energies

Article

Decarbonization of Marine Fuels—The Future of Shipping

Jerzy Herdzik

check for

updates
Citation: Herdzik, J. Decarbonization
of Marine Fuels—The Future of
Shipping. Energies 2021, 14, 4311.
https:/ /doi.org/10.3390/en14144311

Academic Editor: Jurgita Raudeliuniene

Received: 10 June 2021
Accepted: 15 July 2021
Published: 17 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Marine Propulsion Plants Department, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland;
j-herdzik@wm.umg.edu.pl; Tel.: +48-58-5586-430

Abstract: The goal of reducing the climate impact of shipping requires many different activities. To
reduce greenhouse gas emissions, the International Maritime Organization prepared some proposals
to meet and fulfill the requirements. It sets out the provisions of the International Convention for the
Prevention of Pollution from Ships 73/78 Annex 6—Prevention of the Air Pollution from Ships (1997)
with the amendments and the future objectives set. The main objective is to achieve climate neutrality
from shipping by 2050. One method is the decarbonization of marine fuels. The types of fuels that
are transient fuels, with the final target fuel being hydrogen, are shown. Carbon dioxide emissions
depend on the chemical composition of the fuel, its Lower Heating Value and the engine efficiency.
The aim of the manuscript is to demonstrate that the use of fuels with lower carbon content is a
transitional process enabling the hydrogen era to take place. An analysis of this problem is presented
as a review of the subject along with the author’s comments and observations. The development of
technologies for adapting potential fuels to combustion requirements in marine diesel engines and
gas turbines, together with their storage and bunkering capabilities, are the main barriers to their
limited use. The efficiency of marine diesel engines reaches a value of about 50%, while that of fuel
cells are close to 100%. It seems that hydrogen will be the fuel of the future, including in shipping.
Its basic use is in fuel cells, the efficiency of which is almost twice that of current thermal internal

combustion engines.
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1. Introduction

Cargo transport by sea is vital for the global economy. Additionally, ferries provide
services in international, domestic and inland transport of lorries, cars and passengers.
Probably after the COVID-19 pandemic passes, a fleet of cruise vessels will rejoin the
tourist system. To fulfill their functions, all vessels need different types of energy, but the
prime energy always comes from marine fuels (the share of renewable energy sources
may be disregarded). The age of coal as a marine fuel came to an end over sixty years
ago and will not come back. Now, liquid marine fuels derived from crude oil are mainly
used. Oil-refinement processes produce a few types of marine fuels such as marine gas oil
(MGO), marine diesel oil (MDO) and heavy fuel oils (HFO) [1] (ISO 8217). Marine diesel
engines were adapted to burn residual fuels with a viscosity at 50 °C up to 700 cSt. Due
to the following regulations [2—4], other biofuels for shipping have been introduced, such
as the following: biodiesel, methanol, ethanol, biobutanol, bioethers, palm, vegetable or
cooking oil, and others, but their share is limited to certain cases and places (i.e., inland
transport) [5-8]. Of course, a few electric vessels (ferries) have been built that use electric
energy from batteries, but the electric energy derived mainly from onshore power plants
and the capacity of energy accumulation is still limited to short voyages. Ampere was the
first inland passenger-car ferry put into operation in early 2015 [9]. The route it sails is only
6 km.
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2. Carbon Dioxide Emission from Shipping

International shipping has been the reason behind the emission of about 2.5 + 3% of
carbon dioxide (CO;) in the worldwide pollution. In 2015, it accounted for 932 million tons
and 2.6% of emissions. All forms of transport account for 24% of global emission. Carbon
dioxide emission depends on total fuel consumption and carbon concentration in the fuel
used. CO; is the one of greenhouse gases (GHG) [2]. Due to the emission of other GHGs
such as nitrogen and sulfur oxides from marine diesel engines, equivalent CO, (CO»)
emissions have sometimes been used. The inquired information includes the type of GHG,
its content and the GWP indicator (Table 1).

Table 1. Global Warming Potential (GWP) indicators in the 20-year and 100-year horizons relative to
CO, for different greenhouse gases (GHGs) [10-12].

Type of Gas GWP, GWPqqg
Carbon dioxide CO, 1 1
Carbon monoxide CO 28 =101 1+31

Methane CHy 84 30

Nitrous oxide N,O 300 265

Propane C3Hg 9.5 3.3
Butane C4Hqg 6.5 4

Black Carbon BC 447 1.055 +2.24 1

Ammonia NHj3 0 0

! Depends on the type of source.

