energy ef-
ficiency measurement, whilst further enriching the literature by presenting the recent
progress towards the achievement of the goals set out at the EU level. Compared to the
reviewed studies, our analysis differs from the others in dividing the EU into groups of
old member states and new member states, which allows us to study if differences in the
levels of economic development and the different structures of economic systems have an
impact on a country’s energy efficiency. This also helps us to determine if energy efficiency
is related to the time evolution of the modelled variables and if countries from the two
groups need to pursue different strategies towards improving energy efficiency.

3. Sample and Variables

We constructed a sample of 28 EU member states with annual data for the period
2010–2018 and divided it in old member states (OMSs) and new member states (NMSs).
The former group includes all countries that have acceded to the EU before 1996, while the
latter consists of all countries that have joined the EU since 2004 (Table A1, Appendix A).
Croatia is the only country that joined during the analyzed period and it was decided that
we should include it in the study.

Given that we developed a DEA framework, the variables in the model are divided
into inputs and outputs. Regarding inputs, we use the production function as a starting
point and employed the labor force and capital stock as non-energy inputs, and primary
energy consumption and electricity consumption as energy inputs that make up the total-
factor energy in the model. We note that primary energy encompasses all forms of energy
found in nature that are not subject to any conversion process (e.g., fossil fuels, mineral
fuels, solar energy, wind energy, etc.), while electricity is an example of secondary energy
produced from primary energy sources. Regarding outputs, we choose the nominal GDP
as a desired output and CO2 emissions as an undesired output. We assumed that countries
seek to maximize GDP and minimize CO2 emissions. Using the raw data, we constructed
additional derived variables: GDP per worker, GDP per capital stock, primary energy
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intensity, electricity intensity, and CO2 per GDP. Table A2 (Appendix B) gives a detailed
overview of the variables employed and the derived indicators.

The data for the selected variables were collected from the US Energy Information
Administration (EIA) and World Bank’s World Development Indicators (WDI) databases.

4. Descriptive Statistics

The descriptive statistics are reported in Appendix C, where Table A3 (raw data)
and Table A4 (derived variables) present the summary statistics for the variables used in
the model for each sample year and over the entire sample period (“All” at the bottom).
Individual country means plus OMS and NMS groups during the sample period are
reported in Table A5.

The average size of the labor force increased from around 8.69 million in 2010 to
around 8.96 million workers in 2018, while there is no clear trend on the movement of the
average capital stock with ups and downs from year to year. Primary energy consumption
decreased from around 792 billion kWh in 2010 to 732 billion kWh on average in 2014, but
then started to gradually increase though not up to the 2010 mean. Similar movement
can be noticed for electricity consumption, which fell from 105.8 billion kWh in 2010
to 101.2 billion kWh in 2014 and then increased to 104.4 billion kWh in 2017. Finally,
the amount of CO2 emissions follows the same trend as for energy consumption, with
downward movement from 146.7 MM tones in 2010 to 131.5 MM tones on average in 2014,
followed by a rise to 134.7 MM tones in 2017. The downward movement of these variables
in the early 2010s reflects the decline in production during the economic recession amidst
the European debt crisis during that period. While the pattern of these raw data reflects
the economic circumstances throughout the analyzed period, our derived variables better
explain the differences across countries and over time.

Labor productivity (GDP/L) averages at US$ 67,178 over the entire period. Luxem-
bourg records the highest mean GDP per worker of US$ 226,611, with Ireland, Denmark,
Sweden, and Belgium also having a value above US$ 100,000. The lowest mean GDP per
worker is recorded in Bulgaria at US$ 16,747. Old member states have a GDP per worker
of US$ 96,113 on average, which is almost three times the mean ratio of US$ 33,791 for the
new member states. A comparison of the mean GDP per worker in 2010 and 2018 shows an
increase from US$ 65,043 to US$ 72,213 on average, although this increase was not steady.

The ratio of GDP per capital stock (GDP/K) shows that, on average, EU countries use
US$ 1 of capital to produce US$ 5.029 of GDP, ranging from a mean of US$ 3.990 for Estonia
to a mean of US$ 7.864 for Greece. Unlike labor productivity, there are no significant
differences across countries and country groups in terms of capital productivity, however
the group of old member states still has a somewhat higher mean of 5.203 compared to the
4.829 mean for NMS. There is no significant difference between the mean GDP-to-capital
ratio in 2010 and 2018, though there was an upward movement until 2013, followed by a
decline in the years until 2017.

