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Abstract: Mineral resource estimation involves the determination of the grade and tonnage of a min-
eral deposit based on its geological characteristics using various estimation methods. Conventional
estimation methods, such as geometric and geostatistical techniques, remain the most widely used
methods for resource estimation. However, recent advances in computer algorithms have allowed re-
searchers to explore the potential of machine learning techniques in mineral resource estimation. This
study presents a comprehensive review of papers that have employed machine learning to estimate
mineral resources. The review covers popular machine learning techniques and their implementation
and limitations. Papers that performed a comparative analysis of both conventional and machine
learning techniques were also considered. The literature shows that the machine learning models
can accommodate several geological parameters and effectively approximate complex nonlinear
relationships among them, exhibiting superior performance over the conventional techniques.
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1. Introduction

Mineral resources are indispensable to the sustenance of modern civilization [1,2].
They play essential roles in socioeconomic development, industrial processes, manufactur-
ing of modern technologies, and construction of modern transportation systems [2–5]. A
mineral resource is commonly defined as “a concentration of naturally occurring material
in or on the Earth’s crust in such form and amount that economic extraction of a commod-
ity from the concentration is currently or potentially feasible” [6–8]. Evaluation of these
resources (mineral resource estimation) is a crucial and challenging task in every mineral
exploration and mining project, irrespective of size, commodity, and deposit type [9,10].
Mineral resource estimation is performed to determine the quantity and quality of a min-
eral deposit and to establish confidence in its geological interpretation, and it requires
careful and detailed consideration of high spatial variability and uncertainty associated
with geological formations [11]. Therefore, a reliable mineral resource estimate is critical to
the success of every mining project.

Mineral resources are subdivided into inferred, indicated, and measured categories
based on increasing geological confidence and knowledge, as illustrated in Figure 1 [8].
The estimation of a mineral resource is followed by a mineral reserve estimation, which
is carried out to determine the tonnage and average grade of a mineral deposit that
is economically and technologically feasible to mine [12]. Mineral resource estimation
underlies the generation of mineral reserve estimates. Mineral reserve estimate establishes
the mineable portion of a resource and forms the foundation for economic anaslysis of a
mineral deposit as well as the future potential of an operating mine. The accuracy of a
reserve estimation is essential to the quality of the geological interpretation [13,14]. It is
also vital to mine planning and design, including the utility of short-term and long-term
mine plans. Moreover, the estimation accuracy is key to mining decisions, such as capital
allocation, operating policy, depletion rate, and depreciation charges [13,15,16]. Therefore,
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an accurate reserve estimation is critical to the feasibility, sustainability, and daily/future
operations of a mining project. This phase of the estimation process is also referred to
as ore reserve estimation and grade estimation [17]. It should be noted that mineral
resource or reserve estimates are not the only factors that determine the extractability of
a mineral resource; there are other deciding factors, such as economic, environmental,
climatic, and social restrictions [6]. Mineral reserves are classified into probable and proved
reserves. Figure 1 shows a general classification of exploration results based on the levels
of confidence in geological knowledge and technical and economic considerations about
the deposit as established by the Australasian Code for Reporting of Identified Mineral
Resources and Ore Reserves (The JORC Code) [17].

Figure 1. A general relationship between mineral resources and mineral reserves.

There are two concepts underlying reserve estimation: the concept of extension, where
attributes of a sample are extended to blocks to be estimated; and the concept of error
estimation, where the validity of an estimation method is assessed based on the error
involved [11]. The methods utilized to perform the estimate are important, as they can
influence the reliability and accuracy of the estimate. Several estimation methods have been
proposed and implemented in the literature. These methods are largely categorized into
geometric and geostatistical estimation methods [11,12], and they are termed conventional
techniques in this paper. The geometric techniques (e.g., polygonal, triangular, random
stratified grids, and cross-sectional methods) are simple and require few input parameters
and are often applied at the early stages of a mineral project or to verify the results
of the sophisticated estimation methods [11]. However, the geostatistical (e.g., kriging,
inverse distance weighting, and conditional simulation) techniques are more sophisticated.
The conventional techniques have some inherent limitations. Most notably, they tend
to perform poorly with highly heterogeneous datasets, overestimate or underestimate
resources, and require significant manual processing [18,19]. Because of these shortfalls,
currently, machine learning (ML) methods are being implemented in mineral resource
estimation [20–24].

ML techniques are algorithms capable of learning and modeling complex nonlinear
patterns in a large dataset [25,26]. Since 1993, many authors have been exploring the
potential of ML in resource estimation, resulting in several research publications. Even
though the implementation of artificial intelligence and autonomous technologies in the
mining industry began decades ago [26,27], it was not until 1993 that ML applications in
mineral resource estimation gained enormous research interest. Zhang et al. [28] noted that
ML improves resource estimation in the following ways: (i) samples that are rejected in
conventional resource estimates because they do not satisfy all quality control requirements
can be used provided that the geological descriptions and measurements are reliable;
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and (ii) resource estimation block models can be constructed using fewer assays and
more geology, leading to a reduction in operational costs. Additionally, the ML-based
resource estimation approach is significantly cheaper and faster than conventional resource
estimation [28]. In addition, ML can modernize hypothesis-testing and geological modeling,
contributing to the understanding of various deposit types estimation [28]. Moreover, ML
techniques can be employed to address operational challenges and improve safety in
different sectors of the mining industry, including mineral prospecting and exploration,
mineral evaluation, mine planning, mine scheduling, equipment selection, underground
and surface equipment operation, drilling and blasting, mineral processing, and mine
reclamation [26,29–31].

In addition to assessing the accuracy of different ML and conventional estimation
models, these papers examine how various model variables, lithology, and data partition
affect model performance. Many of these papers in the literature are spread across various
journals and research databases. Therefore, it is imperative these works are consolidated,
examined, and compared to form a coherent piece that would inform future research
and serve as a reference for interested resource specialists. Our objective is that this
paper would provide industry practitioners with an up-to-date knowledge about these
emerging techniques and guide them on the choice of the technique applied for different
estimation tasks. Additionally, it would also guide researchers to identify new ideas and
areas requiring further scientific examination, as the review highlights some limitations
and future trends of ML applications in mineral resource estimation.

The remaining part of this paper is divided into five sections. Section 2 outlines the
review methodology. Section 3 discusses conventional resource estimation approaches,
including geometric and geostatistical methods. Section 4 reviews relevant machine learn-
ing techniques that are used for resource estimation. Section 5 presents discussions and
highlights key emerging issues that could be the focus of future studies. Section 6 covers
concluding remarks.

2. Methodology
2.1. Review Scope

We conducted an extensive literature search to identify relevant peer-reviewed pub-
lications indexed in major scientific research databases, such as Web of Science, Google
Scholar, Scopus, and ScienceDirect. We used keywords to limit the search scope, including
mineral resource estimation, ore grade estimation, reserve estimation, machine learning,
soft computing, neural networks, mineral deposit, and support vector machines. Boolean
operators (AND, OR, and NOT) and strings (e.g., ‘reserve estimate’) were adopted to
improve the search result. Another search strategy employed is snowballing (e.g., forward
and backward snowballing), where initial search results lead to the discovery of more
papers [32,33].

