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Abstract: The paper presents the results of experimental and model tests of transport of dispersed
fluid droplets forming a cloud of aerosol in a stream of air ventilating a selected section of the
underground excavation. The excavation selected for testing is part of the ventilation network of the
Experimental Mine Barbara of the Central Mining Institute. For given environmental conditions, such
as temperature, pressure, relative humidity, and velocity of air, the distribution of aerosol droplet
changes in the mixture of air and water vapor along the excavation at a distance was measured at
10 m, 25 m, and 50 m from the source of its emission. The source of aerosol emission in the excavation
space was a water nozzle that was located 25 m from the inlet (inlet) of the excavation. The obtained
results of in situ tests were related to the results of numerical calculations using computational
fluid dynamics (CFD). Numerical calculations were performed using Ansys-Fluent and Ansys-CFX
software. The dimensions and geometry of the excavation under investigation are presented. The
authors describe the adopted assumptions and conditions for the numerical model and discuss the
results of the numerical solution.

Keywords: aerosol; underground mine; modelling; CFD

1. Introduction

The COVID-19 pandemic has resulted in the long-term lockdown of people all over
the world. In addition to restrictions on the movement of people, the World Health
Organization (WHO), including governments, have ordered people to keep a so-called
social distance of approximately 2 m from each other in order to minimize the risk of
infection with SARS-CoV-2, which is mainly spread through nose and mouth droplets.
However, this assumption is based on the fact that there is no air circulation around people.
There are justified concerns about the possibility of SARS-CoV-2 airborne transmission due
to the fact of its persistence in aerosol droplets in a viable and infectious form. Based on
the available literature and observations, it is likely that small particles containing the virus
can be transported in the external environment at a considerable distance from the sources
of emission, which is a type of aerosol transfer [1–4].

It is not well researched whether the movements of air masses, humidity, and temper-
ature will cause the droplets of the fluid to be transported further with the air over long
distances and cause the social distancing policy to be insufficient. This problem largely
affects the mining sector, where a complex network of underground excavations creates
complex airflow paths.
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By aerosols, it is meant an irregular diffuse phase of fluid in the form of a droplet that,
depending on the particle size, either floats in the air stream over long distances or falls
rapidly [5]. After the release of aerosol droplets, the main factors determining movement
are the size of the droplet and the velocity of the airflow. The size of the drops varies
with time, depending on the ambient conditions. Humidity in the air changes the rate
of evaporation of the droplets and, thus, its size. Droplets in dry air evaporate quickly,
decrease and fall to the ground more slowly. Changing droplet size affects how it reacts
to the flow of air masses and how quickly it stabilizes [6,7]. The respiratory droplets
formed during sneezing or coughing are generated both from saliva (the so-called “coarse”
droplets) and from the mucous membrane of the lungs and vocal cords (the so-called “fine”
and “ultra-fine” droplets with a smaller diameter). Smaller droplets are often invisible to
the naked eye. Studies carried out by [8] have shown that most of the respiratory droplets
do not move independently along their trajectories and that saliva droplets in the size
range are “captured” and carried as an aerosol [8]. Regarding voice modulation, in [9], the
authors showed that while voice elevation increases the number of respiratory droplets
emitted with an exhalation, the size range remains unchanged.

According to WHO data, the main route of SARS-CoV-2 infection is an airborne
pathway [1,4]. However, the scientific community is currently debating whether SARS-
CoV-2 can also spread in aerosols. The press is increasingly raising hypotheses about
possible mechanisms of SARS-CoV-2 transfer through aerosols [10]. The fact that the
respiratory drops are carriers of the virus is undeniable [11]. However, the question of
aerosol transmission routes in the surrounding environment and the concentration of
viruses capable of causing infection present in the environment in which the aerosol was
sprayed remains under discussion.

The size of the drops varies with time, depending on the ambient conditions. Humidity
in the air affects the rate of evaporation of the droplets and, thus, the size. Droplets in dry
air evaporate quickly, decrease and fall to the ground more slowly. Changing droplet size
affects how it reacts to the flow of air masses and how quickly it stabilizes [6].

As regards the number of emitted drops, it appears from the work in [7] that the human
body can generate up to 40,000 drops during sneezing, which when evaporated form
droplets in the range 0.5 ÷ 12 µm in diameter. During a cough, an average of 3000 drops
are excreted from the mouth, which corresponds to the number of particles exhaled during
a speech lasting 5 min. The size of the droplet is not significantly influenced by age, gender,
or individual, and discrepancies noted in scientific publications are observed between
healthy and sick people. The respiratory droplet size range in healthy subjects is 0.1÷ 8 µm
and 0.05 ÷ 10 µm in patients. For healthy individuals, the average size of speech exhaled
air droplets is 0.1–12 µm (literature data range from 0.1 to 500 µm) [12]. The average size
of droplets secreted with a cough is in the range 0.1–16 µm (for patients 0.1–6 µm). The
above data were confirmed in a publication [13] by distributing the respiratory droplets
(exhaled during speech and coughing) to individual fractions according to the adopted size
class. The data presented by the author of [13] show that, in the case of speech, more than
62% of the droplets present in the exhaled air were <12 µm in diameter and more than 70%
are in the 2–20 µm range. With regard to respiratory droplets present during coughing,
droplets with a diameter of <12 µm represent 72.81 ÷ 78.17% of all emitted droplets. The
authors of [14] presented results consistent with the above. The presented data show that
in the air exhaled together with a cough, the highest concentration are the droplets with a
diameter in the range of 0.35–2.5 µm (350–2500 nm). The concentration range of droplets in
air during human respiration is 0.001–12 cm−3 (breathing), 0.001–1.2 cm−3 (speaking), and
0.001–5.5 cm−3 (coughing) [15].