Energy intensity indicators show how much energy countries consume to make their
GDP. The primary energy intensity for all countries over the entire period is 1.596 or, in
other words, a consumption of 1.596 kWh per US$ 1 of GDP. In a similar manner, the mean
electricity intensity of 0.221 shows that EU states consume 0.221 kWh of electricity per
US$ 1 of GDP. The new member states have a markedly higher energy intensity than the
old member states, which is more noticeable with regards to primary energy consumption.
For instance, Bulgaria has both the highest primary energy intensity with a mean value
of 3.551 and electricity intensity with a mean value of 0.514, whereas Ireland records
the lowest mean values of 0.658 for primary energy intensity and 0.093 for electricity
intensity. No general trend can be tracked over time, though it is evident that the mean
intensities in 2010 were somewhat higher than those in 2018. Overall, this trend reflects
some success in increasing returns to scale from energy as a production input, which is
subject to factors such as the development and application of new technologies and the
reducing of energy waste.
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The mean value of 0.302 for CO2 emissions per GDP indicates an emission of 0.302 MM
tones of CO2 per US$ 1 of GDP. Countries with a higher energy intensity also have higher
CO2 emissions, hence, the new member states average higher values than those of the old
member states. Bulgaria, Malta, and Poland all have an average CO2-to-GDP ratio above
0.6, while Sweden (0.095) is the only country with CO2 emissions below 0.1 MM tones per
US$ 1 of GDP. Fortunately, the general trend over time is decreasing.

From the results of the two-group mean comparison test (Table A6 of Appendix C),
it can be inferred that the differences between the OMS and NMS groups are statistically
significant at a significance level of 1% for all derived indicators.

5. Methodology

Our approach is to apply an output-oriented DEA model to calculate efficiency scores
for each country in each period. DEA is a linear programming method that was popularized
for measuring efficiency starting in the late 1970s [38,39], though linear programming has
been around even longer than that. Each decision-making unit (DMU) is compared over
time and space. A key advantage of the DEA methodology compared to other methods
that use econometrics is that it does not necessarily require functional assumptions for
efficiency assessment [40], and thus one can impose a functional form (parametric) or not
(non-parametric) depending on what the underlying technology is believed to be.

There are two variations of the DEA models used in empirical studies: CCR (or
Charnes, Cooper, and Rhodes; see [38]) and BCC (or Banker, Charnes, and Cooper; see [39]).
The main difference between the two is that the CCR DEA model assumes constant returns
to scale (CRS), while the BCC DEA model analyzes variable returns to scale (VRS). In
reality, it is hard to believe that production relies on CRS over an extended period of time
given the natural inclination of countries to adopt technologies that allow them to produce
higher outputs, thus implying increasing returns to scale (IRS), and the impact of some
factors that adversely affect productivity, thus leading to decreasing returns to scale (DRS).
One sign that the latter stands to reason in our analysis is the observation that countries
have had some success in increasing labor productivity and decreasing energy intensities
over time. Logically, when higher GDP can be produced with less labor employed and less
energy consumed, the IRS and thereby the VRS assumption practically holds. Given that
the assumption of variable returns to scale is the mean difference between the BCC DEA
and the CCR DEA, we opt for the former and utilize this as a technique for measuring pure
technical efficiency.

Yet, before moving on to the optimization problem, it is necessary to set a couple
of assumptions regarding the optimization problem and we consulted [41] to introduce
necessary conditions for achieving relative DEA-efficiency. The assumptions and the
necessary conditions for efficiency are summarized in the following three definitions.

Definition 1. The following assumptions hold for the optimization problem.

• A1 (linearity): The objective function in the optimization using DEA is linear.
• A2 (non-negativity): The values of the inputs xi,n and outputs yD

i and yU
i as well as the

weights λi are non-negative, i.e., xi,n, yD
i , yU

i , λi ≥ 0.
• A3 (convexity constraint): The weights λi sum up to 1, i.e., ∑C

i=1 λi = 1.

The linearity assumption implies that the optimization is done using a linear program-
ming technique, requiring the optimization problem to be formulated in a linear form.
Non-negativity requires that the values of the variables in the model cannot be negative.
The convexity constraint is a standard assumption added in a BCC DEA model. In fact, it is
a restriction on the production possibility set, which allows the projection of an inefficient
DMU to be represented as a linear combination of efficient DMUs.

