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Abstract: Battery degradation is a fundamental concern in battery research, with the biggest challenge
being to maintain performance and safety upon usage. From the microstructure of the materials
to the design of the cell connectors in modules and their assembly in packs, it is impossible to
achieve perfect reproducibility. Small manufacturing or environmental variations will compound
big repercussions on pack performance and reliability. This review covers the origins of cell-to-cell
variations and inhomogeneities on a multiscale level, their impact on electrochemical performance,
as well as their characterization and tracking methods, ranging from the use of large-scale equipment
to in operando studies.

Keywords: lithium-ion; cell-to-cell variation; inhomogeneities; electrode production; cell assembly;
post-mortem; material characterization; electrical testing; capacity distribution; aging

1. Introduction

With sustainability being the new paradigm for development, today’s world is relying
more and more on clean energy storage technologies to help meet and keep up with the
ever-demanding energy goals. Thanks to their high power and energy densities, good cycle
life and excellent storage capabilities, Li-ion batteries are the product of choice and are
currently dominating the field of electrochemical energy storage. The biggest challenge
in using Li-ion batteries is to maintain performance and safety upon usage; this ideally
requires keeping all the cells balanced and homogeneously degraded. This is complex as
most applications require large battery packs comprising hundred to thousands of cells
that do not necessarily come from the same production batches nor are going to experience
the same currents or temperatures.

Different approaches are possible when assembling battery packs with different pro
and cons on inhomogeneities and cell-to-cell variations (ctcV). Some assemblers are choos-
ing to use cylindrical cells that are manufactured by the million with tightly controlled
characteristics, with the drawback of complicating assembly and control. Others are choos-
ing to use larger pouch or prismatic cells to limit the number of cells within a battery
pack. This eases assembly and control, but larger cells are usually more expensive and
manufactured in much smaller numbers which could make them more susceptible to ctcV.
In addition, because of the size of the battery packs and the size of the electrodes in each
single cell, electrodes often face inhomogeneous conditions upon aging, independently of
the form factor of cells used.
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Although ctcV and inhomogeneities plays a key role on the performance and durabil-
ity of large batteries, no review solely focused on their origin and their characterization is,
to the best of our knowledge, available. These topics were partially addressed in [1] for
ctcV, Reference [2] for material design, Reference [3] for electrode processing, and [4–9] for
characterizations, invasive or not, but not comprehensively. To fill this gap, this review
summarizes the state-of-the-art of understanding and characterization of ctcV and inho-
mogeneities observed upon aging. They were tackled with a bottom-up approach from
materials to battery packs and ending on the proposed characterizations.

2. Origins of Cell-to-Cell Variations (ctcV) and Inhomogeneities

From the fabrication of electrodes to the assembly in cells then packs, it is impossi-
ble to achieve 100% consistency with a zero-fault design and this will lead to intra- and
inter- cell variations, Figure 1. During material synthesis micro tolerances or variations,
among others, could lead to differences in structure, composition, or morphology [10].
Internal non-uniformities, such as disparities in architecture, composition or calendering,
might affect the initial performance of electrodes of which assembly and winding can also
induce inhomogeneous degradation [11,12]. At the pack or module level, variations in
wiring resistance, welding process, connectors, and environmental factors also influence
the overall performance and degradation [13,14] by affecting local state of health, tempera-
ture, or current distribution. This first section presents a description and assessment of root
causes, mechanisms and effects of inhomogeneities scaling from the materials to the elec-
trodes, then to the cell level, and battery packs. For ease of discussion, intra-cell variations
will be referred to as inhomogeneities and inter-cell variations as ctcV.

Figure 1. Multiscale breakdown of the origins of intra (yellow) and inter-cell (blue) variations.
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2.1. Material and Electrode Levels
2.1.1. Microstructure and Composition

The electrode composition, microstructure, and architecture play a key role in shap-
ing cell performance. Battery electrodes are complex and require active materials for
capacity, additives for electronic conductivity, binder to maintain mechanical integrity,
and porosity to allow ionic conductivity. Transport parameters such as ion diffusion, as well
as ionic and electric conductivity highly depend on the different pathways through the
electrodes [15–18]. Any defects or irregularities in the electrode materials can cause local
inhomogeneities that will directly affect the performance, durability and safety.

The first critical source of these local inhomogeneities stems from the base materials
themselves. Manufactured electrodes will be affected by the characteristics and the quality
of the precursor materials. This includes, among others, inhomogeneities in composition,
purity, defects, and morphology. Several authors have indirectly investigated the impact of
these inhomogeneities on cell performance. Harris et al. [11] showed that the structure of
the graphite electrode from a commercial laptop battery was non-uniform comprising of
high and low tortuosity subregions. Low tortuosity regions were suspected to be subjected
to higher Li+ ions concentration which could increase local current density and lead to
local overcharging [19]. This could in turn cause structural disordering or cracking of the
electrode and lithium plating [20,21] but also lead to temperature gradients. Vice versa,
high tortuosity regions could deter Li+ ions and cause some areas to be left delithiated,
lowering the capacity of the battery [22,23]. Müller et al. [24] found microstructural
inhomogeneities between graphite electrodes from different manufacturers at different
length scales, Figure 2. Differences in grain size (Figure 2a) lead to different porosity
(Figure 2b) and tortuosity (Figure 2c) values between electrodes. In addition, within an
electrode, tortuosity also appeared to be anisotropic (Figure 2c) with higher values in
the direction perpendicular to the current collector (TP on Figure 2c). Samples taken
millimeters apart were shown to have different overpotentials during lithiation which can
cause the potential of the electrode to drop below 0 V vs. Li0/Li+, triggering lithium plating.