Particles greater than 500 µm generated by sneezing/coughing/speech fall to the
ground in a few seconds [16]. Droplets of 50–200 µm, which are significantly affected
by gravity, fall as the flow velocity decreases [17]. The estimated airborne duration of
particles up to 10 µm (speech, coughing) can reach up to 3 h [18] according to data in the
literature. More detailed results are illustrated in [19]. Laboratory tests on respiratory
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droplets emitted during speech (16.0 µm) and coughing (13.5 µm) (the estimated number
of droplets in the test was between 947 and 2085) showed that 90% of large-sized droplets
(>50 µm in diameter) settled rapidly within 1 ÷ 2 m of the emission point. The authors
proved that only 4–10% of the droplets remained suspended in the air (diameter less than
10 µm), and it took less than 0.1 s for a droplet to evaporate and reduce its diameter from
5 ÷ 10 µm to 2 µm. In addition, studies have shown that more than 82% of particles (drops)
were in the size range 0.74–2.12 µm, which may affect the transit of the virus in the air [19].

The information presented in [6] shows that in a windless situation, the droplets fall
to the ground at a short distance from the emitter (the range does not exceed 1 m), and in a
situation where the flight path of the particles is slightly longer, the trajectory of their flight
will already be at a height well below half a meter, falling towards the ground. At wind
velocities between 4 kmh−1 and 15 kmh−1, saliva droplets can move over a distance of
more than 6 m with a drop in concentration and size of droplets in the wind direction [11].

It is therefore advisable to maintain a social distance of around 2 m in order to reduce
the risk of the disease spreading to people. This is based on the assumption that there is no
air circulation around people. So far, it has not been investigated how air mass movements,
relative humidity, and temperature affect the structure of the respiratory droplets that carry
the SARS-CoV-2 virus and the distance and direction of transmission of these particles
in the air stream. It should be borne in mind that the value of the social distance of 2 m,
as defined for social distancing, was estimated on the basis of research conducted for
closed facilities (such as rooms, halls, offices, waiting rooms, stations), assuming that
there is no air circulation around people [6]. Thus, in order to determine the real risk of
coronavirus and/or virus concentrations in the surrounding environment, except for basic
environmental factors, such as temperature or humidity, account must also be taken of the
flow of air masses in the facility (ventilation), determining transport, and, importantly, the
degree of dispersion of respiratory droplets in the air stream, which ultimately affects the
virus concentration in the air.

The problem outlined above affects the mining sector to a large extent, where a
complex network of mining excavations creates complex airflow routes and, thus, the
effects of SARS-CoV-2 virus transmission among people working in underground mining,
which are difficult to estimate.

The flow of dispersed fluid droplets in workings of the longwall is not yet thoroughly
examined. The environment of a mine is very different from the conditions of research
conducted so far, which usually relate to closed buildings or open spaces. The microclimate
underground in the underground mine is characterized by the variability of air humidity,
the flow of which is forced, among others, by fans installed on the main shafts. In addi-
tion, increasingly deeper mining operations contribute to an increase in temperature in
underground excavations, which, in turn, forces the use of air conditioning to improve the
thermal comfort for miners. It is therefore advisable to carefully analyze the behavior of
aerosols under such specific environmental conditions.

Ansys-CFX and Ansys-Fluent software using CFD (computational fluid dynamics)
were selected to conduct numerical simulations.

2. Materials and Methods
2.1. Laboratory Rig

An object in the form of a section of an underground excavation located at a depth
of 30 m was selected for research. The analyzed excavation site was separated from the
ventilation network of the Experimental Mine Barbara (EM Barbara). EM Barbara is a
part of the research and development infrastructure of the Central Mining Institute. The
underground excavation is located close to the inhalation shaft (Barbara shaft) between
the main pavement west and the ventilation pavement. The excavation is separated from
pavements by two ventilation dams marked with T2 and T3 symbols. The T2 dam regulates
the value of air flows at the inlet to the underground excavation. The T3 ventilation dam is
an element of air control at the outlet from the excavation.
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The cross-section of the underground excavation at 5.8 m wide and 3.8 m high is 17 m2.
The excavation consists of a yielding arch support size ŁP10 made of a “V” section, built at
a distance of 1.0 m. The lining of the excavation filling the space between the rock mass
(the excavation) and the arch support ŁP10 along the whole outline is made of reinforced
concrete mine linings. Figure 1 shows a schematic representation of the position of the
underground excavation in the ventilation network of the Barbara mine.