Definition 2. If the optimal program satisfies f (x, y) = max θi, then DMUi is weakly DEA-efficient.
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The definition states that θi = 1 is the efficient score that one can obtain from solving
the optimisation problem. In fact, this indicates that a weak DEA-efficient DMUi when
θi = 1 lies on the DEA frontier. In the case of θi > 1, then the 1− θi is an inefficiency
margin, which reveals the degree to which the output level could be improved while
keeping the inputs unchanged to reach efficiency.

Definition 3. If the optimal program satisfies Definition 2 and A2 of Definition 1 holds, then
DMUi is relatively DEA-efficient.

This definition is important because it gives necessary conditions that should be
satisfied in order to reach a stronger form of DEA-efficiency.

We suppose that there are DMUs denoted by DMUi (i = 1, . . . , C) that represent
the EU member states. The DMUs use the set of N inputs x = (x1, . . . , xn) ∈ RN

+ to
produce a desired output yD ∈ R+ and an undesired output yU ∈ R+. Given that the
DMUs have opposite preferences towards the desired and undesired outputs—that is,
they intend to maximize the desired output and minimize the undesired output—it is
necessary to find a way to deal with this within the DEA-BCC model. Some possible ways
to treat the undesired outputs include: using reciprocals of the undesired output [42],
treating the undesired output as an input [43], and translating the undesired output to a
desired output using classification invariance [44]. Nevertheless, the use of reciprocals
violates the linear property and treating the undesired output as an input does not reflect
the production process as it is, so we therefore resort to a linear monotone decreasing
transformation with the classification invariance method proposed by [44]. The idea is to
use a translation vector v in order to convert the undesired output yU to a desired one y∗,
such that y∗ = −yU + v > 0 where v = max

(
yU

i
)
+ min

(
yU

i
)
. The latter implies that the

DMU with the highest value of the undesired output will have the lowest value after the
transformation. In essence, adding the maximum value of the undesired output guarantees
the non-negativity of the transformed values, and additionally adding the minimum value
sets it as the lowest value.

After dealing with the undesired output, the objective function that we aim to maxi-
mize is:

f(x, y) = max θi (1)

s. t.
∑C

i=1 λixi,n ≤ x0,n, n = 1, . . . , N (2)

∑C
i=1 λiyD

i ≥ θiyD
0 (3)

∑C
i=1 λiy∗i ≥ y∗0 (4)

∑C
i=1 λi = 1 (5)

xi,n, yD
i , y∗i ≥ 0 (6)

λi ≥ 0 (7)

where λi are the intensity weights for the linear combination of the sampled countries
and θi =

(
∑C

i=1 λiyD
i + ∑C

i=1 λiy∗i
)

/ ∑C
i=1 λixi,n denotes the efficiency score. The constraint

in (4) results directly from Assumption 3, while the constraints in (5) and (6) illustrate
Assumption 2.

6. Results and Discussion

The optimized efficiency scores are shown in Table A7 (Appendix D). The aggregate
average efficiency score for all EU member states is 1.160, indicating an inefficiency of
0.160 or 16.0%. Holding inputs constant, EU members can improve their output—that is,
increase GDP or/and reduce the CO2 emissions—by 16.0%. However, the DEA model does
not allow the score to be decomposed between the two outputs, and so exactly how much
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GDP could be raised and/or CO2 emissions be decreased is unknown. The NMS group
clearly has higher scores on average, with a mean inefficiency core of 29.5%, while the
OMS group has only 4.2% (see Figures 1, A1 and A2 of Appendix E). Consequently, new
member states could benefit more from efficiency-enhancing policies. Across individual
countries, nine are DEA-efficient in each year, with six belonging to the OMS group and
three to the NMS group. These countries are: Cyprus, Denmark, Estonia, France, Germany,
Luxembourg, Malta, Sweden, and the United Kingdom. Outside this consistently more
efficient group, there are countries which temporarily had high relative efficiency in some
years but not all: Greece (2011–2018), Ireland (2010–2011, 2015–2018), Italy (2010–2011,
2013), the Netherlands (2010–2013, 2017), Lithuania (2010), and Latvia (2017). The most
inefficient countries—the Czech Republic (70.3%), Romania (61.9%), and Bulgaria (54.7%)—
are all in the NMS group. Across all countries and years, Romania has the highest single
inefficiency score of 87.4% in 2012.
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There is no clear yearly trend in scores (Figure 2). Energy inefficiency is slightly higher
in 2018 (17.3%) than in 2010 (14.0%), and thus there is more work to be done. With a starting
score of 5.6%, the OMS group has improved energy efficiency during the decade. However,
results within the OMS group are quite mixed, with four countries improving efficiency,
five developing more inefficiency, and another six with constantly high efficiency levels.
Overall, energy efficiency within the NMS group displayed the opposite pattern, with
growing inefficiency. Only four countries had improved efficiency, three constant efficiency,
while all the rest deteriorated. This suggests that a different approach to improving energy
efficiency in the EU is necessary between OMSs and NMSs. An example of a country that
has done well is Portugal from the OMS group. After starting with an inefficiency score
of 21.1%, the country experienced a sharp drop in its inefficiency levels that dipped to
0.4% in 2013 and it maintained an inefficiency level below 10% until 2018 when it jumped
up to 14.1%. On the contrary, Lithuania from the NMS group, started from a level of full
efficiency in 2010, however inefficiency soared to above 10% in 2011 and continued to
increase to 30.4% in 2015, finishing with a country record high of 32.1% in 2018.
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Figure 2. Time evolution of the average efficiency scores for the country groups.