Figure 2. Tomogram results of one sample of four different negative electrodes revealing: (a) the types of graphite particles
with associated (b) porosity and (c) tortuosity. IP1 and IP2 correspond to two in-plane directions while TP corresponds to
the through-plane direction (modified from CC BY Müller et al. [24]).
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Dubarry et al. [25] and Pavoni et al. [26] showed that grain size distribution can also
drastically affect the kinetics of the electrochemical response. Yang et al.’s [27] in situ optical
observations revealed gas and/or electrolyte filled defects in the electrodes that affected Li+

ion diffusion. Gas-filled defects decelerate Li+ ions while electrolyte-filled defects accelerate
them. This phenomenon also contributes to uneven Li+ ion distribution. Liu et al. [28]
proposed to predict the occurrence of lithium plating by analyzing the shape and size
of localized inhomogeneities. Results show that, for equal surfaces, areas with larger
inhomogeneities were more degraded than areas with clusters of smaller inhomogeneities.
Pouraghajan et al. [29] found a strong dependance between ionic/electronic conductivities
and cell chemistry. Differences in specific areas will also affect Li+ ion transport and
can lead to inhomogeneous distributions of current then eventually to the failure of the
cell [28,30,31].

During cycling, microcracks can also occur in the active material because of the
volumetric changes associated with Li+ intercalation. Concentration gradients within grains
leading to localized volumetric changes are believed to be the fundamental root cause of
the microcracking as well as the fracturing, and cracking of electrodes [32,33]. This will
affect electrode tortuosity and electronic resistivity. Microcracks were shown to happen
on graphite [34,35], silicon [36–38], and some positive electrode (PE) materials [33,39,40].
Several studies observed increased polarization and poorer electrical contact between active
particles and the current collector. However, this electrochemical milling does not always
result in worsening performances as it could increase the amount of accessible intercalation
sites, decreasing electrode tortuosity by opening pores and creating new ionic pathways.
Birkl et al. [41] showed that graphite electrodes in a Graphite//LiCoO2 (LCO)–NiMnCoO2
(NMC) pouch cells that were non-uniformly lithiated exhibited a higher capacity than the
homogeneous cell. Dubarry et al. [42] found that electrode cracking could improve kinetics
of an LFP electrode by increasing the specific surface area of the grains.

2.1.2. Electrode Fabrication

Beyond the materials, proper fabrication of electrodes is also essential to obtain a con-
sistent architecture. As shown in Figure 3, the manufacturing process of lithium-ion battery
electrodes involves many steps such as the weighing of active materials, the application of
the slurry on the current collectors, and the calendering process to smoothen and flatten
the electrodes [43]. These steps must be done with precision to achieve consistent porosity
and tortuosity. Improper mixing of the electrode slurry can lead to the inhomogeneous
distribution of the active materials and additives. When coating the electrodes after the de-
sired formulation is obtained, Higa et al. [44] reported that active material was found to be
more uniformly distributed on the electrode when slurry viscosity and heating power were
higher. In [45], Lenze et al. described the impact of deliberate variations within manufac-
turing parameters on the performance of lithium-ion batteries. Four sets of cathode recipes,
each with different active mass loading and calendering settings were prepared. The evalu-
ation of the resulting energy and power density show influence in order of magnitudes
and high sensitivity. With similar results, Dreger et al. [46] compared different dispersing
procedures and their impact on performance. Kenney et al. [47] set out to link the impact
of variations in the electrode manufacturing process (electrode thickness, electrode density
and active material) to the capacity of lithium-ion battery modules. Recent optimization
work from Rynne et al. [48] showed the potential for design of experiments (DOE) in
electrode formulation. The group studied almost 100 different electrode formulations and
was the first to openly report empirical equations linking electrode microstructure to cell
behavior. Results indicate that higher cell performance is linked to high active material
content with a small fraction of conductive additives as well as minimal binder content.
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Figure 3. Manufacturing process steps of a lithium-ion pouch cells (CC BY Mauler et al. [49]).

The influence of the calendering process on the pore size distribution and particle defor-
mation was investigated by several groups like Haselrieder et al. [50], Ngandjong et al. [51]
and Kang et al. [52]. Schmidt et al. [53] studied highly compressed NMC electrodes and
found optimum calendering/compression rates necessary to obtain high-capacity retention
while being able to deliver good power and long-term performance. Production parameters,
therefore, must be tightly controlled to ensure consistent quality.

Although a lot of work has been done in material synthesis and processing, further en-
gineering and optimization [48] of the electrode microstructure, especially with the help
of modeling [54–56] and of new machine learning techniques [57], is vital to achieve high
homogeneity and high transport parameters in order to minimize the effects of inevitable
manufacturing tolerances—whether it be large scale or laboratory scale manufacturing—on
the development of high-performance cells.

2.2. Cell Level
2.2.1. Intrinsic

A typical commercial cell is far more complex than the simple schematic of a battery
with two electrodes separated by a separator. During cell assembly, process-related inac-
curacies can also cause the cells to behave inhomogeneously [58]. These homogeneities
will also be influenced by the construction of the cells—cylindrical, prismatic or pouch—
because of the variations in production process between the different formats. For the
classic cylindrical 18,650 cells, once the electrodes have been sized accordingly, the com-
ponents are assembled into a separator-negative electrode-separator-positive electrode
stack then wound into a jelly roll. The jelly rolls are then inserted in cylindrical cases,
and conducting tabs are welded on the terminals. Prismatic cells generally consist of long
stacks of electrodes similar to those of cylindrical cells but folded and pressed to fit into a
hard rectangular casing instead of being wound. Pouch cells do not have a rigid enclosure
and use stacked paralleled electrodes without winding or folding. The negative (NE) and
positive (PE) electrodes are cut into individual rectangles which are stacked alternately
and separated by the separator, then sealed in an aluminum pouch. The assembly process
of a lithium-ion battery is very intricate [49] and Figure 3 highlights the high number of
necessary steps for a pouch cell.
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Tight measures must be put in place to ensure minimal variations. Leithoff et al. [58]
studied the effect of electrode deposition accuracy during the stacking process and found a
linear relationship between the nonoverlapping of the electrodes and discharge capacity.
Paxton et al.’s [59] results reveal asynchronous discharge behavior and incomplete electrode
utilization. Ziesche et al. [60] noticed that pristine cells already showed cracks on the PE,
most definitely after-effects of the production process. The cracking is accentuated when
moving towards the center of the cell where the electrode’s bending radius is higher.