The search resulted in a plethora of journal, conference, and media publications on
mineral resource estimation methods. The result was narrowed solely to peer-reviewed
journals, except in a few instances where peer-reviewed conference papers and a Ph.D.
dissertation were considered. Only papers published in English have been reviewed,
though the search result, especially in Google Scholar, had papers published in other
languages. Initial paper selection and review involves content analysis of the title, abstract,
and conclusion of a paper to determine if it falls within our review criteria. The review
criteria (see Figure 2) are: the paper must be published in a peer-reviewed journal and the
content must be related to mineral exploration, especially resource estimation and machine
learning. Papers satisfying these criteria were reviewed thoroughly with critical atten-
tion to the methods used, algorithm adopted and implementation, findings, conclusion,
and recommendation.
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Figure 2. Review process schematic.

The review covers peer-reviewed publications on machine learning applications in
mineral resource, mineral reserve, ore reserve, and grade estimations. For review purposes,
we assumed that these different estimation groups deal with the assessment of occurrence,
concentration, and tonnage of a mineral in a specific geological location with varying
degrees of confidence. These terms are used interchangeably in this article. This general
definition affords the flexibility to consider a wide range of relevant publications relating to
machine learning and mineral estimation. A conceptual framework of the review process
and strategies is illustrated in Figure 2. As indicated in Figure 2, the review process starts
with the analysis of search results, which is a collection of papers resulting from a keyword
search in various academic databases. Based on the research area/field, the result was
streamlined, discarding papers that were not related to the subject matter. Subsequently,
the remaining papers were further divided into two main categories: rejected papers and
accepted papers. Each paper goes through three consecutive decision questions (language,
abstract, and journal type) to determine its category. Papers in the accepted category must
pass all the decisions stages; else it is rejected. Snowballing is applied to papers that satisfy
the language and abstract stages. Following that, the accepted papers go through a detailed
content review.

2.2. Review Summary

The search results included 131 publications. Out of which, 51 were related to ma-
chine learning application in mineral resource estimation, while the remaining references
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cover conventional mineral resource estimation techniques and general knowledge about
machine learning. The publication period is limited to 1993–2020; however, a few re-
cent articles published in 2021 were also reviewed. Some of the notable journals where
the search results were retrieved include Natural Resources Research, Mathematical Ge-
ology, Computers & Geosciences, Computational Geosciences, and Arabian Journal of
Geosciences. Figure 3 shows that majority of the ML papers (51 papers) reviewed have
been cited multiple times, indicating recognition of these papers by scholars in this field.

Figure 3. Citation distribution of ML-based resource estimation papers in this review.

To assess the research trend in this field over the years, the research result (51 papers)
was categorized based on the year of publication. Figure 4 shows the distributions of
ML-based mineral resource estimation research from 1993 to 2020. It can be observed from
Figure 4 that the number of papers per year in the field has experienced two cycles of
increase and decrease since 1993, i.e., from 1993 to 2014 and 2015 to 2019. It seems 2020
is the beginning of another surge period, reflecting the increasing research interest in ML
techniques in the extractive industry.

Figure 4. Trend of publications of machine learning techniques from 1993 to 2020.

Figure 5 presents a summary of the various ML techniques applied in mineral resource
estimation. It is interesting to note that artificial neural network (ANN) is the most applied



Energies 2021, 14, 4079 6 of 29

technique, followed by support vector machine (SVM). The remaining techniques are
ensemble super learner (Ensemble), inverse distance weighted and artificial neural network
(IDW-ANN), genetic algorithms (GA), k-nearest neighbor algorithm (kNN), support vector
machines (SVM), support vector regression (SVR), random forest (RF), relevance vector
machines (RVM), Gaussian process (GP), and new machine learning-based algorithm (GS-
Pred). This is likely due to the strong capabilities of these techniques in pattern recognition
and modeling complex systems. These ML techniques allow the modeling of physical
features in complex systems without requiring explicit mathematical representations or
exhaustive experiments, unlike geostatistical methods. Thus, ML has the potential to
provide a more accurate and efficient solution in estimating mineral grades.

Figure 5. Distribution of machine learning techniques for mineral resource estimation.

Table 1 details the type of data used for the reviewed ML techniques. The vast
majority (more than 80%) were based on field data obtained from exploration drilling (drill
cores) or trenching. The significant usage of field data shows the industrial applicability
of the proposed ML techniques, suggesting that these techniques can be incorporated in
resource estimation tools in the industry. Usage of historical, laboratory, and simulated data
account for less than 20% of the implementation. Usually, demonstration using laboratory
data involves the acquisition of rock sample images that are subsequently processed
with machine vision algorithms. Figure 6 demonstrates the distribution of deposit types
analyzed using ML techniques. Interestingly, iron ore and copper deposits are the most
evaluated mineral deposits with ML techniques, followed by gold deposits. A summary of
the various ML techniques applied to estimate different deposits is presented in Table 2.

Table 1. Summary of implementation of machine learning techniques.

Implementation Count

Historical and field data 1
Laboratory-scale data 1

Experimental and laboratory-scale data 2
Historical data 3

Simulated and field data 3
Field data 42
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Figure 6. Distribution of mineral deposits with the machine learning application.

Table 2. Summary of the various machine learning techniques applied to estimate mineral resources.

Technique Deposit Year

Ensemble Gold 2021

IDW-ANN Copper 2015

GA Iron 2012

GA-BPNN Copper 2021

GS-Pred Gold 2020

RVM Copper, Silver 2015

kNN Gold 2017, 2020

SVR Copper, Iron 2013, 2019

RF Iron, Gahnite, Copper 2014, 2015, 2016

GP Copper, Gold 2016, 2017, 2018

Neuro-fuzzy Copper, Coal 2007, 2009, 2010, 2012

SVM Platinum, Copper, Nickel, Slate, Silver, Gold 2007, 2011, 2013, 2016, 2018

ANN
Bauxite, Gold, Silver, Limestone, Zinc, Lead, Iron,

Phosphate, Copper, Chromite, Potash, Slate, Gypsum,
Sericite, Pyrite, Copper, Mineral sand

1993, 1996, 1998, 1999, 2002, 2004, 2005, 2006, 2008,
2009, 2010, 2011, 2012, 2015, 2016, 2017, 2018, 2020

where Ensemble is the ensemble super learner, IDW-ANN is the inverse distance weighted and artificial neural network, GA is the genetic
algorithms, kNN is the k-nearest neighbor algorithm, SVM is the support vector machines, SVR is the support vector regression, RF is the
random forest, RVM is the relevance vector machines, GP is the Gaussian process, and GS-Pred is a new machine learning-based algorithm
proposed by Zhang et al. [28].

3. Conventional Resource Estimation Techniques

In this paper, we referred to conventional resource estimation techniques as geometric
and geostatistical methods. These are estimation techniques that are widely applied in
mineral deposit evaluation. They have been in use in the mining industry for a long time,
and they form the basis of most mineral deposits being exploited today.

The geometric technique includes classical polygon methods, square blocks, rectangu-
lar uniform blocks, triangular blocks, and polygonal blocks. These methods, particularly
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the polygonal approach, have been employed to estimate ore for a wide spectrum of
mineral deposits [34,35], and they are most useful at the initial stage of exploration when
collated data is relatively small [35]. The basis of this technique is that grades are allocated
a definite area of influence generated by constructing the perpendicular bisectors between
adjacent samples or intersections to obtain a regional estimate [36,37]. They are conceptu-
ally simple, fast, able to decluster irregular data, and adaptable to narrow orebodies, but
may not be able to model thick and nontabular orebodies [36].

