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Abstract: Inflow performance relationship (IPR) is one of the most important methods for the analysis
of the dynamic characteristics of gas reservoir production. The objective of this study was to develop
a model to improve the accuracy of the IPR for evaluating and predicting the production of gas
reservoirs. In this paper, a novel mathematical model, taking into account the real gas PVT behavior,
is developed to accurately estimate the inflow performance relationship. By introducing a pseudo-
pressure function and a real gas properties database, this model eliminates the error caused by the
linearization method and improves the calculation accuracy. The results show that more than 90% of
the energy in the flow field is consumed by inertial forces, which leads to significant high-velocity
non-Darcy effects in the gas reservoir. The reservoir permeability, original reservoir pressure, stress
sensitivity coefficient, and skin factor have a great impact on the inflow performance relationship
of gas reservoir production. This model predicts gas IPR curves with excellent accuracy and high
efficiency. The high-precision gas well inflow performance relationship lays a solid foundation for
dynamic production analysis, rational proration, and intelligent development of the gas field.

Keywords: high-velocity non-Darcy flow; inflow performance relationship; real gas PVT behavior;
non-linearization; stress sensitive

1. Introduction

Gas well productivity plays a critical role in gas reservoir engineering. The inflow
performance relationship (IPR) of a well is the relationship between its production rate
and the flowing bottom hole pressure. The evaluation and prediction of the inflow perfor-
mance of gas wells are vital steps in developing new gas fields, optimizing the production
performance of existing wells, and designing new wells.

Based on previous studies on oil flow in porous media, numerous gas flow models
were developed from those of oil flow [1–8]. For oil wells, the fluid flow rate is usually
assumed to be proportional to the difference between reservoir pressure and well bottom
hole pressure [9], and this assumption leads to a linear relationship for the steady-state flow
of incompressible single-phase fluid. Many scholars have studied many factors to improve
the IPR accuracy of oil wells. Dietz [10] proposed a variety of shape factors to describe
the asymmetrical positioning of a well. Economides [11] presented two correlations for
the skin effect in steady- and pseudo-state in a circular drainage area. However, there are
notable differences between gas flow and liquid flow in terms of physical characteristics.
For example, gas density varies with pressure, while crude oil density is usually treated as
a constant. These significant differences have caused some simplifications for oil flow to be
ineffective in gas flow.

To accurately characterize the influence of real gas properties on gas flow, many scholars
have proposed their linearization methods as follows: (1) Pressure square method [11–14]
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—for pressures less than 2000 psi, the product of the compressibility factor Z and viscosity
µ is a constant. The real gas pseudo-pressure m(p) shows a linear relationship with the
square of pressure. (2) Pressure approximation method [15–19]—when the bottom hole
flowing pressure is higher than 3000 psi, the product of the compressibility factor Z and
viscosity µ is roughly proportional to the pressure. The real gas pseudo-pressure m(p)
shows a linear relationship with pressure. (3) Pseudo-pressure method [20–23]—this
method can be applied in a wide range of pressures without any error. Al-Hussainy
et al. [24] defined the pseudo-pressure to derive a quadratic gas deliverability equation for
the boundary-dominated flow period. Raghavan et al. [25] defined the pseudo-pressure
to obtain solutions to nonlinear flow equations in which reservoir and fluid properties
are pressure dependent. Samaniego et al. [26] studied the application of the m(p) method
to drawdown, buildup, injection, and falloff testing. Samaniego et al. [27] presented a
performance-prediction procedure based on the drainage radius concept and a material-
balance equation.

The pressure square method and the pressure approximation method can only be
applied under their constraints. According to the limited gas well test data, the gas flow
equation is linearized to obtain the analytical gas well IPR whose coefficients are strongly
dependent on pressure. It is unreasonable to use the absolute open flow rate extrapolated by
IPR to guide the gas reservoir production. The linearization method reduces the degree of
nonlinearity of the gas flow equation, which is convenient for solving nonlinear equations
analytically. However, the linearization method is an approximate method, which will
produce inevitable errors in the process.