Small variations are impossible to avoid and cells from the same production line are
usually sold in different grades to account for intra-batch inhomogeneities. Ranging from
smaller scale testing [61–65] to larger scale testing [10,65–71], many studies reported cell-
to-cell variations within batches. Dubarry et al. [69] were among the first to conduct
systematic campaigns of ctcV characterization on new batches of cell and characterized
them with three independent attributes: the amount of active material, the polarization
resistance, and the rate capability. In [70], they also investigated variations in the electrode
loading ratio and SEI induced electrode offset. Rumpf et al. [66] addressed higher variation
between batches than within. Differences in cell-to-cell variation could also be shown over
a three-year production cycle in Schindler et al.’s [10] where three batches of cells were
purchased 14-months apart. Results from most studies [61,65,66,68] showed that discharge
capacities tend to follow and keep a normal distribution whereas the ones for polarization
are skewed with a larger tail towards higher resistances. Schuster et al.’s study [68] found
that, during aging, the distributions switch from normal to Weibull and assumed it was
induced by interrelationship between the cell variations during the production process
and the different aging mechanisms. Higher ctcV are expected for prototype cells and
commercial cells with low volume production.

2.2.2. Cycling

Mechanically induced stress from the cycling can also cause inhomogeneities to arise.
Through the charging and discharging regimes, Li+ ions intercalation and deintercala-
tion is often associated with volume changes which might lead to mechanical stresses.
An advantage of cylindrical cells is high mechanical stability as their shape allows the
even distribution of internal pressure. However, when the pressure build up is too high,
the uniformity of the jelly roll can be compromised. Carter et al. [72] investigated me-
chanical failure in cylindrical cells by comparing cells with and without mandrels. At the
pristine state, mandrel-less cells show less deformation than mandrel cells. However,
the jelly roll in mandrel-less cells is shown to be more prone to mechanical collapse after
cycling. Pfrang et al. [73] and Willenberg et al. [74] studied the morphology of the jelly roll
of cylindrical cells. Pfrang et al. [73] noticed that the deformation almost always occurred
between the PE tab and the inner pin. It was concluded that inhomogeneous architecture
of the cells is caused mainly by the PE tab deformation which is the result of thickness
variations of the NE and PE during charge/discharge cycles. Postmortem analysis showed
delamination of the active material in the high stress area and the creation of gaps between
the aluminum current collector and PE coating which contributed to the loss of active
material. Willenberg et al. [74] correlates jelly roll deformations to cyclic aging, stating that,
at the time of delivery, there were no signs of deformation. However, Bach et al. [12] noticed
that even pristine cells exhibit signs of jelly roll deformation and linked the cause to the
positioning of the tabs. The slight bulkiness of the tabs deforms the jelly roll and creates low
and high-pressure areas also leading to separator inhomogeneities [75,76]. Lithium plating
was mostly observed in high pressure areas. Mühlbauer et al. [77] focused on electrolyte
distribution in cylindrical cells. Systematic results reveal lower lithium concentrations
at the top and bottom of the aged cells possibly caused by mechanical deformities or
inhomogeneous pressure or temperature gradients. Lower lithium concentrations were
also observed in the outer region of cylindrical cells due to the inhomogeneous distribution
of the liquid electrolyte [78,79].
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The rigid case of prismatic cells helps them withstand high external mechanical stress
situations; however, the folded sheets in the case experience high levels of internal stress
especially at the edges. Coupled with manufacturing inhomogeneities, such as welding
burrs, high internal stress can damage electrodes or cause uneven electrolyte distribution
that can trigger unwanted lithium plating leading to internal short-circuits and thermal
runaway. This happened to be the root cause of the well-known fire incident with the
Samsung Galaxy Note 7 batteries [80,81] that is shown in Figure 4.

Figure 4. Observations of tab deformation and assembling and welding inconsistencies in the Samsung Galaxy Note 7
batteries: (a) X-ray CT scan of electrode deformation in the prismatic cell; (b) missing insulating tape on the cathode tabs;
(c) SEM cross-section of an anode tab weld (CC BY Loveridge et al. [81]).

Several authors investigated temperature gradients across cells. Werner et al. [82]
compared cell degradation under spatially homogeneous and inhomogeneous temperature
distributions and observed different aging mechanisms between the two conditions. Uncon-
trolled inhomogeneous elevated temperatures can cause undesired side reactions that can
accelerate degradation or result in thermal runaway [14]. Osswald et al. [83] used modified
commercial cylindrical cells to study the influence of temperature on current distribution,
leading to SOC inhomogeneities at different locations on the electrodes. The group recorded
larger inhomogeneities for increasing temperatures and C-rates. Grandjean et al. [84] sup-
ports Osswald’s findings in that thermal gradients increase with increasing C-rate and
decreasing temperature. He also noted that the top of the pouch cell, where the tabs are
located, is not the hottest area. A recent study by Carter et al. [85] on interelectrode thermal
gradients demonstrated how they can induce certain battery degradation mechanisms.
The electrochemical reactions within a cell are known to be highly temperature dependent;
therefore, thermal gradients can create a capacity mismatch between the PE and NE and
accelerate electrode degradation. Paarmann et al. [86] adds to this claim by stating that at
lower temperatures, the same temperature difference has a higher impact on the current.