The difference between CO, and CO,, emissions for liquid fuels is rather small, about
7 + 9% more for COy,; it is quite stable and should not be included in further considerations.

The International Maritime Organization (IMO) has an ambition to halve the GHG
emissions from shipping by the year 2050 and to decarbonize shipping as soon as possi-
ble in this century. Currently, there are only three mandatory requirements addressing
GHG emissions:

e  The Energy Efficiency Design Index (EEDI) for newbuilds mandating up to 30% im-
provement in design performance depending on ship type and size in comparison
with 2013 (year of requirement introduction) [13];

e  The Ship Energy Efficiency Management Plan (SEEMP) for all ships above 400 GT in
operation [14]; and

e  The Fuel Oil Consumption Data Collection System (DCS) mandating annual reporting
of carbon dioxide emissions, and other activity data and ship particulars for all ships
above 5000 GT.

The next mandatory requirements will be introduced as follows (at MEPC 76 in
June 2021):

e  The Energy Efficiency Design Index for Existing Ships (EEXI) with expected entry into
force on 1 January 2023;

e  The Carbon Intensity Indicator (CII) (as AER (Annual Emission Rating) in grams of
CO; per deadweight-mile) with rating scheme from A to E calculated every year for
all cargo and cruise ships above 5000 GT; and

e A strengthening of the SEEMP with mandatory content achieving the CII targets.

These new proposed requirements for existing ships will be reviewed by the end
of 2025.

3. Carbon Dioxide Emission Coefficient for Marine and Alternative Fuels

Carbon dioxide emissions come from the combustion of fuel containing a carbon ele-
ment. The reaction is exothermic. The heat allows engines to transform it to mechanical energy.
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The carbon element combustion reaction looks as follows:
C+0y; — CO; +406.92 K] /mol 1)

One mol of carbon plus one mol of oxygen yields one mol of carbon dioxide and heat.

Approximately, 12 g of carbon plus 32 g of oxygen give 44 g of carbon dioxide. This
means that the fuel coefficient (cg) for the carbon element is 44/12 = 3.667 (cgc = 3.667)
(more precisely, it is 3.6642 if the real mass of elements is taken into consideration). The
fuel coefficient depends on the carbon content, CC, (mass to mass (m/m)) in the fuel and is
equal to the product of the carbon fuel coefficient and carbon content (cgr = cpc-CC). The
coefficients for different marine and alternative fuels are shown in Table 2.

Table 2. Carbon dioxide emission coefficient for different marine and alternative fuels.

Type of Fuel Carbon Content (m/m)  Fuel Coefficient (cg) (kg COy/kg of Fuel) 1
Marine gas oil 0.875 3.206
Marine diesel oil 0.875 3.206
Light fuel oil 0.86 3.151
Marine heavy oil 0.85 3.112
Methane 0.75 2.750
Propane 0.819 3.000
Butane 0.827 3.030
Propylene 0.857 3.141
Biodiesel 0.86 3.151
Methanol 0.375 1.375
Ethanol 0.522 1.913
Dimethyl ether 0.522 1913

Ammonia 0 0

1 Sometimes, the carbon dioxide emission coefficient is shown using the units kg CO, /M]J or kg CO, /kWh, where
the lower heating value of is taken into consideration.

The total emission of GHGs (mainly CO;) from fuels is greater, taking into account the
amount of carbon dioxide emission from production, processing and delivery of fuel as the
well-to-tank emission (WTT analysis) [15], also known as upstream or indirect emission.

Some researchers (i.e., [16]) have used another coefficient—the well-to-wake carbon diox-
ide equivalent factor considering the sum of both the well-to-tank and tank-to-wake factors.