Figure 1. Location of the excavation in the ventilation network of the Experimental Mine Barbara:
1—dam T2, 2—dam T3.

The following set of equipment was located in the analyzed section of the excava-
tion for the purpose of testing the transport of dispersed fluid (aerosol) droplets in the
air stream:

• A water nozzle to produce a dispersed phase of fluid droplets;
• A set of devices for measuring aerosol in the air stream in the form of scanning

mobility particle sizer (SMPS) spectrometer 3936 and aerodynamic particle sizer (APS)
spectrometer 3321.

The Spectrometer SMPS 3936 is a high-resolution nanoparticle sizer that was used to
measure particle size in the air ventilating of the analyzed part of the underground excava-
tion. The Spectrometer APS 3321 is a high-resolution and real-time aerodynamic sizer that
was used to provide measurements of airborne particles from 0.5 to 20 microns [20,21].

A detailed diagram of the test stand and how the in situ tests were conducted is
shown in Figure 2. The aerosol source was a water nozzle located about 25 m from the inlet
(inlet) of the excavation. The water nozzle used ensured the generation of fluid droplets
distributed to the volume limited by the shape of a full cone, which had a nozzle opening
at its starting point and outlet. Spectrometers were located at a distance of 10 m, 25 m,
and 50 m from the nozzle that recorded the distribution of aerosol concentration changes
in the air stream. Measurements were taken at four points of the cross-sectional area of
the underground excavation at heights of 0.65 m and 1.55 m above the floor, as well as at
the left and right sides of the excavation edge at the height of 1.55 m above the floor. The
measurement was carried out for 3 min, during which aerosol was injected continuously
into the underground excavation.
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Figure 2. Schematic diagram of the laboratory rig and the aerosol measurement manner in the experimental part of the
underground excavation: 1—nozzle (source of aerosol).

Figure 3 presents the actual view of the aerosol measurement station in the mixture of
air and water vapor in the cross-section of the underground excavation selected for testing.

Figure 3. View of laboratory rig in the underground experimental excavation: 1—Spectrometer SMPS
3936; 2—Spectrometer APS 3321.

The environmental conditions in the excavation during the research were:

• The temperature of the air (T) entering the excavation ranged from 11 to 13 ◦C;
• Relative humidity (RH) along the excavation under investigation varied between 83%

and 90%.

Prior to the tests of aerosol flow in the air stream ventilating the underground exca-
vation, the concentration of natural aerosols carried in the stream of air and water vapor
mixture. After the determination of the natural background, the relevant research was
started, which was divided into three stages:
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• Stage I, marked as “series 1” in Figure 2, consisted of measuring changes in the
concentration of aerosol droplets at a distance of 10 m from the nozzle (35 m from the
inlet to the excavation) within 3 min;

• Stage II, marked as “series 2” in Figure 2, consisted of measuring changes in the
concentration of aerosol droplets at a distance of 25 m from the nozzle (50 m from the
inlet to the excavation) within 3 min;

• Stage III, marked as “series 3” in Figure 3, consisted of measuring changes in the
concentration of aerosol droplets at a distance of 50 m from the nozzle (75 m from the
inlet to the excavation) within 3 min.

Table 1 presents the actual results of changes in the morphology of aerosol particles
raised in the air stream that ventilated the examined section of the excavation for a base
case with and without the generation of aerosols.

Table 1. The percentage of individual fractions of drops in the total concentration.

Aerosol Generation Particle Class Size Range (nm) Concentration (Tave = 12.5 ◦C, RHave = 86%) (%)

YES
Ultra-fine 15–100 79.4

Fine 100–2500 20.5
Coarse 2500–19,810 0.1

NO
Ultra-fine 15–100 73.5

Fine 100–2500 26.5
Coarse 2500–19,810 0.0

Tave—average temperature, RHave—average relative humidity.

2.2. CFD Method

The first stage of numerical modeling using CFD methods was to define its purpose,
i.e., to consider physical phenomena, conditions for the unambiguous solution for the
numerical model and size of the calculation area. The second stage was to develop a
geometry that reflected the real test object. After the creation of the geometric model,
the next stage was discretization, i.e., generating a numerical grid, which is the area of
numerical calculation of the analyzed issue. The last stage of the CFD modelling process
was to properly define the boundary conditions for the problem under investigation (solver)
and to perform numerical calculations with ongoing monitoring of the convergence of the
obtained numerical solution.

2.2.1. Assumptions

The creation of a numerical model required a detailed definition of all physical param-
eters and quantities. Modeling the aerosol transport through a section of the mine workings
separated from the ventilation network, based on CFD methods, requires knowledge of
geometry (spatial model). In particular, it is necessary to know the length of the excavation
and the shape of its cross-sections. It is optimal to use drawings of excavations developed
in appropriate computer aided design (CAD) software. It was proposed that preliminary
simulations should be carried out before the proper course of calculations was started,
allowing for the assessment of the correctness of the developed numerical model. On the
basis of this simulation, it was necessary to determine the correctness of the discretization
of the spatial model and the adopted ways of taking turbulence into account. Obtaining
satisfactory results of the simulation allows for concluding that the developed numerical
model is suitable for use in the process of simulating the transport of dispersed particles of
fluid droplets in the air stream.