Geostatistics is a subdivision of statistics concerned with the prediction of random
variables associated with spatial and spatiotemporal datasets [38,39]. It has a set of sta-
tistical methods that are widely applied in the mining industry, especially for ore grade
prediction in mining operations. Other earth science disciplines that apply geostatistics
are petroleum, hydrology, and agriculture. Among the various geostatistical techniques,
inverse distance weighting (IDW) and kriging are by far the most common method applied
in mineral resource estimation [40–42].

3.1. Inverse Distance Weighting (IDW)

The IDW methods use the attributes of a known point or sample to interpolate the at-
tributes of an unknown point or block with a weighting factor. According to Chen et al. [43],
the assumption is based on the similarity principle that two points maintain similar prop-
erties if they are closer to each other. Conversely, if they are farther apart, the weaker the
similarities. IDW methods have been successfully implemented to establish ore grades
for mineral deposits. Even today, some operating mines use IDW as part of their routine
grade control estimation tools due to its low computational cost and easy implementation.
Analysis of a survey conducted from 1997 to 1998 indicates that in the Eastern Goldfields
of Western Australia, IDW was the most popular grade estimation technique [44]. Dominy
and Hunt [44] reported that companies are more likely to employ conventional methods
than geostatistical methods in both surface and underground mining operations because
some conventional methods have “shown to be historically adequate.” Other reasons for
preference of the conventional techniques have to do with company policy or lack of
sufficient data to generate a variogram [44].

Yasrebi et al. [45] applied IDW based on combined variograms to generate block
models in the Kahang Cu-Mo porphyry deposit in Central Iran. The result from the
combined IDW and experimental variogram revealed that the enriched elemental con-
centrations for Cu and Mo are associated with the central, NE, and NW parts of the area.
Shahbeik et al. [40] also employed IDW to establish the ore and waste boundaries for the
Dardevey iron ore deposit in Iran. In certain geological settings, IDW is considered an
effective alternative to kriging methods. For instance, correlation analysis of IDW and Or-
dinary Kriging (OK) performed by Al-Hassan and David [46] in evaluating a gold deposit
indicates a strong correlation coefficient of 0.93, suggesting that IDW can be used as a good
alternative. Again, when compared with OK in limestone deposits [47,48], IDW showed
better results, indicating that IDW can be considered a convenient estimation method for
limestone deposits.

3.2. Kriging

Kriging has gained enormous recognition in the mining industry and has proven to
be a good estimator for mineral resources. Kriging is an estimator designed primarily for
local estimation of block grades as a linear combination of available data in or near the
block such that the estimate is unbiased with minimal error variance [11,49]. There are
many variants of kriging techniques applied in the mining industry, with the most common
types being: simple kriging (SK), ordinary kriging (OK), and indicator kriging (IK). Each of
the variants differs in underlying assumptions regarding the local or stationary domain
mean [11]. Kriging is often associated with the acronym BLUE, meaning the best linear
unbiased estimator.
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Many scholarly articles have reported kriging, particularly ordinary kriging, as a
good estimator for ore reserve estimation [35,49–51]. Daya [52] applied ordinary kriging to
classify an iron ore deposit. The cross-validation results of his study showed a correlation
between estimated and actual data with a correlation coefficient of 0.773. Further, Daya
and Bejari [50] compared the performance of two kriging techniques, simple kriging and
ordinary kriging, in copper deposits and found that while simple kriging produced a
smoother result, the result obtained from ordinary kriging was more accurate. Studies by
Hekmatnejad et al. [53] showed that ordinary kriging also compares well with non-linear
kriging techniques (e.g., disjunctive kriging). However, in some instances, disjunctive
kriging may outperform ordinary kriging [53]. Other advanced kriging techniques, such as
fuzzy kriging and compositional kriging, have also shown reliable results. For example,
Taboada et al. [54] modeled and zoned a quartz deposit in Sierra del Pico Sacro, Spain,
into four different quality grades (silicon metal, ferrosilicon, aggregate, and kaolin) using
compositional kriging. The result was considered satisfactory as it matched the geological
reality of the deposit.

4. Machine Learning Techniques

The increased interest in machine learning (ML) in recent years is reflected in the grow-
ing numbers of scholarly publications about its application in geoscience. ML techniques
cover a broad spectrum of geoscience applications, ranging from identifying geochemical
anomalies to evaluating mineral resources. ML techniques are not new in the extractive
industry; however, their application has surged during the last decade due to promising
results to complex problems in the industry. ML is the study and application of computer
algorithms to make intelligent systems that improve automatically through the experi-
ence without being explicitly programmed [25]. It is classified as a subfield of artificial
intelligence (AI), which is the science and engineering of making intelligent machines.
ML applies computer algorithms to analyze and learn from data, to decide or predict
outcomes in various fields depending on the structure of available data being analyzed.
ML models are categorized as supervised learning, unsupervised learning, and reinforce-
ment learning [55]. Each of these classes is further categorized, based on the nature of the
problem being solved, using various corresponding learning algorithms or applications to
handle such problems. In practice, there are many ML algorithms applied in engineering
fields; however, only those commonly applied to mineral resources estimation problems
are considered in this paper.

A generalized ML implementation process is presented in Figure 7. The first step
in the ML model development cycle (problem definition) deals with understanding the
problem, characterizing it, and eliciting required knowledge in acquiring the relevant data.
The second step (data collection) involves the collection of all relevant data based on the
features prescribed in the first step, followed by data preparation, pre-processing, and
transformation. Feature selection deals with automatic or manual selection parameters
or variables that contribute most to the prediction variable or output of interest. Next,
the data is divided into training, validation, and testing sets based on a predefined ratio
(data partition). Typically, 60% of the data is used for training, 20% for validation, and
20% for testing. Following that, an ML model is trained, validated, and tested using the
partitioned datasets (train model). Model evaluation involves the usage of new sample
data to re-verify the model performance. The model parameters (e.g., number of training
steps, learning rate, initialization values) can be revised until a satisfactory performance is
achieved, and then the model can be deployed for prediction.
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Figure 7. Machine learning implementation stages.

Prominent among ML methods (see Figure 8) that have been employed to estimate
mineral resources are artificial neural network (ANN), support vector machine (SVM),
random forest (RF), gaussian processes (GP), and fuzzy theory sets. These models have
been successfully applied in evaluating different mineral deposits, including limestone,
gold, and copper. The proceeding subsections review application of these algorithms to
mineral resource estimation problems. There is extensive documentation in the literature
regarding assumptions, mathematical computation, and architecture of these techniques;
thus, this paper focuses largely on their application.

Figure 8. Machine learning techniques and their corresponding algorithms.



Energies 2021, 14, 4079 11 of 29

4.1. Artificial Neural Network (ANN)

ANN is a computational network presenting a simplified abstraction of the human
brain. Conceptually, this computational network mimics the operations of biological neural
networks to recognize existing relationships in a set of data and predict output values for
given input values. It consists of layers of interconnected nodes, which represent artificial
neurons [56]. The layers are categorized into three divisions; input layer (receives the raw
data), hidden layer (process the raw data), and output layer (processed data). The number
of layers and neurons (topology) in a network determines the structure of a neural network
or network architecture. Figure 9 illustrates a basic ANN architecture comprising an input
layer with three variables, a hidden layer with two neurons, and an output layer with one
variable. Further, the neural network layers are transformed into a computational network
made up of weight, bias or offset, and transfer or activation function that are responsible
for data processing.