Over time, energy efficiency in the OMS group is quite stable despite the recession
included in the sample period. The NMS group and overall efficiency improved in the pe-
riod 2016–2017 but then reverted to more inefficiency in 2018 with NMS driving the overall
trend-line variation. Looking at year-by-year score differences (Table A8 of Appendix D),
two years exhibit especially worsening levels of inefficiency (2012: 14 countries with wors-
ening efficiency of the 17 that had a score change; 2015: 12 countries with worsening
efficiency of the 18 that had a score change). Particularly poor performers in 2012 were
Bulgaria (28.7%) and Romania (10.3%), while in 2015 they were Slovakia (17.3%) and the
Netherlands (11.7%). Across the sample, the improvement in efficiency in 2016 (0.072)
off-set the cumulative inefficiency in 2010–2015 to yield a record low overall score of 1.112.
Both the OMS and NMS groups improved efficiency in 2016–2017 as all 17 countries that
had score changes moved in the right direction. Nine countries—Bulgaria, the Czech
Republic, Hungary, Latvia, the Netherlands, Poland, Romania, Slovakia, and Slovenia—
managed to increase their efficiency by more than 10% in a single year. Unfortunately, the
average efficiency in the final sample year (2018) declined by 0.062 and all 17 countries that
recorded significant improvements fell back to their 2015 efficiency level.

7. Conclusions

Given there is no single widely accepted measure of energy efficiency, the DEA method
provides an opportunity for a more comprehensive analysis of inefficiency which is of
great importance for policymakers. Production factors are integrated with energy-related
variables on the input side to enable GDP to be a desired output and less CO2 emissions an
undesired output.

We find that average inefficiency in the EU for the period 2010–2018 is 16.0% with old
member states having markedly better energy efficiency management as illustrated by a
mean inefficiency of 4.2% against that of 29.5% on average in the new member states. Nine
countries (Cyprus, Denmark, Estonia, France, Germany, Luxembourg, Malta, Sweden, and
the United Kingdom) are DEA-efficient in each year, a list made of six old member states
and three new member states. On the other hand, the Czech Republic (70.3%), Romania
(61.9%), and Bulgaria (54.7%) are farthest from the efficiency line on average and are all
new member states. The gap between the two country groups expands over the decade as
inefficiency of the new member states worsens. There are many reasons that may explain
the differences across countries from the two country groups, such as uneven productivity
levels, different GDP sector composition, unfavorable energy structures, excessive energy
consumption, and the existence of technological gaps. Comparing the results from the
descriptive statistics for the modelled variables and the efficiency scores reveals that higher
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energy efficiency is, in general, associated with higher labor productivity and lower energy
intensity. This implies that the GDP sector composition of the new member states is heavily
reliant on labor and energy-intensive industries whose contribution is of high importance
to securing sustainable economic growth.

Our results indicate that the EU strategy towards energy efficiency could achieve better
results if member states are compared relative to other members within specific regions and
if specific national conditions are controlled for. An important aspect in promoting more
efficient energy management is improved communication between countries to benefit
from more extensive mutual cooperation. There are several methods that new member
states could transform into policies targeting energy efficiency. Firstly, one effective method
in increasing energy efficiency is the liberalization of the energy market, which would
facilitate adjustment in the energy structure by increasing alternative energy supplies (e.g.,
non-fossil energy) with a particular emphasis on energy from renewable sources. In this
regard, regulatory frameworks should be formulated and adopted to gradually mitigate
energy dependency and lower CO2 emissions, while another viable solution could be
the adoption of a carbon tax and the increase of investment in technological advances
for producing alternative energy sources. Secondly, energy efficiency could be increased
through targeting changes in the composition of the GDP sector that would increase the
contribution of energy-saving and technologically advanced industries in place of labor and
energy-intensive industries. This would enable the production of similar levels of economic
output with significantly lower energy intensity and lower CO2 emissions. Policies aimed
in this direction should encourage the growth of such industries through subsidies or tax
incentives for investment, increased R&D expenditure, and industrial digitization. Third,
it is necessary to target the improvement of energy management needs through an increase
of the productivity levels in the economy. Policy frameworks should include measures
aimed at reducing technological gaps by promoting innovations. Increased productivity
levels would allow higher production at lower energy intensities.
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Appendix A. Sampled Countries