The accuracy of the real gas PVT behavior is critical to all analytical and numerical
gas flow models. Some empirical formulas, algorithms, and software are introduced
to describe the real-gas PVT behavior accurately. Dranchuk et al. [28] used the BWR
equation of state to fit the compressibility factor of the natural gas. Lee et al. [29] used
eight samples to fit the viscosity of natural gas at high pressure. However, these empirical
formulas fitted from limited test data cannot cover all situations, and the errors in the
fitting process cannot be eliminated. The model presented in this paper uses the Reference
Fluid Thermodynamic and Transport Properties (REFPROP) database as real gas properties
data. The REFPROP database program is widely used in the refrigeration industry for the
calculation of refrigerant properties. REFPROP is an international authoritative working
substance physical property calculation software developed by the National Institute of
Standards and Technology (NIST) (Version 9.0, Boulder, CO, USA) [30]. Judging from the
previous studies, REFPROP is used by many research projects as a physical data source or
as a reference data source for the accuracy of calculation results [31].

Furthermore, several specific factors different from those in oil flow should be consid-
ered for gas flow in porous media. The high-velocity non-Darcy effect characterized by
Forchheimer’s equation has a great influence on the gas flow. In 1901, Forchheimer [32]
found that Darcy’s law was inadequate to describe high-velocity gas flow in porous media
and added an additional pressure drop predicted by Darcy’s law in order to account for
the discrepancy. Aronofsky and Jenkins [12] developed the solution for a vertical well
at steady state from the solution of the differential equation for gas flow through porous
media by using the non-Darcy factor. Smith [33] and Swift and Kiel [34] indicated that a
non-Darcy flow of gases leads to an additional pressure drop near the wellbore, which can
be treated as a rate-dependent skin factor. Jones [13] proposed a correlation that includes
the Forchheimer factor β. Odeh [14] derived the pseudo-steady-state flow equation with a
noncircular drainage area. Economides [11] suggested a steady-state flow equation for hor-
izontal wells. However, the Forchheimer factor β and turbulence coefficient D calculated at
the well bottom condition are used as constants to describe the degree of the non-Darcy
effect. The influence of the non-Darcy effect on the entire flow field is not considered.
Moreover, the impact of stress sensitivity on the inflow performance should be regarded as
in the fractured gas reservoir. Yang et al. [35], Li et al. [36], and Zhang et al. [37] took the
features of high-speed non-Darcy flow into consideration but neglected the characteristics



Energies 2021, 14, 3594 3 of 18

of media formation. Clarkson et al. [38] investigated the impact of both stress-dependent
matrix permeability and fracture-conductivity changes on rate-transient signatures and
derived reservoir and hydraulic-fracture properties.

In this paper, taking into account the real gas PVT behavior, a novel high-velocity
non-Darcy flow model is proposed by introducing a pseudo-pressure function with high
nonlinearity to accurately estimate the inflow performance relationship of gas reservoir
production. Then, the REFPROP database is introduced as a physical property data
source to determine the real gas PVT behavior that can adapt to a wide range of reservoir
conditions, which greatly improves the accuracy of the physical property parameters of
the model. On this basis, the proposed model is verified by field data, and compared with
the traditional model using linear approximate solution. Finally, the effects of reservoir
permeability, original reservoir pressure, initial gas saturation, stress sensitivity coefficient,
and skin factor on the inflow performance relationship of gas reservoir production are
analyzed by this model. This research highlights the enormous potential of replacing
traditional linear models and predicting the inflow performance relationship with higher
accuracy in the field.

2. Model Description

A gas well is the basic unit of gas reservoir development, and accurate evaluation of
gas well productivity is the key to efficient and reasonable development of gas reservoirs.
The conceptual illustration of a vertical gas-producing well in a carbonate reservoir is
shown in Figure 1.
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Figure 1. Schematic diagram of a vertical gas-producing well in a carbonate reservoir.