The simulation of transport of dispersed fluid droplets using CFD methods comes
down to solving a set of differential equations that represent the law of mass, momentum,
and energy conservation in a finite volume of a fluid. The complexity of the flowing fluid
behavior in the model fluid geometry is expressed by the following relationships [22,23]:
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• The mass conservation equation:

∂ρ

∂t
+∇·(ρ→ν ) = 0 (1)

• The momentum conservation equation:

∂

∂t
(ρ
→
ν ) +∇·(ρ→ν→ν ) = −∇p +∇·(τ̃) + p

→
g +

→
F (2)

• The energy conservation equation:

∂

∂t
(ρE) +∇(→ν (ρE + p)) = ∇

(
ke f f∇T −∑ hj

→
J j + (τ̃e f f ·

→
ν )

)
+ Sh (3)

The influence of the occurring disturbances in the process of fluid transfer, in the
space of a given geometry, was interpreted by the k-ε turbulence model. The use of the
k-ε turbulence model can be considered in the case when the level of accuracy can be
acceptable and tolerated in simulation [20]. The solution of this model is to determine
the value of turbulence viscosity, µt, using the kinetic energy, k, and the dissipation rate,
ε, associated with the energy dissipation caused by the occurrence of internal movement
resistance of the flowing fluid along the underground excavation. The viscosity model of
the turbulence, µt, of a flowing fluid is expressed by an equation defined in the following
form [23–25]:

µt = ρCµ
k2

ε
(4)

The equations of fluid transport for the kinetic energy of turbulence, k, and dissipation,
ε, are expressed in the form [23,24]:

• For the kinetic energy of turbulence:

∂ρk
∂t

+
∂ρkνi
∂xi

=
∂

∂xi

((
µ +

µi
σk

)
∂k
∂xi

)
+ τR

ij
∂νi
∂xj
− ρε + µtPB (5)

• For the energy of dissipation:

∂ρk
∂t

+
∂ρενi
∂xi

=
∂

∂xi

((
µ +

µi
σk

)
∂ε

∂xi

)
+ Cε1

ε

k

(
f1τR

ij
∂νi
∂xj

+ CBµtPB

)
− f2Cε2

ρε2

k
(6)

The model of fluid droplet evaporation in Ansys-CFX was expressed as a model of
particles with heat transfer and mass transfer component in which a continuous gaseous
phase has a higher temperature than the particles. The model uses two mass transfer
correlations depending on whether the drop is above or below the boiling point. This is
defined by a formula expressed as follows [24]:

pvap = pre f exp(A− B
T + C

) (7)

Equation (7) describes the relationship between vapor pressure and fluid temperature.
The temperature of the aerosol is analyzed in accordance with the heat balance (3), which
binds the heat change in the droplet to the convective and latent heat transfer between
the drop and the continuous phase, i.e., the mixture of air and water vapor. If the vapor
pressure pvap is greater than the ambient gas pressure, the particle is boiling [24].

In Ansys-Fluent, the droplet vaporization model is defined by a formula expressed as
follows [23]:

Tvap ≤ Tp < Tbp (8)
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Equation (8) describes the vaporization relationships from a discrete phase droplet
under the conditions when the droplet in the continuous phase (air) reaches the temperature
of vaporization and continues at the moment when the droplet reaches the boiling point
and is completely consumed.

In order to carry out numerical calculations, the following boundaries conditions for
the unambiguous solution of the numerical model should be considered:

1. For a given numerical model of the excavation (fluid model):

• Temperature of independent air flowing into the excavation;
• Air volume flow rate;
• Roughness of the excavation;
• Heat conduction coefficient, density, and specific heat of the material surrounding

the excavation.

2. For a given model of aerosol emitter (nozzle model):

• Coordinates of the position of the nozzle opening;
• Density of aerosol droplets;
• Diameter of aerosol droplets (morphology);
• Aerosol specific heat;
• Droplet outflow rate;
• Droplet conductivity.

An important stage in conducting the simulation is to consider the global conditions
of the solution, namely:

• Defining the nature of the simulated phenomenon (unstable or steady state);
• Air pressure;
• Nature of the air flowing (turbulent or laminar);
• Timescale;
• Required convergence of numerical calculations.

2.2.2. Numerical Grid

In the case of aerosol emissions in the ventilation network of a deep mine, the volume
of the excavation defined by its cross-sectional area is crucial. This parameter directly
determines the value of the air stream flowing through the given section of the excavation
and, thus, influences the velocity of aerosol distribution and transport on the given length
of the excavation.

For the purposes of the work, it was assumed that the shape of the excavation will
be mapped by the arch support type ŁP10, with the main geometric dimensions listed in
Table 2. The ŁP10 arch support is an actual element of the support used in the discussed
underground excavation.

Table 2. Dimensions of the three-piece yielding arch support type ŁP10 [25].