Table A1 contains all countries included in the sample along with their ISO 3166-2
alpha-3 codes, as well as information regarding their accession to the European Union and
consequently the group which they belong to.
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Table A1. List of countries included in the sample.

Country Code Year of Accession Group

Austria AT 1995 Old member states
Belgium BE 1957 (founder) Old member states
Bulgaria BG 2007 New member states
Croatia HR 2013 New member states
Cyprus CY 2004 New member states
Czech Republic CZ 2004 New member states
Denmark DK 1973 Old member states
Estonia EE 2004 New member states
Finland FI 1995 Old member states
France FR 1957 (founder) Old member states
Germany DE 1957 (founder) Old member states
Greece GR 1981 Old member states
Hungary HU 2004 New member states
Ireland IE 1973 Old member states
Italy IT 1957 (founder) Old member states
Latvia LV 2004 New member states
Lithuania LT 2004 New member states
Luxembourg LU 1957 (founder) Old member states
Malta MT 2004 New member states
Netherlands NL 1957 (founder) Old member states
Poland PL 2004 New member states
Portugal PT 1986 Old member states
Romania RO 2007 New member states
Slovakia SK 2004 New member states
Slovenia SI 2004 New member states
Spain ES 1986 Old member states
Sweden SE 1995 Old member states
United Kingdom UK 1973 Old member states

Appendix B. Definition of Variables

Table A2 contains details about the variables used in the empirical analysis, including
both the variables used in the DEA model and the derived indicators. Variables are
classified into three groups—input, output, and derived indicators—in order to indicate
their purpose in the analysis.

Table A2. Definition of variables.

Variable Abb. Unit Source

Input variables
Labor force L million workers WDI
Capital stock K US$ WDI
Primary energy consumption PEI kWh EIA
Electricity consumption ELC kWh EIA
Output variables
Nominal GDP GDP GK$ WDI
CO2 emissions CO2 MMt EIA
Derived indicators
Nominal GDP/Labor force GDP/L US$/worker WDI *
Nominal GDP/Capital stock GDP/K US$-to-US$ indicator WDI *
Primary energy intensity PEI kWh/US$ EIA/WDI *
Electricity intensity ELI kWh/US$ EIA/WDI *
CO2 emissions/Nominal GDP CO2/GDP MMkg/US$ EIA/WDI *

Notes: The US$ is, in fact, the Geary–Khamis dollar, also known as international dollar, which measures the
US$ adjusted to purchasing power parity (PPP). The symbol * denotes own calculations based on data from the
given sources.
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Appendix C. Descriptive Statistics

Table A3 presents the summary statistics from the raw data, with Table A4 showing
the derived indicators and Table A5 reporting the country means for the derived indicators.
Table A6 shows the results from the two-group mean comparison test.

Table A3. Summary statistics for the variables used in the DEA model over time.

Year Measure

Variables

Inputs Outputs

L K PEC ELC GDP CO2

Million
Workers

Billion
US$

Billion
kWh

Billion
kWh

Billion
US$

Million
Tones

2010 Mean 8.69 121.7 792.3 105.8 607.8 146.7
Min 0.18 1.9 23.9 1.8 9.0 5.4
Max 42.01 663.7 4150.1 554.5 3396.4 863.0
St. Dev. 11.26 181.2 1073.5 145.2 921.4 203.6

2011 Mean 8.68 131.8 765.1 104.1 657.3 141.9
Min 0.18 1.8 23.0 1.9 9.6 5.2
Max 41.66 762.8 3974.3 547.6 3744.4 833.4
St. Dev. 11.24 199.5 1033.3 141.7 1000.7 195.9

2012 Mean 8.73 121.4 758.7 104.2 619.3 140.0
Min 0.19 1.7 27.5 1.9 9.5 6.1
Max 41.73 716.8 4018.7 545.9 3527.3 847.0
St. Dev. 11.33 186.2 1034.6 142.3 951.6 197.8