4. Decarbonization Process of Marine Fuels

The decarbonization of marine fuels is key to meeting the GHG reduction goal set by
the IMO [17,18] and other organizations [19-21]. The bunker demand for marine fuels is ca.
370 million tons/year. The decrease in GHG emissions is possible through many diverse
operations: improving the engine efficiency, decreasing the vessel hull resistance, slow
steaming within certain limits, better planning of vessel voyages, etc. [4]. These operations
allow for a decrease in total fuel consumption and, finally, a decrease in equivalent carbon
dioxide emissions. The IMO has introduced the Monitoring Reporting Verification (MRV)
Regulation for vessels sailing to European ports (entered into force 1 July 2015) and the Data
Collection System (DCS) for vessels over 5000 GT (entered into force 1 March 2018) [22].
Many actions have been carried out on vessels by shipowners in order to fulfil the IMO’s
requirements, such as the optimization of power and propulsion systems, extensive speed
optimization (mainly slowing down), voyage optimization, fleet management, logistics
and incentives, attempts to use third-generation biofuels, and many others. There is a
big problem for shipowners with old vessels (mainly over 20 years old) because the IMO
proposal (on MEPC 75, November 2020) is compulsory for the introduction of the Energy
Efficiency Design Index for existing ships (EEXI) [17]. The Carbon Intensity Indicator (CII)
should be calculated as the annual operational CII and compared with prepared values
on a scale from A (the best) to E (the worst). The D or E level attained in the next two
years requires efforts to be undertaken in order to reach, at minimum, the C level in the
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following year. Otherwise, the ship may be detained in port, which essentially necessitates
its scrapping.

5. Transitional and Future Fuels in Shipping
5.1. Biofuels

Straight vegetable oils (SVO) have been extracted from plants solely for use as fuels.
The direct use of SVO generates some problems for marine diesel medium- and slow-speed
engines due to the SVOs’ higher viscosity and high boiling point, the creation of carbon
deposits inside the engines and damage to the engine lubricants. It has been found that
SVOs may be used in blends with conventional fuels in order to mitigate these problems.

A process of transesterification converts various oils (triglycerides) into methyl es-
ters. Glycerol and water are removed as undesirable products. The biodiesel obtained
is commonly known as fatty acid methyl esters (FAMEs). Such a biodiesel has a higher
flash point and cetane number than conventional diesel and is a more suitable fuel than
SVO, leading to better engine performance [23]; however, due to a high cloud point (32 °C),
which can result in poor fuel flow and filter clogging, FAMEs are not fully compatible with
many existing diesel engines and have a short storage time. The basic parameters of some
biofuels are shown in Table 3.

Table 3. Parameters of some biofuels [24].

Parameter/Type of Biofuel Biodiesel Renewable Diesel  Fatty acid Methyl Esters

Density (15 °C) (kg/dm?) 0.88 0.78 0.765
Kinetic viscosity (40 °C) (cSt) 46 2+4 2
Cetane number 47 + 65 >70 >70
Sulfur content (mass%) <0.0015 <0.0005 <0.1
Lower Heating Value 37.2MJ/kg 441 MJ/kg 43 MJ /kg

5.2. Alcohols

The challenge of producing fuel from biomass is the high oxygen content and lack
of suitability for direct conversion, requiring additional processing steps such as deoxy-
genation to obtain a high hydrogen—carbon (H:C) ratio. The final result is that the fuel
obtained has a low oxygen content, a low water solubility and a high degree of carbon
bond saturation [24]. After the hydroprocessing step, vegetable oils may be converted into
hydrotreated esters and fatty acids (HEFA) fuel.

The main products of biomass conversion are alcohols. There are many alcohols
that may be taken into consideration as a possible marine fuel, but only two of them are
commonly used: methanol and ethanol. Methanol has been used as a fuel for a number
of successful marine trials with a possibility to use either spark ignition or compression
ignition engines. Ethanol is popular as a car fuel in some countries. The basic parameters
of methanol and ethanol are shown in Table 4.

Table 4. Section of the material safety data sheet for methanol and ethanol [25].

Parameter Methanol Ethanol
Density (at 15 °C) 794 kg/m3 789 kg/m?>
Lower Heating Value 20 + 23 MJ /kg 27 + 30 MJ/kg
Boiling point 64.7 °C 77 °C
Flash point 12°C <10°C
Lower and upper explosion limits 6 <+ 36.5% v/v 3.2 +18.3% v/v
Water solubility miscible miscible
Kinetic viscosity at 20 °C 0.77 cSt 1.77 ¢St

Due to the smaller lower heating value (LHV) of methanol in comparison with marine
diesel oil (MDO) (22 to 42 MJ/kg) and lower density (794 to 870 kg/m?), the fuel dose
should be about twice as high for methanol.
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Methanol is toxic for humans if swallowed or inhaled, and toxic in contact with skin.
Due to the low flash point (traditional marine liquid fuels have minimum flash temperature
over 60 °C), the risk of fire and/or explosion is greater for methanol; additionally, special
materials are needed for rubber sealings (methanol resistance plastics, i.e., Teflon type),
and methanol is corrosive to copper and nickel, and their alloys [26].