2.1. General Assumptions

In order to study the gas well inflow performance relationship, a schematic diagram of
gas reservoir model is shown in Figure 2, and some basic assumptions are made as follows:

1. The reservoir is disk shaped, with its center at the wellbore, and it is a homogeneous
and isotropic formation with uniform thickness. The upper and lower boundaries of
the reservoir are closed, and the supply boundary pressure is constant at Pe.

2. The formation has the same permeability and porosity. Both properties are stress-
sensitive.

3. The only flowing phase is gas phase with unsteady state.
4. The well completion method is open hole completion.
5. Gravitational forces are negligible.
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Figure 2. Schematic diagram of the gas reservoir model.

2.2. Mathematical Model of Radial Flow in Gas Reservoir

To study the non-Darcy flow effect, the equation proposed by Forchheimer [32] is
used in this model. The flow law equation in SI units is given as follows:

− ∂P
∂r

=
µg

K
vg + βρgv2

g (1)

where ρ is the gas density, µ is the gas viscosity, K is the permeability, and vg is the gas
velocity. At high flow rate, the gas flow is dominated by the inertial forces, and the
magnitude of the viscous force is constant. In the laminar flow situation, there is no inertial
force item in Equation (1).

Equation (1) can be rewritten as:

− ∂P
∂r

= avg + bv2
g (2)

where
a =

µg

K
(3)

b = βρg (4)

The parameter β is given by three relations, in field units (K in mD, β in 1/ft):

1. Geertsma relation [39]:

β =
48, 511.34(

KKrp
)0.5(

φSp
)5.5 (5)

2. Frederick and Graves’ first relation [40]:

β =
2.11× 1010(

KKrp
)1.55(

φSp
)1.0 (6)

3. Frederick and Graves’ second relation [40]:

β =
7.89× 1010(

KKrp
)1.6(

φSp
)0.404 (7)

The above three relations can be applicable to the single gas phase system and Freder-
ick and Graves’ first relation is used to describe the degree of non-Darcy effect in this paper.
In order to characterize gas flow accurately, the stress sensitivity is also taken into account
in the model. The stress sensitivity of the permeability and porosity can be expressed as:
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K = K0e−α(Pre f−P) (8)

φ = φa·
[
1 + Cp

(
Pre f − P

)]
(9)

Substituting Equations (7), (8) and (9) into Equation (1), the flow law equation in field
units can be rewritten as:

ρg

µg
e−α(Pre f−P) ∂P

∂r
= 11.5741

ρg
∣∣vg
∣∣

K0
+ 1.3396× 10−13 βρ2

g
∣∣vg
∣∣2

µg
e−α(Pre f−P) (10)

The gas velocity can be expressed as:

vg =
Qg

2πrh
(11)

Based on the material balance, the mass flow rate Mr towards the well is given by:

Mr = ρgQg = ρgscQgsc (12)

Substituting Equations (11) and (12) into Equation (10), Equation (10) in field units
can be rewritten as:

ρg

µg
e−α(Pre f−P) ∂P

∂r
= 1.8421

ρgsc

K0rh
Qgsc + 1.1133× 10−14 βρ2

gsc

µgr2h2 e−α(Pre f−P)Q2
gsc (13)

According to the national standard SY/T 5440-2009 in China, the variation of a steady-
state gas well bottom hole pressure should not exceed 0.5% of the current steady flow
pressure in the next 8 h. The pressure of a steady-state well is only related to the spatial
location, and Equation (13) can be expressed as:

ρg

µg
e−α(Pre f−P) dP

dr
= 1.8421

ρgsc

K0rh
Qgsc + 1.1133× 10−14 βρ2

gsc

µgr2h2 e−α(Pre f−P)Q2
gsc (14)

To solve Equation (14), separation of variables method is used to process the gradient
term. Integrating Equation (14) over the radius of the well control zone yields Equation (15):

∫ Pe

Pw f

ρg

µg
e−α(Pre f−P)dP =

∫ re

rw

(
1.8421

ρgsc

K0rh
Qgsc + 1.1133× 10−14 βρ2

gsc

µgr2h2 e−α(Pre f−P)Q2
gsc

)
dr (15)