Figure 9. Simplified ANN architecture with a single hidden layer.

Increasingly, ANN has infiltrated many engineering and statistical applications in-
volving clustering, regression, forecasting, signal processing, and modeling problems. The
wide recognition for ANNs could be attributed to their ability to learn and model complex
non-linear relationships and make generalizations after learning from previous data [57].
There are several types and modifications of ANNs in practice today for different problems
in geoscience, including multilayer perceptron (MLP), radial basis function (RBF) networks,
general regression neural networks (GRNN), probabilistic neural networks (PNN), self-
organizing Kohonen maps (SOM), Gaussian mixture models (GMM), and mixture density
networks (MDN). In mineral exploration, ANNs have been widely applied for solving com-
plex geospatial problems, such as prospectivity of mineral resources [58,59], mapping of
mineral resource distribution [60–62], classification of mineral deposit [63,64], and mineral
recovery [65]. Given their strong ability to manipulate large and complex data structure,
reason over imprecise and fuzzy data, and to provide adequate and quick responses to new
information [66], ANN is considered to be a robust alternative to geostatistical methods for
evaluating mineral resources and reserves [67–69].

Generally, geological information, such as spatial location and assay results obtained
from exploration programs, forms the basis of ANN models in resource estimation. The
spatial location of the borehole usually presents the input layer, while the output layer
accounts for the ore grade. Wu and Zhou [37] implemented a multilayer feed-forward
neural network with a sigmoid activation function to capture spatial distributions of grade
based on field assay of borehole locations in a copper deposit. The network architecture
comprises an input layer with two variables (borehole coordinates), two hidden layers with
28 neurons each, and an out layer with one variable (ore grade). Al-Alawi and Tawo [66]
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demonstrated the potential of ANN to determine suitable drilling patterns and eventual
reduction in exploration cost. They developed a multilayer feed-forward ANN-based
model with a back-propagation algorithm to estimate point grades for a bauxite deposit.
The model, which showed reasonable agreement with kriging, was applied to unsampled
points to determine feasible areas for infill drilling. Further, Tahmasebi and Hezarkhani [70]
employed a modular feed-forward neural network to estimate the grade of an iron ore
deposit with improved performance compared to ordinary kriging and conventional
multilayer perceptron neural networks. In a slate deposit, Matías et al. [71] determined the
quality of slate mine using regularization networks (RN), multilayer perceptron (MLP), and
radial basis function (RBF) network and compared the accuracy of the models with kriging.

Studies have also gone beyond the usage of borehole locations as input variables to
incorporate other relevant geological attributes such as lithology and alteration obtained
during exploration. Ore deposits with varied grade attributes (i.e., output layer with multi-
ple nodes) are possible to model with ANN. For instance, Chatterjee et al. [72] modeled a
limestone deposit using a feed-forward neural network where the input layer consists of
spatial location (X, Y, and Z coordinates) and lithological information, and the output layer
of four grade types (silica (SiO2), alumina (Al2O3), calcium oxide (CaO), and ferrous oxide
(Fe2O3)). The ANN model showed superior performance when compared with ordinary
kriging. Kaplan and Topal [73] proposed a grade estimation technique that combines
multilayer feed-forward neural network (NN) and k-nearest neighbor (kNN) models to
estimate the grade distribution within a mineral deposit (see Figure 10). The models were
created using lithology, alteration, and sample locations (easting, northing, and elevation)
obtained from the drill hole data. The proposed approach explicitly maintains pattern
recognition over the geological features and the chemical composition (mineral grade) of
the data. Before the estimation of grades, rock types and alterations were predicted at
unsampled locations using the kNN algorithm. The result showed that inclusion of the
geological information (lithology and alteration) as input parameters improved the model,
which had a mean absolute error (MAE) of 0.507 and coefficient of determination (R2) is
0.528, whereas the ANN model that only uses the coordinates of sample points as an input
yielded an MAE value of 0.862 and R2 = 0.112.

Figure 10. Proposed NN model architecture, adapted from [73].
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More recently, fuzzy uncertainties associated with geological data are being modeled
with hybrid neural-fuzzy algorithms [74–78] to quantify uncertainties in evaluating mineral
inventory parameters. Similar ANN-based mineral estimation models include Wavelet
neural network (WNN) for copper deposit [79], recurrent neural network (RNN) for iron
ore deposit [80], Kalman learning algorithm (modified back-propagation neural network)
for lead (Pb), and zinc (Zn) deposit [81], local linear radial basis function (LLRBF) neural
network for phosphate deposit [82], and radial basis function (RBF) network for offshore
placer gold deposit [83,84]. Table 3 shows a summary of some ANN-based resource
estimation models.

Table 3. Sample case studies of ANN-based mineral resource estimation.

Algorithm Variables Deposit Dataset Result Reference

ANN Drillhole location and
composite grade values Copper 25 drill holes

A maximum absolute error of 80%
was obtained for the training set. The

estimate reflected actual grade
distribution as high grades, but few
cases were underestimated because

they were few.

[37]

ANN

Input variables are X and Y
coordinates, while target

variables are the thickness of
mineralized lengths of the

deposit and the corresponding
content of alumina and silica

Bauxite 163 drill holes
The results showed that the input
variables could explain 79% of the
variability in the target variables.

[66]

ANN Drillhole spatial location (X, Y,
and Z) and sample length

Mineral
sand

2880 composite
samples from
302 drillholes

The model showed accurate
predictions of ore grade with R2 of
0.889; however, underpredicted for

high-grade values that had relatively
few training cases.

[23]

ANN and
kNN

Geological information
(lithology and alteration) and
sample location (X, Y, and Z)

Gold 123 drill holes
The model predicted the grades on a

test dataset with a mean absolute
error (MAE) of 0.507 and R2 is 0.528.

[73]

4.2. Support Vector Machines (SVM)

Another machine learning technique gaining significant attention in resource estima-
tion is support vector machines. SVMs are supervised learning models that construct a
hyperplane in high dimensional feature space to separate different classes through non-
linear mapping [85]. Given a set of training examples, which belong to different categories,
an SVM model constructs a separating line with a gap between the data categories. The
model then maps new examples into the same space and predicts the respective side of
the separating line or category. SVMs are becoming popular for solving classification, re-
gression, and outlier detection problems. According to Chatterjee and Bandopadhyay [86]
and Xiao-li et al. [87], SVMs function just like ANN, but with the added advantages of
achieving global minimum and efficient handling of over-fitting problems; hence their
growing prominence in mineral exploration applications is evident. Examples of SVM
application in mineral exploration include: mineral prospectivity [88,89], potential mineral-
ized zones mapping [90–92], fluid inclusion modeling [93], exploration drill holes location
identification [94], alteration zone separation [95], and slate deposit characterization [96].