2013 Mean 8.77 123.7 754.5 103.2 645.7 137.2
Min 0.19 1.7 26.1 1.9 10.6 6.0
Max 42.10 742.9 4090.3 545.0 3732.7 862.9
St. Dev. 11.40 191.0 1040.7 141.8 993.9 197.6

2014 Mean 8.80 128.5 732.0 101.2 667.7 131.5
Min 0.20 1.9 25.4 2.0 11.6 5.4
Max 42.32 778.3 3955.9 533.7 3883.9 826.9
St. Dev. 11.45 199.2 1001.1 137.3 1037.7 187.7

2015 Mean 8.82 115.6 738.7 102.7 588.3 132.7
Min 0.21 2.6 26.6 2.1 11.1 5.3
Max 42.59 671.9 4003.2 538.2 3356.2 829.1
St. Dev. 11.50 175.4 1010.4 139.1 917.6 187.8

2016 Mean 8.87 118.0 743.2 103.6 592.2 132.2
Min 0.22 2.8 25.9 2.1 11.7 5.4
Max 43.06 703.8 4028.2 538.5 3467.5 827.7
St. Dev. 11.59 178.3 1009.2 139.5 913.6 186.3

2017 Mean 8.92 125.8 756.3 104.4 622.3 134.7
Min 0.22 2.9 26.6 2.3 13.1 5.4
Max 43.29 752.3 4165.8 538.8 3682.6 844.3
St. Dev. 11.64 188.6 1026.7 139.5 949.5 188.9

2018 Mean 8.96 137.2 752.5 104.3 672.3 132.0
Min 0.24 3.1 27.8 2.3 14.8 5.5
Max 43.56 837.6 4060.3 533.2 3963.8 810.8
St. Dev. 11.70 207.0 1014.7 138.5 1019.0 182.9

All Mean 8.80 124.9 754.8 103.7 630.3 136.5
Min 0.18 1.7 23.0 1.8 9.0 5.2
Max 43.56 837.6 4165.8 554.5 3963.8 863.0
St. Dev. 11.27 186.9 1011.0 138.3 953.1 189.1

Notes: Variables are labelled using the abbreviations introduced in Appendix B.
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Table A4. Summary statistics for the derived variables over time.

Year Measure
Indicator

GDP/L GDP/K PEI ELI CO2/GDP

2010 Mean 65,043 4.907 1.750 0.232 0.339
Min 14,748 3.683 0.751 0.104 0.118
Max 223,681 6.327 4.186 0.599 0.849
St. Dev. 43,499 0.594 0.794 0.104 0.187

2011 Mean 70,735 4.933 1.559 0.210 0.306
Min 17,219 3.671 0.669 0.096 0.094
Max 246,525 6.550 3.944 0.552 0.839
St. Dev. 47,620 0.716 0.736 0.093 0.180

2012 Mean 65,796 5.079 1.641 0.225 0.317
Min 16,167 3.509 0.668 0.100 0.093
Max 222,119 7.921 4.068 0.576 0.823
St. Dev. 43,696 0.954 0.746 0.099 0.178

2013 Mean 68,708 5.212 1.528 0.211 0.288
Min 16,515 3.607 0.648 0.096 0.086
Max 234,611 8.225 3.699 0.546 0.711
St. Dev. 46,008 1.010 0.666 0.093 0.153

2014 Mean 70,382 5.210 1.471 0.206 0.274
Min 16,933 3.910 0.610 0.091 0.085
Max 241,507 8.662 3.855 0.542 0.750
St. Dev. 47,369 1.067 0.687 0.093 0.156

2015 Mean 61,876 5.051 1.697 0.240 0.318
Min 15,192 3.768 0.603 0.087 0.098
Max 204,231 8.651 4.572 0.630 0.892
St. Dev. 41,551 1.105 0.808 0.110 0.182

2016 Mean 63,142 5.025 1.674 0.237 0.311
Min 16,483 2.807 0.615 0.086 0.099
Max 214,020 8.292 4.107 0.599 0.776
St. Dev. 42,705 0.986 0.754 0.106 0.170

2017 Mean 66,706 4.908 1.598 0.224 0.299
Min 17,564 3.186 0.558 0.078 0.094
Max 218,556 7.754 3.778 0.569 0.748
St. Dev. 43,968 0.854 0.710 0.100 0.167

2018 Mean 72,213 4.937 1.451 0.204 0.269
Min 19,904 3.801 0.505 0.071 0.086
Max 234,247 9.031 3.356 0.504 0.627
St. Dev. 46,882 1.004 0.631 0.088 0.146

All Mean 67,178 5.029 1.596 0.221 0.302
Min 14,748 2.807 0.505 0.071 0.085
Max 246,525 9.031 4.572 0.630 0.892
St. Dev. 44,267 0.927 0.723 0.098 0.168

Notes: Variables are labelled using the abbreviations introduced in Appendix B.