The simplified mathematical model is expressed as follows:∫ Pe
Pw f

ρg
µg

e−α(Pre f−P)dP = 1.8421 ρgsc
K0h Qgsc ln

(
re
rw

)
+

1.1133× 10−14 ρ2
gsc
h2 Q2

gsc
∫ re

rw

(
β

µgr2 e−α(Pre f−P)
)

dr
(16)

If the skin effect is considered, Equation (16) can be changed as follows:∫ Pe
Pw f

ρg
µg

e−α(Pre f−P)dP = 1.8421 ρgsc
K0h ln( re

rwr ) Qgsc+

1.1133× 10−14 ρ2
gsc
h2 Q2

gsc
∫ re

rwr

(
β

µgr2 e−α(Pre f−P)
)

dr
(17)

where rwr = rwe−S, and S is the skin factor.
Defining the function of gas-phase pseudo-pressure:

ϕ(P) =
∫ P

Pm

ρg

µg
e−α(Pre f−P)dP (18)
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The simplified mathematical model is expressed as follows:

∆ϕ = AQgsc + B(P)Q2
gsc (19)

where: 
∆ϕ = ϕ(Pe)− ϕ

(
Pw f

)
A = 1.8421 ρgsc

K0h ln
(

re
rw

)
B(P) = 1.1133× 10−14 ρ2

gsc
h2

∫ re
rw

(
β

µgr2 e−α(Pre f−P)
)

dr

(20)

Once the flow parameters are obtained, the surface gas flow rate, Qgsc, at any other
flow pressure is obtained from Equation (19):

Qgsc =
−A +

√
A2 + 4B·∆ϕ

2B(P)
(21)

Thus, the mathematical model to estimate the inflow performance relationship is
established.

3. Solving Method of the Mathematical Model

Coefficient B in Equation (19) is variable with pressure, so it is necessary to describe
the pressure profile in the entire gas reservoir. In order to get the distribution of pressure
along the radial direction, the radial length is logarithmically divided into N segments, as
shown in Figure 3.
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Suppose the discrete reference block in space is the ith block, and the discrete reference
point in time is the (n + 1)th time step. For the ith block, the equation is shown as follows:

A2Pn+1
i−1 − (A1 + A2 + B1)Pn+1

i + A1Pn+1
i+1 = −B1Pn

i (22)

where 

A1 =
r

i+ 1
2

(
ρδ K

µ

)n+1

i+ 1
2

ri ·∆r
i+ 1

2
·
(

r
i+ 1

2
−r

i− 1
2

)

A2 =
r

i− 1
2

(
ρδ K

µ

)n+1

i− 1
2

ri ·∆r
i− 1

2
·
(

r
i+ 1

2
−r

i− 1
2

)
B1 =

(
∂ρ
∂P φ + φ0Cpρ

)n

tn+1 − tn

(23)

As the physical quantity
(

ρδ K
µ

)
in Equation (23) is a function of space and time, the

upwind scheme is used to assign values to physical quantities on the grid points. The
upwind scheme is shown as follows:

(
ρδ

K
µ

)n+1

i+ 1
2

=


(

ρδ K
µ

)n

i
If the fluid goes from i to i+1(

ρδ K
µ

)n

i+1
If the fluid goes from i+1 to i

(24)
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After the upwind scheme processing, Equation (23) can be rewritten as:

A1 =
r

i+ 1
2

(
ρδ K

µ

)n

i+1

ri ·∆r
i+ 1

2
·
(

r
i+ 1

2
−r

i− 1
2

)

A2 =
r

i− 1
2

(
ρδ K

µ

)n

i

ri ·∆r
i− 1

2
·
(

r
i+ 1

2
−r

i− 1
2

)
B1 =

(
∂ρ
∂P φ+φ0Cpρ

)n

tn+1−tn

(25)

Then, the pressure distribution can be calculated from the well bottom to the reservoir
boundary by using Gaussian elimination with scaled partial pivoting. The detailed solution
process of the model is shown as a flowchart in Figure 4.
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4. Results and Discussion
4.1. Model Validation

To validate this new model, the calculation results of this model are compared with
simulated results, as shown in Figure 5. The key parameters obtained from the geological
model for model validation are listed in Table 1.
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Table 1. The key parameters obtained from the geological model for model validation.