During their lifetime cells can be subject to various cycling—normal or abusive—
conditions triggering certain degradation mechanisms that reveal themselves as inhomo-
geneities. This repeated process can initiate spatial inhomogeneities [87,88]. Gas formation
is known to be a byproduct of electrolyte reduction [89]. Michalowski et al. [90] observed
lower chemical activity in the center of a pouch cell and attributed it to a gas bubble creating
a low pressure zone, reducing Li ion transport by poor contact. Similarly, in a pouch cell
study performed by Devie et al. [91,92] where gas evolution was observed, they attributed
the simultaneous loss of active material (LAM) on both electrodes to the interruption of the
ionic conduction pathways between the PE and NE. Displacement of the gas bubble to the
top of the stack allowed the inactive areas to become active again, regaining previously
lost capacity.

The results from all of the above affect the cells and the impact of these variations is
significant. In cells from the same production batch with little initial cell-to-cell variability,
tested under the same testing conditions [61,93,94], inhomogeneities will arise and lead to
large deviations from one another. Baumhöfer et al. [61] showed that aging 48 cells issued
from the same production lot using an identical protocol resulted in large inhomogeneities
with the worst cell having a cycle life 25% shorter than the best cell. In addition, little to no
correlation was found between initial cell-to-cell variation and later degradation of the cells
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during cycling [93,95]. For this reason, special attention must be exerted when dealing with
battery pack assembly and highlights the need for accurate material-based state-of-health
(SOH) estimation techniques [96].

2.3. Pack Level

Battery packs are often divided into multiple modules in series and/or in parallel and
have a battery management system (BMS) to monitor performance. It is the final shape
of the battery system that will be deployed for the chosen application. Such assemblies
are necessary to meet rigorous power and energy requirements, and proper cell balancing
as well as their appropriate connection are critical factors to monitor to prevent the rise of
inhomogeneities. Cylindrical cells are usually welded to one another in large quantities
allowing for simple construction. While space management remains somewhat suboptimal,
the thermal management in a pack is easier due to the spaces between cells. It is one of
the cheapest methods for producing large lithium-ion battery packs. Prismatic cell battery
packs can store more energy within their volumes; thus they offer a higher energy density,
and can be more powerful without using more space. The box-like shaped cases are ideal
candidates for spatial optimization making the best use for available space but leaving
limited room for proper thermal management. Pouch cells make the most efficient use of
space because they do not have any metallic enclosure, but they are usually sensitive to
external stress factors and therefore require alternative support during assembly.

Inhomogeneities in modules and packs can arise from several factors. Depending on
the material properties and contact geometry of the battery casing and tabs, different weld-
ing techniques could be used to ensure proper connection between cells as well as proper
assembly of battery packs. Brand et al. [97] presented an overview of three main welding
techniques: resistance spot welding, ultrasonic welding and laser beam welding, with de-
tails on their influence on contact resistances in various types of batteries and battery
casings. In all cases, heat was very localized which did not affect the health of the cells.
Taylor et al. [98] discussed the effects of connectors and connections on the resistance of
the circuit and, although the study was done for characterization experiments, their results
are applicable and need to be taken into account. If done incorrectly, the integration of
unmatched cells, poor cell connections or an asymmetric module design can lead to in-
homogeneous currents flowing through the module [99] inducing temperature gradients
leading to inhomogeneous degradation. Rumpf et al. [1] studied the influence of ctcV on
the inhomogeneity of battery modules. The importance of a symmetric module design
was highlighted in order to obtain symmetric current distribution. They also observed
that an asymmetric design of cell connectors can have a larger impact on inhomogeneous
current distribution than ctcV. Inhomogeneous current flow due to uneven contacts was
also studied by Wang et al. [100]. They stated that inhomogeneous current flow through
parallel cells is induced by the resistance of the intercell connecting plates. This caused
cells to be discharged unevenly, therefore, lowering the terminal voltage of the module,
affecting its usability. Offer et al. [101] backs the results of the previous studies by show-
ing that uneven current flow in a pack is more likely to come from a defective intercell
connection plate resistance rather than a cell with an abnormally high impedance. A pack
containing 504 cells in a highly paralleled configuration was tested and it was shown that a
single high intercell connection resistance was setting off large SOC variations between
the cells in the same parallel strip, leading to the premature aging of the pack. A recent
review on SOC estimation methods in lithium ion battery packs summarized the impact of
cell inconsistencies due to manufacturing and welding processes on pack performance and
SOC estimation [102].

The implementation of CtcV in battery pack models [103–105] helped show their
impact on a multiscale level and they were found to have a much higher impact on cells
connected in series rather than in parallel. Experimentally validated simulations by Liu
et al. [106] placing a cell with a high internal impedance closest to the load where the
currents are higher provide better cell-to-cell current distribution because higher internal
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resistances lead to less current through the cell [107]. On other hand, placing a high internal
impedance cell furthest from the load would be detrimental to the performance of the pack,
reducing its capacity as the other lower impedance cells would get reach terminal voltage
first. Neupert et al. [107] studied the current distribution depending on the position of
cells with different impedances in a parallel configuration. Surprisingly, cell position in
the parallel strip has a higher influence than the internal resistance of the cell at a specific
position. Gogoana [63] linked resistance mismatch in parallel connected cells to capacity
fade while Grün et al. [13] researched on the importance of the ratio of the cell’s internal
and contact resistances.

Liu et al. [106] and Wu et al. [108] observed that inhomogeneous current flow drives local-
ized heat generation especially in cells closer to the load points of the pack. Dubarry et al. [109]
used data from a deployed grid scale battery energy storage system containing more than
2500 batteries to examine temperature gradients between modules and found a maximum
temperature variation of 16.5 ◦C between modules. Other studies have attempted to correlate
capacity loss with temperature variations [110,111]. These thermal gradients could aggravate
cell degradation and further accelerate the aging of the concerned cells, jeopardizing the
performance and safety of the pack. Several other cell sorting studies were made in order
to achieve better cell-to-cell consistency and push for longer cycle life [112,113]. Careful ar-
rangement of cells in modules and modules in pack is primordial in assuring equal current
flow throughout the module while minimizing thermal gradients, especially when high
currents are in play. Cooling strategies are often thought off to help mitigate the effect of
unwanted thermal gradients. Wang et al. [114] discussed multiple heat dissipation mod-
ule configurations for cylindrical cells with and without forced air cooling and came to the
conclusion that cubic structures are the best choice in terms of cooling capability as well as
cost. The temperature distribution in the module also depends on the position and airflow
of the cooling source. Cells nearer to the cooling source will inherently be cooler than those
farther away. Effective heat dissipation and insulation technology are vital to adjust the
temperature of the battery pack and help them reach their optimal operating temperature,
reducing inhomogeneities while improving electrode kinetics.