Further application of SVM in mineral exploration has to do with resource estimation.
Das Goswami et al. [97] employed support vector regression (SVR) to model an iron ore
deposit. They assessed the grade of the deposit and compared the model with gaussian
process regression and ordinary kriging. The model output (Fe grade) was determined us-
ing spatial coordinates (X, Y, and Z) and ten lithological features as input. As demonstrated
by Chatterjee and Bandopadhyay [86], SVM has also proven to be sufficient for evaluating
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placer deposits, which are often sparsely sampled, increasing the complexity of the estima-
tion process. Using exploration data from a platinum deposit, the authors adopted least
square support vector regression (LS-SVR) and combined neighboring borehole samples as
the model input instead of the conventional spatial coordinates to estimate the ore grade.
The improved estimate result of the model compared with conventional SVM and ordinary
kriging was attributed to the composting of neighboring samples. Further improvement
was expected with an increase in neighbor samples. Similarly, Zhang et al. [98] applied
least square support vector regression to the model to estimate the ore grade of a seafloor
hydrothermal sulfide deposit. The model demonstrated superior results in comparison to
inverse distance weight (IDW), ordinary kriging (OK), and back-propagation (BP) neural
network, and showed robust predictive and generalization ability.

During exploration drilling, there are instances where drill cores cannot be recovered,
resulting in missing data and incomplete core samples. This situation complicates the
estimation process and may eventually render the result inaccurate. To solve this estimation
problem, Zhang et al. [99] incorporated a relevance vector machine (RVM)–a modified
version of SVM based on Bayesian treatment [100]–and expected squared distance (ESD)
algorithms to determine the missing values and estimate the ore grade. Li et al. [87] also
proposed an integrated model of self-adaptive learning-based particle swarm optimization
(SLPSO) and support vector regression (SVR) for porphyry copper ore grade estimation.
Table 4 presents a summary of SVM-based resource estimation models.

Table 4. Sample case studies of SVM-based mineral resource estimation.

Algorithm Variables Deposit Dataset Result Reference

SVM

The model incorporated information
(drillhole coordinates) from 4 (Case 1)
and 16 (Case 2) neighborhood samples
as input parameters to estimate grades

for unsampled locations

Platinum 470 drill
holes

The models recorded higher R
values than kriging, but the

grades were underestimated.
[86]

SVM

Slate quality evaluation based on sandy
intercalations, quartz-filled

microfractures, flat-lying schistosity
planes, pyrite or other sulfurs affected

by oxidation, surface alterations,
crenulation schistosity, and kink bands

Slate 10 boreholes

The SVM result compared well
with kriging with the advantage

of easy interpretation, better
control over outliers, and

greater sparsity.

[96]

4.3. Random Forest (RF)

Random forest is an ensemble learning technique consisting of collection decision
trees that are trained using random training subset to output mode class in classification
and mean prediction in regression problems [101,102]. Each decision tree outputs a class,
and the class with the most votes is the model’s prediction. Since the final output is a
combined decision, it most likely outperforms the prediction of an individual tree. The
decision trees are constructed by bagging or bootstrap aggregation, meaning the samples
are drawn from a subset of training data with replacement. Figure 11 illustrates a schematic
framework of RF with five samples and three variables. In Figure 11, the trees are created
in an ensemble by drawing a subset of training samples through replacement, meaning
that the same sample can be selected several times, while others may not be selected at all
(i.e., training phase). Then, each tree votes for a class membership, and the membership
class with the maximum votes will be the one that is finally selected (i.e., classification
phase). Studies have shown that RF has several desirable qualities, including handling
large data sets efficiently; ability to detect outliers and noise; capacity to produce suitable
internal estimates of generalization error; and computationally cheaper than bagging or
boosting [101,103–105].
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Figure 11. Random forest classifier schematic: i = samples, j = variables, p = probability, c = class, s = data, t = number of
trees, d = new data to be classified, and value = the different values that the variable j can have, adapted from [106].

In addition to its enormous application in areas, such as land cover classification [104],
groundwater modeling [107,108], and mineral prospectivity [89,109], RF is gaining popu-
larity in predicting the ore grade of mineral deposits. For example, Jafrasteh et al. [110]
investigated the potential of an RF-based model for evaluating grades of porphyry copper
deposit and the model’s performance with other machine learning algorithms (e.g., multi-
layer perceptron neural network) and geostatistical techniques (e.g., indicator kriging, and
ordinary kriging). The RF-based model was made up of hyper-parameters that were ad-
justed by 500 decision trees sufficient to ensure convergence of the model. Sheng et al. [111]
combined laser-induced breakdown spectroscopy (LIBS) and random forest (RF) to classify
iron ore samples with 100% prediction accuracy. In another study, O’Brien et al. [112]
classified gahnite compositions of the Broken Hill deposit to determine most prospective
Pb-Zn-Ag mineralization in the Broken Hill domain, Australia. The results show that RF is
a better technique for compositional discrimination in the Broken Hill domain compared
with linear discriminant analysis. In an exploration study, Schnitzler et al. [113] used RF
to assess sodium (Na) concentration in the Matagami mining district of Québec, Canada
and illustrated that RF could be an efficient tool for estimating missing or unmeasured
geochemical elements in an exploration database. Matin and Chelgan [114] also alluded
to the potential of RF to model complex relationships in their study to investigate gross
calorific value of coal samples from 26 US states, where it was applied with satisfactory
results. Table 5 summaries RF-based resource estimation models.
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Table 5. Sample case studies of RF-based mineral resource estimation.

Algorithm Variables Deposit Dataset Result Reference

RF
Emission spectral lines of Si
and Ti as the input data and

ore class as output data
Iron ore

300 analytical
spectra were

acquired from
10 classes of

iron ores

The model exhibits better
predictive power with an accuracy
of 97.5% for all spectral data as the
input and prediction accuracy of

100% for iron ore samples.

[111]

RF Compositions of gahnite in
sulfide-bearing rocks Polymetallic 533

The model classified gahnite into
various schemes with

misclassification rates of 1.6, 3.3,
and 4.7%.

[112]

4.4. Emerging and Hybrid Algorithms

There are other machine learning techniques being applied to mineral resource es-
timation problems, though they are not widely used compared to the above-mentioned
machine learning models. Gaussian processes [115,116], for instance, is popular in geo-
science, especially for geochemical anomaly detection [117,118] and mineral prospectivity
studies [119,120], but we observed in the literature that it had been applied once to estimate
ore grade of a deposit [110]. Jafrasteh et al. [110] suggested that GP models gave the
best results when spatial input and covariance functions were processed using symmetric
standardization (SS) and anisotropic exponential kernel (AK), respectively. Thus, in their
experimental study, they applied GP with symmetric standardization and an anisotropic
exponential kernel GP to evaluate the grade of a copper deposit. And as expected, the
GP-SS-AK algorithm performed well among other GP algorithms, including the expo-
nential kernel, isotropic exponential kernel, symmetric standardization, and anisotropic
exponential kernel.