5.3. Ammonia as a Remedy for the Decarbonization Process

Ammonia is a synthetic gas obtained from fossil fuels, biomass or renewable sources.
Sulfur- and carbon-free ammonia do not emit any sulfur oxides, carbon oxides, particulate
matters or unburnt hydrocarbons when combusted. It will bring about the fulfillment of
the IMO'’s emission regulations [17]. It has been considered a potential candidate for a
fuel for the future of shipping. The properties of ammonia, in comparison with another
possible gas fuel for shipping—propane, are shown in Table 5.

Table 5. Properties of ammonia in comparison with propane [27].

Parameter Ammonia NHj Propane C3;Hg
Boiling point at 0.1 MPa -33.3°C —42.1°C
Density, liquid 682 kg/m? 493 kg/m?
Lower Heating Value 18.6 M] /kg 46.6 M] /kg
Flammability limit ratio, (stoichiometric with air = 1) 0.63 =14 0.51 =251
Maximum burning velocity 0.09m/s 0.43m/s
Ignition temperature 651 °C 432 °C
Maximum adiabatic flame temperature 1750 °C 2020 °C
Range LFL-UFL 15 + 25% 2.1 +95%
Cetane number Very low >34

Due to some problems with the process of proper ammonia combustion in diesel
engines, such as its very low burning velocity, very high autoignition temperature and
rather small Lower Heating Value, there is a minor contribution from the pilot fuel injection
(traditional liquid fuel—marine diesel oil), which has the purpose of ensuring timed and
controlled combustion of ammonia [27,28]. In that case, a small level of CO, emissions
will occur.

The two-stroke ammonia concept is an add-on to the ME family of MAN B&W engines:
ME-LGIP (LPG) for the injection of liquid propane and ME-LGIM for the injection of liquid
methanol [27]. Many problems with ammonia as a marine fuel have already been solved,
and a positive trial on a laboratory two-stroke, low-speed engine has been performed.

Ammonia is commonly stored in a liquid state at ambient temperature in pressurized
tanks at pressure above 8.6 bar (abs) (at 20 °C) or at 17 bar (abs) (at temperatures over
20 °C). There is a low risk of fire due to the high level of LFL and no risk of explosion. It is
worth stating that the infrastructure for storage and distribution of ammonia already exists
and can be adopted as quickly as possible for ships bunkering [29-32].

5.4. Marine Gaseous Fuels—Dual or Tri Fuel Engines

Marine diesel engines are prepared for the combustion of traditional marine fuels:
marine heavy, diesel and gas oils. The combustion of blended fuels containing biofuels
is possible after an adaptation of an engine fuel system. Dual (DF) or tri (TF) fuel engine
means that it has been optimized for combustion of other fuels, such as methane, ethane,
propane, butane and propylene originating from vessel cargo containment tanks or, in some
cases, directly from special fuel tanks. DF or TF engines allow for the use of the boil-off
gas (BOG) originating from liquefied natural gas (LNG) and liquid petroleum gas (LPG)
carriers as a fuel. IMO Resolution MSC 39(95) prepared the adoption of the International
Code of Safety for Ship Using Gases or Other Low-flashpoint Fuels (IGF Code) in 2015 [33].

Shipowners have a choice between two different engine solutions for two-stroke,
low-speed propulsion for LNG carriers: MEGI (high-pressure gas injection), MAN Diesel
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& Turbo and X-DF (low-pressure gas admission) by WinGD (previously Wartsila). The
MEGI system operates on the diesel cycle, and the X-DF system operates on the Otto cycle.
Both systems require simultaneous micro-pilot injection of MDO with the natural gas
admission [32]. The environmental advantage of natural gas due to the smaller carbon
fuel coefficient (Table 1), bigger than HFO and LHV but about 25% smaller CO, emission
in combustion, is lost because of methane escape (slip) to the atmosphere. As a result,
the well-to-tank CO,, emission is often bigger for natural gas [15,16]. DF diesel engines
prepared for methane combustion may be optimized to burn the ethane. Therefore, there
are two possibilities for such DF engines: to combust liquid fuel and methane, or liquid
fuel and ethane within the range from 0 to 100% of any mixture during engine operation
up to 80% of nominal power during fuel change.