Parameters Value Unit

Reservoir thickness 45 m
Porosity 0.07 -

Permeability 1 mD
Original reservoir pressure 58 MPa

Reservoir temperature 116 ◦C
Initial gas saturation 0.4 -

Drainage radius 500 m
Wellbore radius 0.0762 m

Figure 5 shows that the simulated results and the calculation results of this model
have a very good match. Therefore, this model can provide a reasonable prediction of gas
production rate in the reservoir.

Then, a comparative study of the non-linear theoretical model results and the lin-
earization method results was conducted at three different pressure conditions (Figure 6).
Figure 6a shows that the results of pressure square method at low pressure have a good
match with the predicted results of this model. This linearization method is acceptable for
use in the prediction of inflow performance. Figure 6b shows that the deviation between
the non-linear theoretical model and the pressure approximation method became greater
within the pressure of 25–30 MPa. When the test pressure was high, the error of 22.58%
indicates that the linearization method is not reliable for dealing with nonlinear equations,
as shown in Figure 6c.
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Figure 6. Comparison of the predicted results with linearization methods at three different pressure
conditions: (a) IPR curves made by non-linear theoretical model and pressure square method within
the well bottom hole pressure of 0.1–10 MPa, (b) IPR curves made by non-linear theoretical model
and pressure approximation method within the well bottom hole pressure of 0.1–30 MPa (c) IPR
curves made by non-linear theoretical model and pressure approximation method within the well
bottom hole pressure of 0.1–58 MPa.
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4.2. Effect of Reservoir Permeability

The effect of permeability on gas production was analyzed, as shown in Figure 7.
Figure 7a shows the inflow performance relationship curves at different reservoir perme-
abilities. It can be seen that the higher reservoir permeability greatly increased the absolute
open flow rate. With the increase of gas reservoir permeability, the slope of the curves
gradually decreases, indicating that the unit production pressure difference corresponds to
a higher productivity. In ultra-low-permeability reservoirs (K < 0.1 mD), a high production
pressure difference will not help the production. Further analysis of the bottom hole flow
characteristics was conducted. In Figure 7b, the straight pink line represents the relation-
ship between well bottom hole pressure and flow rate in the Darcy flow condition and
the black curve indicates that flow has non-Darcy characteristics. The gas flow is mainly
controlled by viscous force (v term) and inertial force (v2 term). Figure 7b shows that due
to the increased permeability, the proportion of flow controlled by viscous force continues
to decrease, from 9.34% to 2.96%. At the same time, inertial force is always in the dominant
position, controlling 90% of the flow. The high flow rate enhances the influence of inertial
resistance. For the high-velocity flow, the v2 quadratic term tends to the limit, so a third
term of the velocity form is necessary to describe the high-velocity non-Darcy effect.
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4.3. Effect of Original Reservoir Pressure

Since the gas isothermal coefficient of compressibility is greater than the rock com-
pressibility, the original reservoir pressure determines the elastic energy of the gas reservoir.
The effect of original reservoir pressure on the gas inflow performance relationship was
analyzed, and the results are presented in Figure 8.

Figure 8a shows that for the same bottom hole pressure, wells drilled in reservoirs with
the higher original reservoir pressure have the higher production rate. From Equation (1),
one would expect that a high original reservoir pressure is equivalent to a high gas pseudo-
pressure. For the same flow resistance, this means high productivity.