All these variations will present the cells within a pack with different aging condi-
tions which might exacerbate or inhibit certain degradation mechanisms. Although path
dependence is not considered an inhomogeneity in itself, cells/modules following dif-
ferent degradation paths when they are supposed to be working homogeneously, can be
considered inhomogeneous at the pack level. Path dependence poses an issue to predict
aging of cells in a battery pack. These issues arise because cells are not subject to similar
conditions all the time: variations in cell assembly, calendar aging between cells from
different batches, thermal gradients, current distribution, etc. Several studies about path
dependence [115–118] have been conducted. Results show that different cycling condi-
tions induce different mixes of degradation mechanisms such as loss of lithium inventory
(LLI), loss of active material at the negative electrode (LAMNE) and loss of active ma-
terial at the positive electrode (LAMPE). The complex interaction between the different
degrees of these losses will all lead to significantly different aging timelines. It is there-
fore, challenging to associate cell constant-current laboratory tests to sporadic driving
conditions [119,120]. Path dependence is particularly notable when dealing with second
life batteries as they have been already degraded over time [121,122]. Remanufacturing or
refurbishing processes must ensure pack stability, but it can be challenging when the first
life is not recorded.

3. Methods to Track Inhomogeneities

Inhomogeneities are a major concern for the reliability and safety of modern batteries.
While significant effort must be deployed to eliminate them, developing advanced tracking
methods to anticipate and quantify their impact is also crucial. A multitude of ways to
track inhomogeneities can be found in the literature with different measuring principles
and varying complexity. They differ in length scale from sub-particle to pack-to-pack
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variance tracking, in time scales from milliseconds to years and in the complexity of the
measurement instruments from particle accelerators down to using the onboard battery
management system (BMS). In this section, a comprehensive set of analytical methods
for evaluation of inhomogeneities and ctcV is presented. These methods are grouped by
measurement complexity from research facility scale to laboratory scale and field scale
methods, as depicted in Figure 5.

Figure 5. Different scales and complexity for ctcV and inhomogeneities measurements: (a) Large scale research facilities;
(b) Laboratory-scale; (c) Field usage data.

3.1. Large-Scale Research Facilities

Large-scale research facilities generally allow for comprehensive investigations be-
cause they offer much higher brilliance for their spectroscopic measurements, a term
that describes both the brightness and the angular spread of the beam. Synchrotron
has brilliances more than a billion times larger than a standard laboratory X-ray source.
Higher brilliances allow more resolution in measurements, to penetrate deeper into matter,
to study much smaller features or to scan large area much faster.

3.1.1. High-Energy X-ray

High-energy X-ray (HEX) with energy levels over 80 keV can be used to nondestruc-
tively probe bulk processes on large format cells in situ and in operando [123]. To quantify
inhomogeneities in situ Paxton et al. [59] used a polychromatic synchrotron X-ray source to
perform energy-dispersive X-ray diffraction (EDXRD). Lithium cannot be tracked with this
technique, but the lithiation dependent structure of the materials can be monitored. In [59],
the distribution of the ratio of iron-phosphate FePO4 to lithium-iron-phosphate LiFePO4
at a particular region was used to track the local state of charge (SOC). It must be noted
that with this technique, all sheets of the cell are measured at once and an average phase
ratio is determined. An example of the determined phase ratios from [59] is presented
in Figure 6a,b. The inhomogeneous discharge behavior is clearly visible as Locations C and
F are not at the same SOC as the rest of the electrode.

3.1.2. X-ray Tomography

X-rays from synchrotrons can also be used for 3D-reconstruction of electrodes as
performed by Müller et al. [24] with synchrotron radiation X-ray tomographic microscopy
(SRXTM). Four commercial graphite anodes were measured on a µm-level and, amongst oth-
ers, porosity, tortuosity, and particle size distributions were evaluated. In addition, this tech-
nique was used for determining the structure of silicon graphite negative electrodes
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and its 3D reconstructed in 3D [124]. An example of the obtainable reconstructions is
presented in Figure 6c.

Figure 6. 3D reconstruction of electrodes: (a) Location of bulk measurement points, and (b) spatial inhomogeneity during
discharge in LFP pouch cell. Reproduced with permission from [59] Copyright 2015, Elsevier. (c) The 3D-reconstruction of
tomographic raw data and segmentation of silicon-graphite anode from a transmission X-ray tomographic microscope.
Scale bar 15 µm. (CC BY 4.0 Müller et al. [124]).

3.1.3. Neutron Diffraction

Neutron diffraction offers advantages such as higher resolution for small atoms
like lithium or the distinction between isotopes. Neutron reflections of the LiC6 and
LiC12 phases of graphite anodes also differ which can be used to approximate lithium
concentration [79,125]. Since the measurement can be performed without destruction of the
cell, the lithium distribution can be tracked during cell degradation [126–128]. With spatial
resolution, this technique can be used in situ and 3D for example for determination of
lithium distribution in cylindrical 18,650 full cells [129,130] as shown in Figure 7.

Figure 7. Lithium distribution as cross-section determined by differences of reflections of LiC6 and LiC12 phases in graphite
with spatially resolved neutron diffraction. Over cycling inhomogeneities enhance. Reproduced with permission from [130]
Copyright 2020, Elsevier.
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3.2. Laboratory Scale Tracking

Compared to the very few research facilities with large instruments, laboratory scale
devices and methods generally show much more widespread availability and can be
performed in most battery research laboratories. In this subsection, laboratory scale ap-
proaches with specific focus on identification and characterization of inhomogeneities are
presented. For a more general perspective on post-mortem techniques, the authors refer to
Waldmann et al. [7], Lu et al. [8] and Harks et al. [9].