Recently, researchers have been exploring the potential of incorporating machine
learning techniques with other sophisticated soft computing methods (e.g., genetic al-
gorithm, ant colony, fuzzy set theory, etc.). The aim is to synthesize the advantages of
these algorithms to build a single algorithm with improved accuracy for resource esti-
mation. Examples of these models include grade estimation of copper deposit using
self-adaptive learning-based particle swarm optimization and support vector regression
(SLPSO–SVR) [87]; multilayer perceptron neural network optimized by invasive weed
optimization algorithm to predict grades of gold and silver in gold deposit [121]; local
linear radial basis function neural network trained with a combination of simultaneous
perturbation artificial bee colony algorithm and back-propagation method to estimate
phosphate deposit [82]; combination of multilayer perceptron neural network and ge-
netic algorithm for an iron deposit [122]; and extreme learning machine (ELM) variants
based on hard limit, sigmoid, triangular basis, sine and radial basis activation functions
to gold deposit [19]. Yu et al. [123] optimized iron ore grades using a combination of
stochastic simulation, artificial neural network, and genetic algorithm. Further, given the
potential of computer vision methods, studies, such as Chatterjee and Bhattacherjee [124],
Patel et al. [125], Patel and Chatterjee [126], Perez et al. [127], and Zhang et al. [128] also
integrated image recognition algorithms with other machine learning methods to classify
and predict ore grade. Table 6 presents a summary of some of the emerging ML techniques
applied in estimating mineral resources.
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Table 6. Sample case studies of emerging machine learning techniques for mineral resource estimation.

Algorithm Variables Deposit Dataset Result Reference

SLPSO–SVR

Contour map of copper
distribution was used as input
data and copper grade was the

target variable

Copper
200 groups
of sample

data

The model has advantages of rapid
training, generality, and accuracy

grade estimation approach.
[87]

GP
Hole location was used as

predictor variable and grade as
target variable

Copper 603 drill
holes

GP performed better than other
models. [110]

ELM
Input data is X, Y, and Z

coordinate, and the output is ore
grade.

Gold 3759 drill
holes

ELM with sigmoid activation
function better than other models

with R2 of 0.9193.
[19]

Machine Vision
and Image

classification

A total of 280 image features
were extracted from ore sample

images captured on a belt
conveyor.

Iron ore 280 image
features

The model showed a satisfactory
prediction of iron ore grade with R2

of 0.9402.
[125]

5. Discussion and Future Directions

The continued advancement in computer power has unraveled novel and sophisti-
cated soft computing techniques capable of handling large and complex dimensional data
structures that were not possible in the past. These soft computing techniques include
machine learning coupled with big data technologies to create a new paradigm of powerful
resource estimation models. Machine learning applications have infiltrated all fields and
industries, from engineering to sociology, agriculture to astronomy. Some scholars even
refer to it as the new electricity driven by data. Geoscience has also witnessed tremen-
dous advances with the onset of ML. There is a consensus among geoscientists that ML
algorithms are suitable for geospatial data that often exhibit complex and high spatial
variations [129–131], and the algorithms can produce superior results for classification
and regression problems than geostatistical techniques, especially when the relationship
is non-linear [132–137]. Some of the ML algorithms are universal, adaptive, non-linear,
robust, and efficient [129]. Another favorable characteristic of ML is that it allows the
discovery of new information or a deeper understanding of existing geospatial data. This is
evident in the assertion by Nwaila et al. [138] that the advent of ML made sedimentological
data, which were initially collected for qualitative assessment of gold mineralization, more
meaningful and contextually relevant. ML-based estimation algorithms can accommodate
a combination of several geospatial parameters for grade prediction and ore classification.
In addition to the spatial location of drill holes and composite grade, lithological, geo-
chemical, and rock imagery features, which are often overlooked or not accommodated in
geostatistical techniques, can be included in the dependent variables of the model [139],
resulting in a more improved estimation model. The main appealing features of ML for
resource estimation, in contrast to conventional estimation techniques, are that it (i) requires
fewer data pre-processing, (ii) handles complex non-linear relationships, (iii) relatively
cheaper and faster, and (iv) does not assume underlying spatial distribution and handles
incomplete data.

Despite the strong potential of ML and its recent increasing application in the eval-
uation of mineral resources, geostatistical methods remain the benchmark estimation
technique in the mining industry. ML techniques are considered more of a complemen-
tary tool for validating results obtained from geostatistical methods than sole estimation
techniques for mineral projects. Glacken & Snowden [36] noted that many estimation
tasks are still conducted using polygonal techniques regardless of the availability of so-
phisticated estimation methods. The high preference for geostatistical techniques may
be because they have been applied in the industry for a long period, forming the basis
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for many mine designs in operation today. In addition, their underlying framework of
linear correlation of samples and stationarity [97,133,140] makes them less computationally
expensive compared to ML techniques. Furthermore, they can be integrated with other
statistical concepts, for example, conditional simulation, which is a combination of kriging
and the Monte Carlo sampling method [36]. Moreover, many resource engineers have
gained comprehensive experience over the years in applications of these methods with
reliable results. Thus, they would be more comfortable working with techniques that are
widely accepted in the industry. Stakeholders also have confidence in these techniques.

Additionally, most geostatistical algorithms have been automated in modern min-
eral resource software packages (e.g., Datamine, GEMS, Leapfrog, Micromine, Surpac,
Vulcan, etc.) for easy data manipulation and estimation. This allows the estimators to focus
more on the data preparation and result interpretation. Another reason could be that
geostatistical techniques are widely recognized by the Committee for Mineral Reserves
International Reporting Standards (CRIRSCO) members and their respective mineral re-
sources and ore reserve estimation reporting schemes, such as National Instrument 43–101
in Canada, Joint Ore Reserves Committee Code (JORC Code) in Australia, South African
Code for the Reporting of Mineral Resources and Mineral Reserves (SAMREC) in South
Africa, SME Guide in the USA, NAEN Code in Russia, and Pan-European Reserves and
Resources Reporting Committee (PERC) in Europe and the United Kingdom.

Although geostatistical techniques are the industry’s estimation standard, they possess
certain inherent limitations. As mentioned earlier, these methods are generally linear
estimators; thus, grades of unknown samples are determined based on second-order
statistics and the use of linear correlation or variogram, which describes mineralization
of a deposit [97]. According to Das Goswami et al. [134], second-order statistics work
reasonably well with statistical processes following the Gaussian process. Nonetheless, it
is difficult to model complex geological structures with high variability that do not follow
the Gaussian process. Tutmez [76] also pointed out that geostatistical methods perform
poorly on small data sets (i.e., not enough data to achieve acceptable variogram calculation).
Therefore, they are not suitable for small deposits or during the initial exploration stage,
where data is limited. They also require significant data-processing [137]. In such situations,
ML techniques can be adopted.

ML techniques are known to sufficiently handle spatial uncertainty associated with ge-
ological data [89,97,133,141] sbecause of their ability to determine the relationship between
complex and non-linear input and output variables [97]. ML techniques can learn and map
inherent relationships among the data variables. Given enough geological data (such as
drill hole coordinates and assay results), ML techniques can learn the relationship between
input parameters (coordinates of drilled holes) and output parameters (ore grades). The
trained model can then be used to estimate grades for unknown points within the same
geological area. In effect, no assumption is made about factors or relationships of ore
grade spatial variations, such as linearity between drilled holes [133] as in the case of
geostatistical techniques. Several case studies (see Tables 3–6) have illustrated the potential
of ML techniques as a good estimator of ore grade for different mineral deposits; some
studies have done so by comparing its performance with geostatistical techniques.