Dimensions W H C1 C2 A1 A2 k e

Arch support
ŁP10 5500 3800 3075 2700 3170 3170 870 600

Figure 4 shows an overview drawing of the main dimensions of the arch support
type ŁP10.



Energies 2021, 14, 4743 9 of 23

Figure 4. An overview drawing of the basic dimensions of the arch support type 10.

Using the possibilities and functionality of the software used, a solid model of the
excavation was developed to create a numerical grid, and the effects of the actions taken
are presented in Figure 5.

Figure 5. Geometric model of the tested excavation: (a) spatial model; (b) separated volume of the fluid.

The geometrical model presented in Figure 5, 80 m long and with a cross-sectional
area of 17m2 (Figure 5a), is a representation of the real underground research object. On
its basis, the volume of the fluid was separated (Figure 5b). The defined volume of the
fluid filling the model excavation was discretized, i.e., the spatial model was divided into
smaller finite volumes. Figure 6 presents the effects of discrediting the developed 3D model
of the underground excavation.

In order to ensure that the results obtained from numerical calculations were adequate,
the mesh density was considered before using the discretized geometry for simulation.
Figure 6 illustrates the mesh refinement study on the volume flow rate results in the
numerical model. Moreover, in order to ensure that the numerical grid was correct the
following mesh quality was developed [23,24]:

• The minimum orthogonal quality was 8.88147 × 10−1, which meant that the mesh
corresponded to a high quality;

• The maximum orthogonal skewness was 2.58533 × 10−2, which meant that the mesh
corresponded to a high quality.
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Figure 6. Convergence of results in the numerical grid refinement study.

In additional, the 12 inflation layers were considered and located within the boundary
layer of flow to properly resolve the boundary layer as was shown in Figure 7.

Figure 7. Numerical grid of the underground working.

The results of the four mesh densities were compared in Table 3.

Table 3. Results of numerical grid refinement study.

Number Mesh Quality Number of Fluid
Computational Cells

Volume Flow
Rate (m3min−1)

1 coarse 55,712 536.34
2 normal 335,418 547.45
3 fine 826,397 550.65
4 very fine 1,625,445 550.85

The volume flow rate of fluid was measured at the outlet. It can be observed in
Table 3 that the coarse and normal mesh forecast less accurate volume flow rates, but the
fine and very fine mesh forecast similar results. In this case, a decision was made that
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the mesh in the numerical model would contain above the 826,397 computational cells
according to the convergence study results. The value of refinement in Figure 7 was the
result of grid sensitivity analysis, where the solver improved and refined the mesh of the
longwall panel without active user intervention during the numerical calculations. The
numerical grid of the excavation (Figure 7) was formed from 826,397 elements jointed with
156,455 nodal points.

3. Results

The results of numerical simulations of the aerosol transport process carried out for a
specific value of the air stream flowing through the analyzed section of the underground
excavation are presented below. The following boundary conditions of the numerical
solution for the model system under test were included:

• Average temperature—12 ◦C;
• Volume flow rate of the air at the inlet—551 m3min−1 (9.18 m3s−1);
• Relative roughness of the walls—0.1 m;
• The continuous phase was a mixture of air and water vapor as an ideal gas;
• Aerosol particles were pure water,
• Sizes of modeled droplet fractions (10,000 nm, 20,000 nm, 30,000 nm, 40,000 nm,

50,000 nm, 60,000 nm, 70,000 nm, 80,000 nm, 90,000 nm, 100,000 nm, 110,000 nm, and
120,000 nm);

• Air density: 1.2 kgm−3;
• Gravity: 9.81 ms−2;
• Turbulence model: k-ε;
• Heat transfer model for particles;
• Air heat transfer model;
• Particle coupling model, i.e., the mixture of air and water vapor acts on the aerosol

and the aerosol acts on the mixture;
• Friction force at the air/aerosol interface (drag force);
• Aerosol velocity injection—150 ms−1;
• Droplets were evaporated in a stream of air;
• Average temperature of the injected aerosol: 12 ◦C;
• The number of droplets of each aerosol: 100 drops per second;
• Average relevant humidity: 86%;
• Average pressure: 97,800 Pa.

Figure 8 shows the distribution of air volume flow changes, which reflects the actual
ventilation conditions prevailing in the analyzed section of the underground excavation.
The inlet to the excavation was located in front of the T2 dam. The outlet was located in the
ventilation gallery, a short distance behind the T3 dam.

In the section of the given excavation study 80 m long, directly behind ventilation
dam T2, the air volume flow rate was 551 m3min−1 (~0.55 ms−1).

One of the first stages of the correctness of the conducted simulations was to relate the
results of the numerical calculations of the velocity profile with the results of measurements
that were measured in the course of the actual research. The actual values of changes in
air velocity along the examined section of the excavation are presented in Table 4. The
predicted results for the air velocity profile at 50 m from the nozzle are shown in Figure 8.

The analysis of the results in Figure 9 shows that at a distance of about 25 m from
the nozzle (position 1 in Figure 8), the value of velocity in the cross-sectional area of the
excavation reached the value of about 0.43 ms−1 at the left sidewall and about 0.36 ms−1 in
the middle of the excavation. On the section of 50 m from the nozzle, the forecast value
of air velocity on the left sidewall reached approximately 0.32 ms−1, in the middle of the
excavation approximately 0.55 ms−1, while on the right sidewall it was approximately
0.50 ms−1.
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Figure 8. The distribution of the air volume flow in the excavation adopted in the numerical model.