Figure 8b shows that a high original reservoir pressure increases the gas production
rate, and enhances the flow controlled by viscous force and inertial force to different
degrees. With the increase of the original reservoir pressure, the pressure losses caused by
both viscous force and inertial force increase at the well bottom. The portion of the viscous
flow influenced by the high production rate decreases from 16.33% to 5.01%. Because of
the high velocity at the well bottom, the inertial force is still dominant.
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4.4. Effect of Initial Gas Saturation

In the whole seepage process, the porosity directly determines the reserves. The effect
of initial gas saturation on the gas inflow performance relationship was analyzed, and the
results are presented in Figure 9. From Equation (7), the porosity has a slight influence on
the β coefficient and the inertial force, and will eventually have an impact on the absolute
open flow rate (Figure 9a). Figure 9b shows that with the increase of pressure loss caused by
the viscous force, the pressure loss caused by inertial force decreases from 94.82% to 94.26%.
The high-velocity non-Darcy effect cannot be ignored. The inertial force is dominant.
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4.5. Effect of Stress Sensitivity Coefficient

The reservoir permeability is the key parameter affecting the inflow performance
relationship, as shown in Figure 10. Figure 10a shows that a higher stress sensitivity
coefficient results in a lower absolute open flow rate and a faster decreasing trend of
production rate. As the stress sensitivity coefficient increases, the stress sensitivity of the
reservoir increases. This shows that under the same bottom hole pressure condition, the
permeability of the near-wellbore will drop sharply. In Figure 10b, with the increase of
stress sensitivity coefficient, gas velocity decreases, and pressure losses caused by viscous
force and inertial force increase. The rate of seepage resistance increased by the drop
in permeability is much greater than the rate of pressure gradient change. More than
94.82% of the pressure gradient is consumed by inertial force, and the inertial force is still
dominant.
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4.6. Effect of Skin Factor

For the wells with imperfect hydrodynamics, the radius of an imperfect well can
be replaced with that of a hypothetical perfect well. The effect of skin factor on the gas
inflow performance relationship was analyzed, and the results are presented in Figure 11.
Figure 11a shows that a lower skin factor results in a higher production rate. Even though
a field has a high permeability, the productivity of a well with a high skin factor cannot be
increased without taking measures. In Figure 11b, with the increase of skin factor, absolute
open flow rate decreases, and gas velocity and pressure losses caused by viscous force and
inertial force increase. The converted radius of the imperfect well has a great influence on
the gas flow velocity. Therefore, the minimum value of flow velocity at the bottom hole
corresponds to the maximum value of the absolute flow rate. When the skin coefficient is
equal to 3, the gas velocity is the greatest, and the proportion of pressure caused by inertial
force can reach 99.07%. In the case of a skin coefficient equal to −3, the gas velocity is
the lowest, and the proportion of pressure caused by inertial force can reach 70.64%. The
inertial force is still dominant.
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5. Field Application

The Bereketli-Pirgui gas field is located on the right bank of the Amu Darya River. The
gas-bearing area is 21.72 km2 and the geological reserves is 201.97 × 108 m3. The reservoir
depth is 3127.63 m. The initial reservoir temperature is 112.619 ◦C, and the pressure is
53.47 MPa. As of August 2020, there were 22 gas wells in the block, and most of the
production wells only produce gas. The inflow performance relationship of the gas wells is
unclear, and the production system has not been determined. Therefore, it is significant to
develop a model to evaluate the IPR with high precision and establish a rational proration
plan.

The target layer was layer XVa1, and the average permeability of this layer was
1.03 mD. In March 2019, a well test was carried out on well Pir-21. The Pir-21 well test data
are shown in Table 2. A production pressure difference of less than 3 MPa is suitable for
a well test. Firstly, a small production pressure difference ensures that the well bottom
hole pressure will become stable quickly. Second, a small production pressure difference
guarantees that the reservoir fluid properties that are strongly dependent on pressure are
not changed drastically.
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Table 2. Pir-21 well test data.