Results from studies comparing the performance of both models are mixed. In some
cases, geostatistical techniques showed better output and vice versa. In other words, there
is no outright best method between the two, and they seem to complement each other.
Generally, the ML techniques seem to have higher accuracy than the geostatistical methods.
When Das Goswami et al. [97] compared two ML techniques (general regression neural net-
work (GRNN) and multilayer perceptron neural network (MLPNN)) and one geostatistical
technique (ordinary kriging (OK)) in an iron deposit, they found that GRNN exhibits better
generalization potentials and also provides higher accurate prediction than MLPNN or
OK models. MLPNN and OK were also observed to overestimate lower grades and under-
estimate the higher grades, while GRNN showed minor variation between the predicted
and actual iron grade. In the Nome gold ore reserve estimation, Dutta et al. [102] demon-
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strated that SVM produced better estimates compared to ANN and OK. Afeni et al. [142]
re-examined grade estimates for an iron ore deposit using MLPNN and OK and observed
that the OK model showed superior performance than the MLPNN model. The total
resource definition by OK was about 12% lower than that of the conventional method
currently used in the mine. Karami and Afzal [101] also evaluated the performance of ANN
and IDW on a copper deposit and reported that the IDW method showed less variance,
while ANN demonstrated high overestimation and underestimation. Thus, in this instance,
IDW is a better estimator than ANN. In Kaplan and Topal’s [73] study, the NN and kNN
model underestimated any grades between the 15 ppm and 20 ppm range. Upon close
examination of sample points, they observed that the network could not ignore the effect of
discontinuity of lithology in areas where mineralization is structurally controlled and a test
point located near a fault; thus, the model is more suitable for mineralization controlled by
lithology than structure.

It is worth mentioning that ML techniques are not a panacea to all resource estimation
problems, as they also have limitations. Jafrasteh et al. [115] indicated that ML techniques
are effective only if the training and test datasets have similar distributions. The models
tend to perform poorly when the samples are far apart with increasing spatial variation.
Thus, the training data and test dataset must be carefully partitioned to ensure that they
have the same or similar geological characteristics. This problem can be resolved by assign-
ing a higher weight to training samples closer to the test samples [141]. Kapageridis [143]
observed that the dimension of input data influenced the performance of ML techniques,
particularly ANN applied to ore grade estimation. After examining 2D and 3D spaces with
varying input configurations, ranging from two to sixteen input dimensions on different
deposit types (potash, marl, phosphate, and copper), the author concluded that for ANN,
“there is no globally applicable configuration for all deposit and sampling scheme types,
and each deposit and sampling scheme must be considered separately to find the best
configuration applicable.” The adopted input dimension can either hurt performance when
available data is small or improve when available data is large enough. Thus, it can be
inferred that there is no one-fit-all ML technique for all resource estimation problems,
but the choice of technique is contingent on available data and deposit characteristics.
Further, we observed that many ML-based grade estimation models are limited only to
geological parameters (e.g., using only spatial coordinates). Erdogan Erten et al. [144]
corroborate this observation, stating that “ML models provide useful tools to generate
spatial estimations of geological features, but they do not consider the spatial dependence
among the observations and they primarily use coordinates as predictors. Thus, many ML
models produce visible artifacts in the resulting estimates along the coordinate directions.”
The authors proposed using ensemble super learner (ESL) to address this weakness.

Again, ML algorithms that focus on finding the best solution for a model tend to
overfit or underfit because the optimum model for training and testing the dataset may
not necessarily have the best generalization ability [145]. This problem can be addressed
using ensemble methods, where multiple learning algorithms are applied with different
parameters, and the resulting solutions are averaged to obtain better performance than
any of the constituent learning algorithms [146–148]. Examples of this learning method are
Bayes optimal classifier, bootstrap aggregating (bagging), boosting, Bayesian model aver-
aging, bucket of models, and stacking. Chatterjee et al. [148] investigated the performance
of genetic algorithms and k-means clustering based on an ensemble neural network for a
lead-zinc deposit. The result showed no significant difference in the model performance.
They attributed the marginal performance to the high coefficient of variations and skewness
of the data sample. But Tahmasebi et al. [78] pointed out that, perhaps, optimizing ANN’s
parameters and topology could have improved the result. An earlier study conducted by
Tahmasebi and Hezarkhani [149] showed better results when the ANN’s parameters and
topology were optimized with genetic algorithms.

Another critical factor observed to influence the accuracy of ML-based estimation
models is data partitioning [110,150]. Most studies assume random partitioning to divide
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the sample data into training (e.g., 60%), validation (e.g., 20%), and testing (e.g., 20%). How-
ever, due to variation in drillhole samples (in both 2D and 3D) and erratic distribution of
geochemical anomalies, such an approach may bias model performance as closer holes tend
to exhibit similar features than farther holes. Thus, it is important to consider lithological
features and other inherent characteristics particular to the formation when deciding which
data partition regime to adopt. Additionally, instead of using composite values, individual
drillholes can be modeled along the z-axis based on core sample intervals. The result
obtained from each local drillhole model can be synthesized as input-output parameters
for the global model. This would mimic spatial distribution along the drillholes, allow
the inclusion of more features, produce more realistic models, and improve performance
and accuracy.

ML is data-driven, requiring a large dataset for training, testing, and validation. The
enormous volume of data needed to implement and derive meaningful results from ML
successfully may not be readily available at the beginning of exploration programs or in
greenfield projects. Acquisition of extra data is time-consuming and expensive. Therefore,
ML may be more appropriate for brownfields projects, operating mines, or reassessing
decommissioned projects. However, this is not to say that ML cannot be applied to small
mineral estimation problems, as certain soft computing techniques such as fuzzy set
theory [74] are well suited for such problems. Other notable shortcomings of ML models
include overfitting [97,132,143] higher computational running time [134], and smoothing
effect [132].

Considering the long usage of conventional estimation techniques, knowing that they
have been tried, tested, and modified over the years to achieve the reliable estimates, it
would be challenging for resource estimators to abandon these techniques for ML methods.
Such a switch may result in chaos in the industry; stakeholders would doubt reserve
estimates, and financial institutions would be reluctant to fund mineral projects because
they may not trust the project value. In terms of resource estimation, ML techniques are
not matured yet, and most of the applications are in academic settings. It would take time
for it to get industry-wide recognition and acceptance. Studies should focus on integrating
traditional/conventional and ML techniques and form hybrid algorithms to fasten the
adoption process. It is worth noting that most ANN-based models in practice assume
a deterministic approach to model non-linear systems [151,152]. However, natural phe-
nomena such as the occurrence of mineral resources do not follow deterministic processes,
as they are characterized by stochastic properties with high uncertainty. Consequently,
Kaplan and Topal [73] asserted that no matter how much network is trained to improve
the prediction, independent stochastic events cannot be predicted by any neural network
models. However, we believe that a more advanced ML algorithm such as stochastic neural
networks [152], which account for random processes in a system, and deep learning could
address the heterogeneity of geological formations in resource estimation to some extent.
These novel algorithms should utilize the merits of both conventional grade estimation
methods and ML techniques and should also be able to estimate multiple ores since there
are deposits with multiple mineralization, as many of the current ML-based mineral estima-
tion models focus on only one commodity. Further, the ML and hybrid algorithms should
be incorporated in mining software to make ML more accessible to resource engineers.
Some scholars [153,154] are already building ML-based estimation software where the user
would only provide sample assay data (e.g., borehole coordinates and ore grade), and the
software will analyze and predict grade for unsampled areas.