Other LPG fuels (propane, butane and propylene) and their mixtures may be used
in marine diesel engines after their adaptation during the construction process of a new
engine (only for specific engine types, i.e., ME-LGI type MAN engines with a spark plug
or pilot fuel injection for ignition, or the Wartsila 345G-LPG engine, fueled by propane,
could also be used with pilot fuel injection in a DF configuration) on commission from the
shipowner or the shipyard. The carbon fuel coefficient for LPG fuels is similar to that of
typical marine fuels and makes a 17% difference in CO, emission due to the higher LHV
in comparison with HFO [34]. To maintain a safe knock margin for all gaseous fuels, the
minimum cetane number of a fuel is required depending on the fuel type. Combustion of
gaseous fuels in marine diesel engines meets the IMO requirements of Tier 3 emission [35]
without using the selective catalytic reduction (SCR) or exhaust gas recirculation (EGR)
cleaning systems.

5.5. Hydrogen—Marine Fuel of the Future

Hydrogen seems to be potentially the best fuel for many purposes because only water
vapor is produced as a result of combustion. It has a very high LHV, about three times
bigger than traditional marine fuels. The higher heating value (HHV) is 141.8 M]/kg.
Hydrogen is a fuel from which combustion allows for the attainment of the most heat
energy per 1 kg of mass. Hydrogen can be made from a wide range of sources, including
water electrolysis [36]. The main problem is its low density in the gaseous as well as in the
liquid states. The properties of hydrogen in comparison with methane are shown in Table 6.
It can be seen that a very low critical temperature (—240 °C, about 33 K) is a condition of
hydrogen liquefaction [37]. Long-term hydrogen storage poses a number of more serious
problems than in the case of other gaseous fuels.

Table 6. Properties of hydrogen in comparison to methane [37,38].

Parameter Hydrogen Methane (Natural Gas)
Gas density at normal conditions (ISO) 0.0905 kg/m3 0.716 kg/m?>
Relative density, gas (air = 1) 0.07 0.554
Relative density, liquid (water = 1) 0.071 0.44 - 048
Lower Heating Value 119.96 MJ /kg 50 MJ /kg
Critical temperature —240°C —82.45 °C
Boiling point —253°C —161.48 °C
Melting point —259 °C —187.6 °C
Flammability range 4 +77% (v/v) 5 =+ 14% (v/v)
Maximum burning velocity 291 m/s 0.37m/s
Autoignition temperature 585 °C 537 °C
UN 1954 1971

Burns with invisible
Other information flame, extremely Asphyxiant
flammable gas

There is a lack of adequate technologies to use hydrogen as a marine fuel (i.e., see
the maximum burning velocity). It is worth stating that the energy content of hydrogen is



Energies 2021, 14, 4311

7 of 10

8.5 MJ/dm? (liquefied, —253 °C) and 2.46 M]/dm? (compressed, 30 MPa) in comparison
with liquefied ammonia, 12.69 MJ/dm3 (liquefied, —33 °C). Due to many advantages
and problems with the use of gaseous hydrogen as fuel, attempts have been made to
produce gas mixtures containing an admixture of hydrogen in quantities of up to 30%.
An alternative option, offered by Wartsila to utilize LPG for propulsion, is the installation
of a gas reformer to turn LPG and steam into methane in a mixture with CO, and some
hydrogen. The reformed gas is sufficient for a regular gas or dual-fuel engine to be used
with no need for engine derating [36].

The use of hydrogen in thermal engines is an intermediate solution. The overarching
objective will be its use in fuel cells.

6. Possible Scenarios of Marine Fuel Usage

During the last 50 years, world fuel crises have occurred a few times. The increased
price of marine fuel has had an influence on the economic cost of ship operation. Now,
the share of fuel cost reaches about 70% of the total operational cost. Shipowners started
using the cheapest fuel possible—heavy fuel oils. The environmental IMO regulations
have changed the approach to the use of fuels. The decarbonization process of marine
fuels started in 2020. IMO expects total GHG emissions from shipping to be at least
halved by the year 2050. A range of transitional fuels will be used between 2022 and 2050.
Researchers, shipping companies and classification societies provide different scenarios for
the contribution of marine fuel types in shipping [39-42]. In the years to come (2022-2030),
the IMO regulations will have a decisive impact on the use of preferred marine fuels
considered greener.

An example of possible scenarios for the contribution of different fuel types to the
shipping market is given in Figure 1. The DNV report [43] presents 30 scenarios for the use
of marine fuels by 2050. The scenarios express extreme views. Two DNV scenarios (No. 11
and No. 19) and one of my own were selected to show the differences (Figure 1).