Table 4. Values of air velocity in the examined excavation.

Distance from the Nozzle Left Sidewall Center Right Sidewall

0 ÷ 25 m 0.43 0.35 0.38
50 m 0.30 0.50 0.50

Ventilation shaft 1.84 2.00 2.05

Figure 9. Air velocity in the cross-section of the excavation: (a) 10 m from the nozzle, (b) 25 m from the nozzle, (c) 50 m
from the nozzle, 1—water nozzle.
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In order to additionally verify the results of the obtained numerical solution, it was
decided to analyze the distribution of air velocity over the entire section of the developed
model of the underground excavation. The results of the qualitative analysis are presented
in Figure 10 in the form of a graphic map.

Figure 10. Air velocity along the underground excavation.

The analysis of the distribution of air velocity changes in the horizontal plane of
the excavation shows that at a distance of about 50 m from the nozzle, in the axis of the
excavation, the velocity reached a value of approximately 0.55 ms−1. In the vicinity of the
sidewalls, however, the air velocity decreased to approximately 0.27 ms−1. In the section of
the ventilation shaft, directly behind the T3 ventilation dam, in the vicinity of the longwalls
and in the axis of the excavation, the recorded value of air velocity was approximately
1.96 ms−1.

Additionally, Figure 11 presents the analysis of the trajectory of the flowing ventilation
airline that was performed for the given conditions of the excavation geometry. The
qualitative analysis showed the occurrence of significant air turbulence in the axis of the
excavations, which was observed on a section at the length of 35 m from the inlet side.

Figure 11. The trajectory of air flowing through the analyzed excavation.
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Table 5 compares the results of measuring the air velocity in the excavation site during
in situ tests with the results of model tests.

Table 5. Results of air velocity measurements during in situ tests and from the CFD calculations.

Distance from
Nozzle

In Situ Tests CFD Relative Error ∆δ

Left
Sidewall

Middle
Aera

Right
Sidewall

Left
Sidewall

Middle
Aera

Right
Sidewall

Left
Sidewall

Middle
Aera

Right
Sidewall

0–25 m 0.43 0.35 0.38 0.45 0.36 0.45 4.4% 2.8% 15.6%
50 m 0.30 0.50 0.50 0.27 0.55 0.55 10.0% 9.1% 9.1%

Ventilation shaft 1.84 2.00 2.05 1.96 1.96 1.96 6.1% 2.0% 4.4%

Comparing the actual test results with the numerical calculation values, a significant
correlation can be observed between the CFD and in situ values, which makes it possible
to conclude that the assumptions made and the input data for the numerical model were
formulated correctly.

The last stage of the model tests was to compare the actual results of measurements of
the distribution of aerosol particle size changes measured at a distance of 10 m, 25 m, and
50 m from the nozzle with the results of the numerical calculations. Figure 12 shows the
predicted distribution of changes in aerosol particle morphology along the model excava-
tion. The horizontal axis of the graphs shows the length of the excavation. The vertical axis
of the diagrams shows the values of changes in the diameter of droplet particles.

Figure 12. Cont.
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Figure 12. Forecasted distribution of aerosol droplet particle size changes depending on the length of
the excavation at the following height: (a) 0.65 m above the floor, (b) 1.55 m above the floor, (c) 1.55 m
above the floor at a distance of 1 m from the left aisle, and (d) 1.55 m above the floor at a distance of
1 m from the right sidewall.

The analysis of the graphs presented in Figure 12 shows an increase in the concentra-
tion of coarse aerosols at a height of 0.65 m above the floor. Initially, the increase takes place
on the length of 30 m of the excavation (5 m from the nozzle), until complete evaporation
on the length of about 70 m (55 m from the nozzle—Figure 12a). The concentration of
coarse aerosols in the axis of the excavation, at the height of 1.55 m, increases between 20 m
and 30 m of the length of the excavation (5 m from the nozzle—Figure 12b), after which a
sharp decline was recorded. In the case of the left and right sidewalls of the excavation, a
significant increase in the concentration of coarse aerosols was observed along the length
of the excavation approximately 45 m (20 m from the nozzle), followed by their complete
evaporation along the length of about 70 m (55 m from the nozzle—Figure 12d). It can be
observed that on the right side, the increase in the concentration of aerosol droplets was
higher compared to the left side.

In addition, Figure 13 presents graphs of changes in the range of a coarse aerosol with
a diameter of up to 100 µm obtained from the solved numerical model in Ansys-Fluent
(Figure 13a) and Ansys-CFX (Figure 13b). The range of aerosol droplets was interpreted
with the use of graphs showing the values of droplet diameter changes as a function of
changes in the length of road (path) travelled by aerosol droplets on the analyzed length
of a model underground excavation on the vertical axis. The change in the diameter of
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aerosol droplets was caused by the mechanism of evaporation (relation—(7) and (8)) of the
aerosol in the flow of air and water vapor, which is included in the numerical model.