3.2.1. Cell Modifications

To investigate local variations in the internal state of a commercial cell, a widespread
approach is modification and reconfiguration of the cell. Modification covers the introduc-
tion of sensors and reference electrodes into the cell. Fleming et al. placed temperature
sensors inside a commercial cell to capture temperature gradients [131] while McTurk
et al. [132] demonstrated the insertion of a wire reference electrode into a commercial
pouch cell. Another approach was used by Osswald et al. [133] where the current tabs were
separated and used to measure space-resolved electrochemical impedance spectroscopy
(EIS) measurements as well as temperature changes during cycling [83]. Reconfigura-
tion covers the extraction of single cell parts from a commercial cell, like one of the
electrodes or the separator, and the reassembly of a new cell of new format (mostly coin
cell format). This allows to evaluate the electrochemical behavior of aged samples whilst
using reference compounds for all other parts. The new cell can then be evaluated as any
other cell. Spatial resolution can be achieved by using samples from different regions of the
commercial cell. In this context, Wang et al. [134] performed cycling tests and impedance
measurements at coin cells obtained from different regions of a commercial 18,650 cell
that aged inhomogeneous whereas Sieg et al. [20] created coin cells from a commercial
pouch cell to evaluate local deviations in the differential voltage analysis caused by in-
homogeneous lithium distribution and local cell aging. With the spatial resolution of the
measurements aging maps of the electrode sheets were created, showing the location of
aging gradients.

3.2.2. Spatially Resolved Bulk Measurements

Some of the measurement methods presented in this section are only capable of iden-
tifying bulk values for the whole sample introduced into the measurement, giving no
opportunity to identify the spatial resolution of inhomogeneity within the sample. To ap-
ply these measurement methods for evaluation of inhomogeneity, units of interest for
inhomogeneity (e.g., an electrode sheet) have to be subdivided into a set of samples that
covers the area of the whole unit. These samples are then evaluated by bulk measurements
independently. The spatial distribution of the samples hereby allows for the determina-
tion of the spatial resolution of the quantity measured by bulk measurements within the
unit of interest. Sieg et al. [20] used this approach to determine the inhomogeneity of
capacity distribution within a pouch cell by creating coin cells from an electrode pair and
evaluating coin cell capacity. Figure 8 shows the spatial distribution of the samples (a),
the optical changes on the anode (b) and the capacity distribution (c) for the electrode pair.
Further spatially resolved bulk measurements were performed by Warnecke [135] by the
use of inductively coupled plasma optical emission spectroscopy (IPC-OES) on different
areas of the anodes to track inhomogeneous manganese distribution caused by manganese
dissolution at the cathode.
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Figure 8. Spatially resolved capacity measurement with coin cells: (a) Shows schematic of the location of the samples;
(b) Shows one anode sheet and sample locations; (c) Heat map with normalized C/10 capacity with location on the
electrodes. Reproduced and modified with permission from [20] Copyright 2020, Elsevier.

3.2.3. Visual Inspection of Post-Mortem Cells

For qualitative evaluation of inhomogeneities within a cell, visual inspection of
the electrodes and separator can be used to overview inhomogeneous cell behavior.
Since graphite presents different colors depending on the lithiation stage, cells with graphite
anodes can be inspected visually for inhomogeneous lithium distribution [136,137], an ex-
ample from Spingler et al. [138] is presented in Figure 9a. In addition, lithium plating
can be observed [28,139] as well as covering layers [140,141] and delamination [74]. Vi-
sual inspection of cell inhomogeneity can be further supported by means of light, as seen
in Figure 9b where Käbitz [142] used laser microscopy in order to allow for higher de-
grees of magnification. Exemplarily, Ecker et al. [21] also applied laser microscopy for
characterization of lithium plating in a commercial 40 Ah pouch cells.

Figure 9. Visual inspection of electrodes: (a) Part of the anode of an 18,650 cell with coin cell probes taken in different
locations of the cell. The outer part of the electrode shows a different lithiation than the middle part. (Modified from CC BY
4.0 by Spingler et al. [138]); (b) optical microscopy of the outer part of an anode showing individual particles with different
lithiation (CC BY 4.0 by Käbitz [142]).

3.2.4. Electron Microscopy

Compared to light microscopy, scanning electron microscopy (SEM) allows for higher
magnification and can track inhomogeneities on a material level. This includes uneven
particle sizes, particle cracking, delamination [81] or deformation [143]. Whilst SEM is not
capable to penetrate into active materials, focused ion beam milling (FIB) can be applied
to erode the active material layer by layer and allow for 3D-imaging of electrode struc-
tures using FIB/SEM [124]. Furthermore, SEM can be coupled with an energy-dispersive
X-ray spectroscopy detector (EDX) to allow for spatially resolved determination of ele-
mental composition in the active material. Burow et al. [144] applied SEM/EDX to detect
inhomogeneous lithium plating in automotive cells cycled at low temperatures.
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3.2.5. Computer Tomography

Computer tomography (CT) uses X-rays and moving sample to reconstruct a 3D
representation of the cell. On the laboratory scale it can be used with lower resolution
(up to 100 µm resolution) for full cells, as well as for parts of a cell with higher resolution.
The main field of application for CT is the non-destructive geometric depiction of the
cell. This allows for the spatially resolved identification of deformations that can be
caused by uneven stress within the battery or by delamination. Computer tomography has
shown multiple times the deformation of the jelly roll in cylindrical cells [72–74,142,144].
On a nanoscale, CT can also be used to see heterogenous particle cracking and covering
layer formation [145,146]. Li and Hou also reported correlation between their capacity
measurements and CT image data [147].