Table A5. Country means for the indicator variables over the entire period.

Country
Indicator

GDP/L GDP/K PEI ELI CO2/GDP

Austria 94,104 4.455 1.136 0.164 0.182
Belgium 101,510 4.549 1.431 0.157 0.257
Bulgaria 16,747 4.962 3.551 0.514 0.699
Croatia 30,731 4.947 1.936 0.272 0.337
Cyprus 39,687 5.737 1.430 0.184 0.329
Czech Republic 40,013 4.018 2.215 0.265 0.467
Denmark 114,634 5.148 0.920 0.109 0.193
Estonia 35,955 3.990 1.061 0.339 0.226
Finland 96,160 4.441 1.392 0.319 0.187
France 89,206 4.511 1.158 0.171 0.140
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Table A5. Cont.

Country
Indicator

GDP/L GDP/K PEI ELI CO2/GDP

Germany 85,676 4.946 1.116 0.149 0.231
Greece 48,188 7.864 1.490 0.238 0.337
Hungary 30,389 4.756 2.120 0.280 0.363
Ireland 120,379 4.609 0.658 0.093 0.133
Italy 81,571 5.597 0.999 0.146 0.182
Latvia 28,654 4.623 1.695 0.234 0.282
Lithuania 30,369 5.303 1.784 0.225 0.320
Luxembourg 226,611 5.363 0.897 0.103 0.182
Malta 55,051 5.071 2.769 0.184 0.679
Netherlands 94,493 5.099 1.364 0.129 0.289
Poland 28,161 5.207 2.364 0.281 0.608
Portugal 42,345 6.067 1.380 0.211 0.243
Romania 21,014 4.099 2.167 0.259 0.392
Slovakia 35,180 4.692 2.232 0.274 0.371
Slovenia 47,332 5.235 1.745 0.273 0.294
Spain 57,769 5.331 1.266 0.180 0.219
Sweden 105,863 4.252 1.173 0.242 0.095
United Kingdom 83,185 6.131 0.910 0.115 0.173
Old member states 96,113 5.203 1.135 0.168 0.198
New member states 33,791 4.829 2.129 0.283 0.423
All 67,178 5.029 1.596 0.221 0.302

Notes: Variables are labelled using the abbreviations introduced in Appendix B.

Table A6. Results from the two-group mean comparison test.

Country Group
Indicator

GDP/L GDP/K PEI ELI CO2/GDP

OMSs mean 96,113 5.203 1.135 0.168 0.198
(3,613) (0.089) (0.024) (0.005) (0.016)

NMSs mean 33,791 4.829 2.129 0.283 0.423
(953) (0.069) (0.066) (0.009) (0.006)

p-value 0.000 0.001 0.000 0.000 0.000
Notes: Standard errors are reported in parentheses. The hypotheses of the two-mean comparison test are
H0 : µOMS = µNMS and H1 : µOMS 6= µNMS.

Appendix D. Efficiency Scores from the DEA Model

Table A7 shows the annual efficiency scores calculated as θi per Definition 1 for all
countries and country groups. Table A8 reports the differences between efficiency scores in
two successive years where positive differences are coloured in red and negative differences
are coloured in green.

Table A7. Efficiency scores across countries.

Country
Year

2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean

AT 1.126 1.115 1.123 1.133 1.125 1.176 1.114 1.118 1.169 1.133
BE 1.036 1.035 1.036 1.045 1.035 1.123 1.024 1.031 1.108 1.053
BG 1.364 1.348 1.635 1.706 1.790 1.782 1.395 1.323 1.585 1.547
HR 1.266 1.257 1.321 1.355 1.342 1.373 1.323 1.253 1.413 1.323
CY 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CZ 1.707 1.734 1.770 1.734 1.750 1.772 1.633 1.567 1.664 1.703
DK 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table A7. Cont.