Figure 13. Predicted distribution of aerosol droplet changes 100 µm in diameter obtained from the CFD model: (a) Ansys-
Fluent, (b) Ansys-CFX.

Table 6 presents the comparison of the results of the path length measurements of
100 µm droplets obtained during the in situ test and CFD simulations. It was observed
that the path length of a droplet under the in situ conditions reached 50 m from the nozzle
(Figure 15a), while the path length of a droplet during CFD simulations reached corre-
spondingly: a distance of 30 m from the nozzle obtained from Ansys-Fluent calculations
(Figure 13a) and a distance of 63 m from the nozzle obtained from Ansys-CFX calculations
(Figure 13b).

Table 6. Results of the path length of aerosols during in situ tests and CFD calculations.

In Situ Ansys-Fluent Ansys-CFX

Distance from the Nozzle (m)

50 30 60

It can be observed that the result of the numerical calculations obtained from Ansys-
CFX was closer to the in situ tests than the calculations obtained from the Ansys-Fluent.
This was caused by setting the parameters of the evaporation model Equation (7) available
in Ansys-CFX software. Whereas in Ansys-Fluent, the evaporation process was realized by
solving a given imbalance in the form of an Equation (8). This means that the evaporation
model in Ansys-CFX was formulated correctly.

Figure 14 shows the predicted trajectories of aerosol droplet movement depending
on the diameter under considered temperature, humidity, and air pressure conditions:
50 µm (Figure 14a), 60 µm (Figure 14b), 70 µm (Figure 14c), 80 µm (Figure 14d), 90 µm
(Figure 14e), 100 µm (Figure 14f), 110 µm (Figure 14g), and 120 µm (Figure 14h). Below the
values of the given droplet diameters, the aerosol completely evaporated at the outlet of
the nozzle.
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Figure 14. The trajectory of aerosol drops depending on particle size: (a) 50 µm, (b) 60 µm, (c) 70 µm, (d) 80 µm, (e) 90 µm,
(f) 100 µm, (g) 110 µm, (h) 120 µm, and 1—nozzle.

Figure 15 shows the actual concentration changes of coarse aerosols in the range
2500–19810 nm measured at 1.55 m (Figure 15a) and 0.65 m (Figure 15b) above the floor,
respectively. The vertical axis of the graph shows the distribution of changes in the
concentration of aerosol droplets. The horizontal axis of the graph measures the distance
from the nozzle.



Energies 2021, 14, 4743 18 of 23

Figure 15. Distribution of changes in the concentration of coarse aerosols depending on the distance from the nozzle at the
height above the floor: (a) 1.55 m, (b) 0.65 m.

The curves in Figure 15a show a decrease in the concentration of coarse aerosols in
the excavation axis from a value of approximately 170 at a distance of 10 m from the nozzle
(35 m from the inlet of the excavation) to a value of approximately 25 at a distance of 50 m
from the nozzle (75 m from the inlet of the excavation) at a height of 1.55 m above the floor.
In the case of measuring coarse aerosols at a height of 0.65 m above the floor (Figure 15b),
actual measurement results showed an increase in the concentration multiplication factor
from a value of about 11, at the distance of 10 m from the nozzle (35 m from the inlet of the
excavation) to the value of approximately 30 at the distance of 50 m from the nozzle (75 m
from the inlet of the excavation).

The concentration of coarse aerosols at the height above the floor 1.55 m depending
on the distance from the source of injection for a given temperature, velocity, and humidity
conditions of air can be predicted by the equation:

aerosolcoarse (1.55m) = 0.1591d2 − 12.528d + 250 (9)

In the case of the coarse aerosols at the height above the floor 0.65 m, the concentration
can be predicted by equation:

aerosolcoarse (0.65m) = 0.4372d + 6.023 (10)

Figure 16 shows the comparisons of changes in the concentration of coarse aerosols
depending on the length of the underground excavation at the height above the floor
approx. 1.55 m. It was observed that the results obtained during in situ measurements were
comparable with the results obtained from the numerical simulations. The concentration
of coarse aerosols at a height above the floor of 1.55 m, depending on the length of the
underground excavation for a given temperature, velocity, and relative humidity conditions
of air, can be predicted by the equations:

• Based on the in-situ measurements:

aerosolcoarse (1.55m) = 0.1726(LT − LB)
2 − 22.277(LT − LB) + 720 (11)

• Based on the numerical simulations:

aerosolcoarse (1.55m) = 9e−8(LT − LB)
2 − 1e−5(LT − LB) + 0.0003 (12)
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Figure 16. Comparisons of the concentration and the particle diameter of coarse aerosols depending on the length of the
underground excavation at the height above the floor 1.55 m: (a) in situ measurements, (b) CFD calculations.

For ultrafine aerosols in the range 15 ÷ 100 nm, the distribution of concentration
changes is shown in Figure 17. The graph also takes into account the values of changes
in the concentration of ultrafine aerosols, which constitute the natural environmental
background of the underground excavation.