3.2.6. Magnetic Resonance

Magnetic resonance spectroscopy techniques enable the identification of material
compositions inside of lithium-ion batteries. This allows for the identification of phase
compositions and active and passive materials degradation due to cell aging. The magnetic
susceptibilities of many cathode materials depend upon their lithiation state [148]. Ilott et al.
used magnetic resonance imaging (MRI) on small 600 mAh pouch cells with an induced
magnetic field being changed as a function of state of charge [148]. With various magnetic
field maps taken at different charge levels, inhomogeneous lithium distribution within the
cell could be found. In addition, defective cells could be identified. While MRI is using the
intensity of radiation, nuclear magnetic resonance (NMR) does analyze the frequency of
the response signal. Krachkovskiy signatures from stages of graphite lithiation can be seen
in NMR spectra [149]. Furthermore, NMR can be applied for identification of electrolyte
decomposition as shown by Wiemers-Meyer et al. [150]

3.2.7. Acoustics

Acoustic measurements can be used to gain information on the geometric structure
inside a cell and on the composition and lithiation of the active materials. The acoustic
properties of electrode materials correlate with state of charge due to changes in the density
during lithiation. Using this property, differences in lithiation during usage were mapped
by Robinson et al. in small pouch cells with spatially resolved ultrasound measurements
coupled CT measurements [88]. Bauermann et al. showed scanning acoustic microscopy
(SAM) can visualize defects inside battery cells non-destructively. With distinct acoustic
impedances inhomogeneities are detected and localized. SAM is best used on flat and
thin battery cells and on effects like gas formation with high sensibility of the acoustic
patterns [151]. Acoustic attenuation spectroscopy (AAS) can be used to determine the
particle size distribution post mortem by dissolving binders in electrode samples thus
transforming the active material into a particle suspension [26].

3.2.8. Electrochemical Characterization

Unlike many of the aforementioned methods, electrochemical characterization can
be performed directly on the commercial cells with no need for cell opening nor sample
extraction to generate a bulk information about the full cell. Moreover, it can also be
performed on electrode cutouts, as mentioned in the Section 3.2.1, to allow spatially
resolved analysis of the electrochemical cell behavior. Electrochemical measurements allow
to gather information on the thermodynamic state of the cell as well as its kinetics.

CtcV are usually characterized during a conditioning test at the beginning of test-
ing [152]. In addition, those measurements are part of every aging study and can re-
veal cell-to-cell variation over the lifetime of a cell [93,94]. One such experiment is
shown in Figure 10a from Baumhöfer et al. with 48 cells cycled under equal conditions.
This test usually involves the assessment of the distribution of capacity, rate capability,
and resistance [10,61–66] to assess thermodynamic and kinetic variations. For a capacity
test, the cells are usually fully charged and then discharged to the end-of-discharge-voltage
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by a defined current. The integral of the discharge current over the discharge time is the
resulting cell capacity and depends on the applied C-rate but converges to the theoretical
cell capacity for low C-rates. Rate capability can be characterized by the Peukert constant
or a ratio of two different rates [152]. For the characterization of resistance, the voltage drop
associated with the application of current could be used, or the cell can be excited by short
high-current pulses with various defined frequencies (electrochemical impedance spec-
troscopy) but this requires specific equipment. Electrochemical impedance spectroscopy
also allows for the distinction of electrochemical processes within the cell associated with
different relaxation time constants. Thereby, variations in conductivities, charge transfer
reactions, and diffusion behavior can be investigated independently. If no equivalent circuit
model is available, an investigation of the distribution of relaxation times (DRT) also allows
for the characterization of ctcV. An overview over electrochemical impedance spectroscopy
for lithium ion batteries is presented by Meddings et al. [153].

Figure 10. Different aging trends and differential voltage analysis: (a) The 48 cells under equal conditions with focus on
inherent production caused cell-to-cell variance and capacity degradation over cycles, 80% and 60% of initial capacity are
marked with green dashed line. Reproduced from Baumhöfer et al. [61]. (b) Differential voltage analysis on a 25 Ah cell to
determine changes in the peak heights to quantify the homogeneity of lithium distribution [126].

Lastly, the use of electrochemical voltage spectroscopies, differential voltage analysis
(DVA) [154], and incremental capacity analysis (ICA) [155] were also shown to allow the
visualization of ctcV. Inhomogeneities are harder to assess at the full cell level because
of the bulk nature of the measurements. However, DVA and ICA were shown to offer
strong insight. Lewerenz et al. [156] observed some valley broadening using DVA, 10b,
and associated them with growing inhomogeneities. If parts of the electrodes have a higher
charge level due to an inhomogeneous lithium distribution, those areas will show the peaks
in the DVA later during a constant discharge [156]. As the overall voltage corresponds
to all individual voltages, the steps in the discharge curve and peaks in the DVA should
be less prominent in inhomogeneous cells. ICA and DVA can also be used to visualize
differences within cells in modules or packs [104,157–160].

Another indicator for homogeneity within a cell or packs can be evaluated by tracking
differences in rate capability over time [155,161]. For this technique, the difference of rate
capability, i.e., the extractable capacity at a certain current, could be monitored for at least
two current rates. A substantial increase of the difference of both capacities infers that
parts of the active material are less accessible with high currents [161]. When applying this
approach, it is necessary to verify that the resulting differences in rate capability are not just
linked to an increase in resistance and to the rising overvoltage of successive discharges in
the check-ups of the aging test [152].