The inherent heterogeneous nature of mineral deposits, which is evident in exploration
datasets with varying mineralogy, mineral content, natural fracture, lithology, and other
properties, can be likened to concept drift in machine learning. Concept drift refers to
the unexpected changes in underlying data distribution over time [155–157]. The concept
suggests that as data evolve over time, the distribution underlying the data is likely to
change, resulting in the poor and degrading performance of predictive models. Thus,
the model must be updated regularly in real-time, as new data is obtained. The erratic
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distribution of ore grades means that resource estimates are subject to change as more data
is gathered during the exploration or production phase. Therefore, ML-based resource
estimation models should be able to analyze emerging data in real-time to reflect current
grade distribution of a deposit. The idea is that the ML model should train, test, and validate
each incoming dataset and use the result to update previous estimates. Studies have
examined the problem of concept drift and proposed different approaches for detecting
and handling it in several fields, including weather forecast, smart grid analysis, spam
filtering, and predictive maintenance [157–160]. Žliobaitė et al. [155] emphasized the
application of Big Data Management and automation tools and the need to account for the
evolving nature of data collected over time. Further, they recommended moving from the
adaptive algorithms towards adaptive systems that would automate the full knowledge
discovery process and scaling solutions to meet the computational challenges of Big Data
applications. With Big Data applications, mineral exploration data can be organized in the
form of data streams rather than static databases to enable online and real-time prediction.
Zhukov et al. [157] also proposed an approach using decision tree ensemble classification
method based on the random forest (RF) algorithm for addressing concept drift in smart
grid analysis. The proposed model compared well with concept drift approaches like
Online Random Forest and Accuracy Weighted Ensemble (AWE). ML techniques such
as lazy learning algorithm, incremental learning, support vector machines, classification
trees C4.5, genetic algorithms, and neural networks have also been employed to address
concept drift.

Such concepts can be extended to cover other downstream activities of mineral explo-
ration and exploitation. For instance, after ore reserve estimation, ML techniques should
be able to: develop block models based on the grade estimate, determine the cut-off
grade, propose pit shells (geotechnical features of the formation included), perform project
valuation [161,162], design mining sequence, and schedules for optimal extraction. All
these processes can be automated as an integrated computer program, like automation
of truck haulage, requiring less human interference and error. Full implementation of
ML in resource estimation coupled with deep learning and other AI technologies like
internet-of-things, drones, robotics, and blockchain would transform mining into the mine
of the future being proposed by major stakeholders in the industry.

With the deployment of Big Data Management and Automation systems in the mining
industry, we foresee the successful implementation of advanced ML techniques such as
deep learning that requires enormous data to produce reasonable results. The availability
of such datasets would help researchers apply ML techniques efficiently. ML applications
in mineral resource estimation are currently focused on evaluating resources during the
exploration stage, with little application post-exploration. We envisage that future studies
would examine its applications during the operational stage of a mine, for example, grade
control evaluation and reconciliation in surface and underground mining. In addition,
given the recent proliferation of ML techniques, future research needs to determine which
algorithms are most robust and appropriate for resource estimation. An industry-accepted
ML application standard (ML Rubric) can be developed whereby all algorithms are sub-
jected to a set of selection criteria, and every algorithm must obtain a pre-defined passing
score before implementation. Some factors that can be considered in the ML Rubric are
project goal, nature of data, ground condition, alteration levels, geological settings, model
interpretability, minimum sample size, minimum features, acceptable error margin, perfor-
mance metric, and computing resources. Figure 12 illustrates a schematic of the ML Rubric
factors, consisting of three main selection categories (algorithm attribute, project character-
istics, and implementation process). Ultimately, such a standard would help harmonize
ML-based models, eliminate discrepancies, and promote acceptance of ML applications
not only in mineral resource estimation but other sectors of the mining industry as well.
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Figure 12. Schematic of ML Rubric factors for mineral resource estimation.

It is important to indicate that a major drawback of ML applications is data limita-
tion. The literature shows that most ML-based mineral resource estimation models were
developed using composite values obtained from a few boreholes. Though these models
produced satisfactory results, their performance can be improved with access to more
data. The performance and accuracy of ML techniques, including deep learning, are highly
dependent on a large and quality dataset that is partitioned appropriately into training,
validation, and testing sets to ensure each set is a representative of the population [31]. It
is well known that the functional capabilities of artificial intelligence and ML rest upon a
sufficient dataset. However, what constitutes an adequate dataset size is not well defined,
as the amount of data required can vary from one project to another. In this regard, studies
such as Ganguli et al. [163] have provided recommendations to address ML application
challenges peculiar to the mining industry. They recommended a comprehensive under-
standing of the modeling process before implementation and advised caution when using
soft computing tools and software products [31]. Their recommendation also included
the random data partition in three subsets (i.e., training, testing, and validation). Further,
they suggested that the training subset should contain the highest and lowest values, and
samples should be assigned to the training subset first, followed by validation and testing,
during data grouping/segmentation. Additionally, the best data collection and processing
protocols should be observed during model development to minimize error and ensure the
dataset is good enough for its intended use.

6. Conclusions

Mineral resource estimation is a challenging task with enormous uncertainties, and
considering the erratic nature of geological formations, results from such estimates are
critical to all mining operations. Whether a mineral resource is classified as a reserve, ore,
waste, and eventually a mine depends on the estimation outcome. Thus, the choice of the
estimation method is key in the mineral resource estimation process. The selection of an
unsuitable estimation method could defeat the purpose of an exploration program and
may cause loss to capital expenditure. The common estimation methods in practice are in
the geostatistical categories. These methods have been used to establish some of the most
successful mining operations in the world, despite their weaknesses.
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Recent developments in computer technologies allowed researchers to implement
ML algorithms in mineral resource estimation. Results from such studies showed that ML
algorithms are powerful tools for solving both linear and non-linear complex geological
problems. These algorithms can model complex geological data, identify relationships,
classify geological features, and detect geochemical anomalies with little human interven-
tion. The most widely applied ML algorithms in this field are ANN, SVM, and RF. Given
borehole data, the model can estimate ore grade values. However, despite their enormous
potential in resource estimation, ML-based models also possess some inherent weaknesses
such as overfitting, longer computational time, and smoothing effect.

These limitations can be addressed by combining them with other ML models and
deep learning algorithms. The ML models could also be employed to augment existing
estimation methods or perhaps integrated with traditional methods to form hybrid esti-
mation methods. Furthermore, the mathematical complication associated with some of
the ML algorithms, which could be a reason for their low implementation in the mining
industry, can be rectified by incorporating them in existing resource estimation software as
pre-trained models. Thus, the pre-trained models would make the implementation process
much faster, easier, and user-friendly. Additionally, the resource engineer would not have
to develop and train the algorithm from scratch but focus on retraining the pre-trained
model with a new dataset. Future research can examine the application of ML techniques
for grade estimation during a post-exploration stage (e.g., grade control and reconciliation),
and they can also consider utilizing advanced ML methods, such as stochastic neural
network and deep learning. Also, industry standards regarding ML applications can be
developed to guide algorithm selection, build confidence in ML-based resource estimates,
and promote industry-wide acceptance of ML techniques.
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