Country
Year

2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean

FI 1.206 1.175 1.198 1.171 1.157 1.170 1.146 1.147 1.200 1.174
FR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GR 1.103 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.011
HU 1.255 1.270 1.355 1.436 1.508 1.528 1.371 1.427 1.627 1.420
IE 1.000 1.000 1.049 1.002 1.038 1.000 1.000 1.000 1.000 1.010
IT 1.000 1.000 1.024 1.000 1.027 1.013 1.007 1.020 1.048 1.015
LV 1.039 1.105 1.177 1.224 1.199 1.228 1.037 1.000 1.117 1.125
LT 1.000 1.156 1.182 1.268 1.264 1.304 1.206 1.148 1.321 1.205
LU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MT 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NL 1.000 1.000 1.000 1.000 1.010 1.127 1.014 1.000 1.022 1.019
PL 1.278 1.348 1.357 1.293 1.319 1.296 1.150 1.099 1.182 1.258
PT 1.211 1.172 1.059 1.004 1.030 1.075 1.035 1.076 1.141 1.089
RO 1.636 1.770 1.874 1.673 1.649 1.656 1.485 1.410 1.417 1.619
SK 1.309 1.500 1.411 1.441 1.412 1.586 1.418 1.370 1.458 1.434
SI 1.235 1.221 1.249 1.290 1.237 1.226 1.077 1.042 1.210 1.199
ES 1.160 1.183 1.179 1.109 1.114 1.095 1.069 1.103 1.174 1.132
SE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
UK 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Means
OMS 1.056 1.045 1.044 1.031 1.036 1.052 1.027 1.033 1.058 1.042
NMS 1.238 1.285 1.333 1.340 1.344 1.365 1.238 1.203 1.307 1.295
All 1.140 1.157 1.178 1.174 1.179 1.197 1.125 1.112 1.173 1.160

Notes: Countries are labelled using the ISO codes introduced in Appendix A.

Table A8. Differences between successive efficiency scores across countries (ne).

Country
Year

2011 2012 2013 2014 2015 2016 2017 2018
AT −0.011 +0.007 +0.011 −0.008 +0.051 −0.062 +0.004 +0.051
BE −0.002 +0.001 +0.009 −0.011 +0.088 −0.099 +0.008 +0.076
BG −0.016 +0.287 +0.070 +0.084 −0.008 −0.387 −0.072 +0.262
HR −0.009 +0.064 +0.033 −0.013 +0.031 −0.050 −0.070 +0.161
CY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CZ +0.027 +0.036 −0.036 +0.016 +0.022 −0.139 −0.066 +0.097
DK 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
FI −0.031 +0.023 −0.027 −0.014 +0.013 −0.024 +0.001 +0.053
FR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GR −0.103 0.000 0.000 0.000 0.000 0.000 0.000 0.000
HU +0.016 +0.084 +0.081 +0.072 +0.020 −0.157 +0.057 +0.200
IE 0.000 +0.049 −0.047 +0.036 −0.038 0.000 0.000 0.000
IT 0.000 +0.024 −0.024 +0.027 −0.013 −0.006 +0.013 +0.029
LV +0.066 +0.071 +0.048 −0.026 +0.029 −0.191 −0.037 +0.117
LT +0.156 +0.026 +0.086 −0.004 +0.040 −0.098 −0.058 +0.173
LU 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NL 0.000 0.000 0.000 +0.010 +0.117 −0.113 −0.014 +0.022
PL +0.069 +0.009 −0.064 +0.026 −0.023 −0.145 −0.051 +0.083
PT −0.039 −0.113 −0.055 +0.026 +0.045 −0.039 +0.040 +0.065
RO +0.134 +0.103 −0.201 −0.024 +0.007 −0.171 −0.075 +0.007
SK +0.191 −0.089 +0.030 −0.029 +0.173 −0.168 −0.048 +0.088
SI −0.014 +0.028 +0.041 −0.053 −0.011 −0.149 −0.035 +0.169
ES +0.023 −0.004 −0.070 +0.005 −0.019 −0.026 +0.034 +0.072
SE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
UK 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Means
OMS −0.011 −0.001 −0.014 +0.005 +0.016 −0.025 +0.006 +0.025
NMS +0.048 +0.048 +0.007 +0.004 +0.022 −0.127 −0.035 +0.104
All +0.016 +0.022 −0.004 +0.004 +0.019 −0.072 −0.013 +0.062

Notes: Countries are labelled using the ISO codes introduced in Appendix A.
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Appendix E. Heat Maps of Efficiency Across Countries

Figures A1 and A2 depict the distribution of efficiency scores across countries in the
year with highest average score (2015) and the year with lowest average score (2017) on a
heat map of Europe.
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