3.2.9. Characterization of Inhomogeneous Cell Degradation

As discussed in detail in Section 2.2.2, cell inhomogeneity can be strongly related to
cell aging and degradation. Thus, inhomogeneities, as a result of typical cell degradation
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processes, can be quantified by the application of localized post-mortem methods for
inspection of cell aging phenomena that were presented in this section. Electrochemical
characterization methods are best fitted for characterization of ctcV with further possibili-
ties to also investigate internal inhomogeneities by cell modification, spatially resolved bulk
measurements and DVA/ICA. In contrast, the presented methods for visual inspection,
spectroscopy and tomography are mostly applied for the characterization of inhomo-
geneities within a cell such as lithium distribution and local degradation phenomena.
Figure 11 illustrates the feasibility for detection of different degradation phenomena for
the established post-mortem measurement procedures presented in this section. Further-
more, the spatial resolution of the measurement referred to as sensitivity is evaluated,
indicating whether spatially resolved bulk measurements have to be performed in order to
assess inhomogeneity.

Figure 11. Post-mortem analysis methods (modified from Waldmann et al., 2016 CC BY 4.0 [7]).

3.3. Field/Usage Data

Whilst laboratory scale measurements rely on destructive, ex situ or in situ experi-
ments with preselected cells detached from their commercial application, field and usage
data can be directly utilized in operando with no need for further experimental efforts [162].
A metric for homogeneity commonly tracked from large sets of field data is the capacity
variation in between batteries, either tracked within the application or afterwards. This data
is highly interesting for assessing the real-world degradation behavior of batteries without
accelerated aging and with more variance on the stress factors such as climate or usage
profile. Many manufacturers log data from their battery systems, but this data is rarely
presented [163] and not published to the best knowledge of the authors. The battery
community would greatly benefit from the release of large datasets.

3.3.1. Usage Data

In Liaw et al. [120], trip data from 18 vehicles was recorded and analyzed for the
specific use of each vehicle and differences in climate and other stress factors on the battery.
For in-depth data on inhomogeneities within a battery pack, disassembly and measurement
of each component are possible. Schuster et al. [68] dissembled two vehicle battery packs
and tested the capacity of aged 954 cells and compared them to 484 new ones. On a smaller
scale, 152 notebook batteries with a total of 1034 cells were dissembled by Salinas et al. [164]
reading the capacity, manufacturing date and cycle count for each cell from the BMS chip.
To the authors’ knowledge, system disassembly has only been reported for at most a few
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large-scale battery systems, giving a good inside of cell-to-cell variance within the specific
pack but not for the variation in between multiple packs.

3.3.2. Consumer Reports

There are several consumer reports of the state of battery systems especially for
electric vehicles [139–141]. In the maximal range survey performed by the Tesla Motors
Club in the Netherlands, participants record several parameters about their private EV,
including depicted range, mileage and vehicle age. In Figure 13, the capacity degradation is
shown up to six years and 200,000 km with some individual vehicles included at multiple
times. A general degradation trend and longevity of the battery packs can be seen but
effects from stress as the temperature profile of an individual pack are not included.

Since consumer reports are voluntary, typically the participants are well informed and
highly interested. This bias towards well caring consumers may only reflect a sub portion
of users with less variability. Another major drawback of consumer reports is the type of
data collected. Typically, either the state-of-health value estimated by the BMS depicted on
the driver’s screen or the range after a full charge is recorded manually along the mileage.
The SOH algorithm’s function is unknown to the public and can be changed in between
measurements with an update, invalidating data collected previously since values are not
comparable anymore [165]. In addition, as explained in Figure 12, the user typically can
only see the net capacity and therefore will only see degradation in the driver’s display
when the reserve is already degraded.

Figure 12. Maximal range survey from Tesla Motors, Netherlands forum with reported remaining
capacity over: (a) years and (b) mileage from [166]. Each orange dot is one entrance and vehicles can
have multiple entries within their life. The trendline is shown in green and 95% confidence interval
in light blue.

Range estimators as a measurement for capacity also include the driver’s energy
efficiency level. Comparing multiple cars will not only reflect the different degradation
levels, but also driver-to-driver variability. The depicted range for an energy intensive
driver at the fully charged state at the same degradation level will be lower compared to an
energy efficient driver. Another variability unconnected to the battery itself is the energy
needed for cooling in hot climate included in the energy consumption. This granular data,
if collected, is not available through consumer reports.
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Figure 13. User visible capacity from battery management system, reserve is not shown to the user but the state-of-health
remains 100% even though degradation already happened.

4. Conclusions and Outlook

This review summarized the origins of the inhomogeneities as well as the various
methods used to track variations and inhomogeneities with their value and effectiveness at
their respective scale.

Inhomogeneities in lithium-ion batteries are a well-known performance and safety
altering issue. Cell-to-cell variations and inhomogeneities arise not only from different
aging conditions but also from disparities in chemistry, materials, processing, cell for-
mat, and connectors. Multiple studies have been conducted on a multiscale level and
evidence of inhomogeneous degradation was obtained using complex mapping techniques
(Raman spectroscopy, X-ray and neutron diffraction, tomography, laser scanning), post-
mortem studies using electrochemical tests, scanning electron microscopy (SEM), and X-ray
diffraction (XRD), or from the sensors available in the field. However, this tracking is re-
source intensive and ctcV and reproducibility are unfortunately not addressed in all studies.
We believe every study testing multiple samples or cells should report on ctcV. Taking the
example of electrochemical testing, this could be easily done with a standardized quick
check test included in the conditioning step. In addition, all experiments should be system-
atically replicated so that variations upon aging could be quantified. This information is
drastically needed to be able to correctly model cell performance in assemblies.

Looking at the final application, and the deployment of more and more large batteries
in the field, we believe that taking ctcV and inhomogeneities into consideration is what is
currently lacking in BMS because of the lack of in operando methods. Even if progress in
manufacturing will keep lowering the standard deviations between cells, tracking inho-
mogeneities will undoubtedly play an essential role in future BMS to be able to forecast
performance and durability. This implies that new methods are needed to be able to
quantify them nondestructively, which eliminates most of the methods mentioned above.
Electrochemical voltage spectroscopies appear, so far, to be the best candidates for the task,
however, more studies and a fundamental understanding are needed to reach quantitative
rather than qualitative deductions.
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