90 T

B VLSFO/MGO
80 4 LNG
M bio-LNG
70 + =
M bio-metanol
60 - B e-ammonia
] M electricity from grid
©
< i
i o0 Hother
v L
N o
S 40 A
30 +
20 +
| | | | ‘ | |

2030, DNV, 2040, DNV,2050, DNV, 2030, DNV,2040, DNV, 2050, DNV, 2030, own 2040, own 2050, own
sc. 11 sc. 11 sc. 11 sc. 19 sc. 19 sc. 19 scenario  scenario  scenario

type of marine fuel

Figure 1. Possible scenarios for the contribution of different marine fuel types to the shipping market
by 2050 (on the base 43 and own elaboration). (VLSFO/MGO—very low sulfur fuel oil/marine gas
oil; HFO—heavy fuel oil; LNG—liquefied natural gas).
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It is believed that the development of hydrogen technologies will be a breakthrough
in shipping after 2040 [44] but, in my opinion, after 2050.

7. Discussion—What Type of Marine Fuel Will Be Used in the Future?

The search for marine fuel will meet a number of often contradictory requirements.
The main action is to adapt marine diesel engines to burn fuels that will be considered
ecologically clean, do not impair the performance of the engine, are available in adequate
quantity and are preferably inexpensive.

A natural carbon cycle is needed for life on Earth. The IMO’s goal is not to go “zero
carbon” but to decrease and finally stop moving carbon from fossil fuels into the natural
carbon cycle. The IMO’s action is to reduce the GHG emissions in the atmosphere in
order to reduce the rate of increase in concentration of mainly carbon dioxide. There are
no “green” or “black” atoms of carbon. The problem is the mass balance of CO; in the
atmosphere. The decarbonization process does not mean removing all carbon compounds
from the atmosphere but reducing the use of fossil fuels in shipping.

The reduction in marine fuel consumption is possible through an increase in the
efficiency of diesel engines and gas turbines. The efficiency of thermal engines is limited
by the efficiency of the Carnot cycle (up to a maximum of about 70%). The efficiency of
marine diesel engines for ship propulsion reported by the manufacturers reached a value
of 50 <+ 53% [44].

The primary way to decarbonize shipping is to use fuels with little or no carbon
content. Many assessments are being made on the possibility of new marine fuels being
compliant with the IMO’s requirements as well as the availability of fuels, their characteris-
tics and available technologies [11,45-47]. It seems necessary to move away from the use of
thermal engines on ships in favor of fuel cells and electricity batteries. In this case, the type
of marine fuel of the future in shipping is less important. The development of technologies
based on direct electricity generation and long-term storage of electricity will be decided.

There must be a process of moving away from traditional marine fuels in favor of
increasing the share of gaseous fuels. During the transitional period, natural gas and
ammonia will be the main replacement fuels. In about 20 = 30 years, the hydrogen era
will come.

8. Conclusions

One of the IMO actions was to define the EEDI and EEOI indicators and then to
gradually reduce carbon dioxide emissions by setting limits to be met by ships under
construction and in operation. Ship designers and shipowners should take a number of
measures to meet the requirements. It turns out that, for many ships in operation, it will be
generally impossible to meet specified requirements, which puts shipowners in a very bad
position when deciding whether to upgrade or scrap the ship.

The efficiency of fuel cells reaches 99%. The development of hydrogen fuel cell tech-
nology as a primary energy source is a technology of the future. The problems of negative
environmental impact will be transferred from shipping to onshore plants producing
batteries, and the production and storage of hydrogen.

Battery-electric propulsion with an additional generator of electricity in the form
of fuel cells appears to be the most efficient use of primary energy (ammonia, methanol
and hydrogen). Shipping would require around 25% of additional electricity generation
originating from renewable sources from onshore power plants.

Electric ships are typically smaller and mostly engaged in coastal short-sea-shipping
(SSS). The technology is readily available for bigger vessels and longer voyages.

Carbon dioxide emissions depend on the chemical composition of the fuel, its Lower
Heating Value and the engine efficiency. Since synthetic fuels may have a similar chemical
composition, emissions will be the same. The problem of not counting the emissions from
biofuels remains. The problem of rapid recognition of traditional or synthetic fuels is
becoming more serious, especially in the case of blended fuels (their mixtures).
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