Test Date Test Phase Test Time
(h)

Daily Surface
Gas Production
Rate (104 m3/d)

Well Bottom
Hole Pressure

(MPa)

2019.3.13–3.25
Productivity test

8 10.34 52.5
8 15.75 51.96
8 20.29 51.48
8 27.14 50.71

Well shut-in 30 53.44

In this context, coefficients A and B of Equation (19) can be treated as constant. For
linear regression, Equation (19) can be expressed as:

∆ϕ

Qgsc
= A + BQgsc (26)

The values of A and B can be obtained by the fitting relationship between Qgsc and
4ϕ/Qgsc as shown in Equation (26), and their values are 6.6608× 10−5 and 4.4411× 10−11,
respectively.

According to Equation (20), the flowability coefficient K0h can be calculated, and is
equal to 165.2030 mD·m. Based on the well logging test, the value of reservoir effective
thickness is 68.78 m. Accordingly, the effective horizontal permeability is 2.4019 mD. The
results are satisfying and indicate that this model is an effective approach to obtain reservoir
parameters in gas reservoirs. Based on the Pir-21 well test data, the model presented in this
paper and traditional linearization methods (e.g., pressure square method and pressure
approximation method) were used to predict the inflow performance relationship, as
shown in Figure 12.
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The results of traditional linearization methods greatly underestimate the productivity
of the gas wells, with an error up to 35.93%. It is noticeable that the model in this paper can
fully consider the impact of the stress sensitivity, the gas high-velocity non-Darcy effect,
and the change of gas properties on gas well productivity.
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6. Conclusions

In this study, a novel mathematical model considering real gas PVT behavior was
developed. The pseudo-pressure function and gas properties database are introduced to
improve the accuracy of this model which estimates the inflow performance relationship of
gas well production. On this basis, the effects of reservoir permeability, original reservoir
pressure, initial gas saturation, stress sensitivity coefficient, and skin factor on the inflow
performance relationship of gas reservoir production were analyzed by this model. Based
on the results, several conclusions are obtained as follows:

1. A novel mathematical model considering real gas PVT behavior is developed to
accurately estimate the inflow performance relationship of gas well production.

2. For gas flow equations, the errors caused by traditional linearization methods and
empirical formulas lead to the underestimation of gas well productivity.

3. The results show that more than 90% of the energy in the flow field is consumed by
inertial forces, which leads to significant high-velocity non-Darcy effects in the gas
reservoir.

4. The reservoir permeability, original reservoir pressure, stress sensitivity coefficient,
and skin factor have a great impact on the IPR of gas reservoir production.

5. This model predicts gas IPR curves with excellent accuracy and high efficiency. The
high-precision gas well inflow performance relationship lays a solid foundation for
dynamic production analysis, rational proration, and intelligent development of gas
fields.
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Nomenclature

a Viscosity flow coefficient, Pa·s/m2

A First-order coefficient of gas surface flow, 1018 kg/m6

A1, A2 Coefficients of the coefficient matrix, dimensionless
b Inertial flow coefficient, Pa·s2/m3

B First-order coefficient of gas surface flow, 1018 kg·day/m9

B1 Coefficient of constant term, dimensionless
Cp Compressibility of pore space of rock, MPa−1

h Reservoir thickness, m
K Effective reservoir permeability, mD
Ko Original reservoir permeability, mD
Krp Relative permeability of phase, dimensionless
K0-h Flowability coefficient, mD·m
P Pressure, MPa
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Pe Original pressure, MPa
Pref Reference pressure, MPa
Pwf Bottom hole pressure, MPa
Qg Gas flow rate at reservoir condition, m3/day
Qgsc Gas flow rate at surface condition, m3/day
r Radial distance, m
re Supply boundary radius, m
rw Well radius, m
S Skin factor, dimensionless
Sp Saturation of phase, dimensionless
Greek
α Stress sensitivity coefficient, MPa−1

β Forchheimer factor, m−1

φ Porosity, dimensionless
µg Gas viscosity, mPa·s
vg Gas velocity, m/day
ρg Gas density in reservoir condition, g/cm3

ρgsc Gas density in standard condition, g/cm3

Subscript
g Gas phase
gsc Gas in standard condition
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