Figure 17. Distribution of the concentration of ultrafine aerosols as a function of the distance from the nozzle at a height of
1.55 m above the excavation floor.

Measurement of aerosols made at the height of 1.55 m above the floor of the excavation
(Figure 17) show an increase in concentration on the left and right sidewall. However, in
the axis of the excavation, the concentration of aerosols decreases with the distance from
the nozzle. The concentration of ultrafine aerosols at a height above the floor of 1.55 m,
depending on the distance from the source of injection, can be predicted by equations:

• At the left sidewall:

aerosolultra f ine (1.55m) = −0.0077d2 + 0.543d− 3.144 (13)

• At the middle area:

aerosolultra f ine (1.55m) = 0.0051d2 − 0.2915d + 6.1742 (14)



Energies 2021, 14, 4743 20 of 23

• At the right sidewall:

aerosolultra f ine (1.55m) = −0.0034d2 + 0.2932d− 1.0259 (15)

Comparing the graph of the concentration changes of coarse aerosols obtained from
the numerical calculation (Figure 13) with the in situ measurement results (Figure 15a) at a
height of 1.55 m above the floor, it can be observed that the numerical model developed
in the Ansys-Fluent software showed the range of coarse aerosols at a distance of 30 m
from the nozzle (55 m from the inlet of the excavation), while the Ansys-CFX software at a
distance of up to 60 m, which coincided with the actual measurement results presented in
Figure 15a.

For measurements of coarse aerosols at as height of 0.65 m above the excavation site
floor, the actual measurement results (Figure 15b) showed an increase in concentration,
similar to the numerical calculations presented in Figure 12a.

If the results of the changes in the concentration of ultrafine aerosols in the graph in
Figure 17 are compared with the results of numerical calculations presented in Figure 12c,d,
the trend in the increase in aerosol concentration measured at a height of 1.55 m on the
floor of the excavation can be observed. On a section of 28 m (5 m from the nozzle) from
the inlet to the model excavation, numerical simulations showed an increase in the size
of coarse aerosol particles in the excavation, similarly to real measurements. Moreover,
along the length of the excavation approximately 50 m (25 m from the nozzle), numerical
simulations have shown the maximum aerosol particle size values. Additionally, in this
length of the excavation section, numerical calculations showed the inlet of the aerosol
particle size drop until complete evaporation, which was observed at a distance of 60 m
(45 m from the nozzle) from the excavation inlet.

4. Conclusions

The paper presented the results of transporting aerosol particles in the air that ven-
tilates a section of the underground excavation separated from the Experimental Mine
Barbara ventilation network as well as the implementation of a numerical model using
computational fluid dynamics (CFD) methods. Ansys-Fluent and Ansys-CFX software
were selected to analyze the aerosol transport process in the area limited by the geometry of
the underground excavation. Ansys-Fluent and Ansys-CFX software allowed to calculate
the velocity profile of the air/vapor mixture and to predict changes in aerosol morphology.
The obtained values of the parameters of the developed numerical models were compared
to the measurement results.

The results presented and the numerical model of aerosol transfer in the air ventilating
the excavation based on the application of CFD methods provide the following conclusions:

• The use of numerical CFD fluid mechanics methods made it possible to present
quantitatively and qualitatively the process of aerosol transport in the space limited
by the geometry of the underground excavation;

• The simulated distribution of aerosol morphology changes was comparable to the
results of aerosol concentration changes observed at the actual laboratory scale;

• The velocity and position of aerosol particles along the excavation depended on the
ventilating method and so the manner of the inlet locations to the excavation;

• The results of the obtained numerical solution showed that for the assumed param-
eters of ventilation air, aerosol particles up to a size below 50 µm were completely
evaporated, aerosol particles with sizes ranging from 50 to 110 µm were transferred
from 10 (35 m from the inlet of the excavation) to 60 m (85 m from the inlet of the
excavation) with respect to the position of the nozzle, while aerosols above 110 µm
fell directly on the floor and the sidewall of the excavation up to 10 m (35 m from the
inlet of the excavation) with respect to the position of the nozzle;
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• The increase in the concentration of aerosols on the right and left sidewalls of the exca-
vation, shown during actual measurements and numerical simulations, was caused
by the swirling of the air and water vapor mixture along the underground excavation;

• The demonstration of significant correlations between the tested variables obtained
from the CFD analysis from the 3D model system and the results obtained through in
situ tests confirm that the assumptions made were adequate for the numerical model;

• The demonstration of significant correlations between the tested variables obtained
from the CFD analysis from the 3D model system and the results obtained through in
situ tests confirm that the assumptions adopted for the numerical model were adequate;

• Determining the values of output variables from the numerical model allowed for a
simple and easy interpretation of the phenomena occurring during aerosol transport
in the ventilation air stream;

• The knowledge of the process of transporting aerosols in underground excavations
and determining the decision parameters of the (controllable) numerical model,
which influenced its course, gives the basis for understanding and controlling the
whole process;

• In order to minimize COVID-19 spread in underground excavations, especially the
most penetrating droplets in the range of 80–110 µm, as shown by the results of the
numerical studies (Figure 14d,g), it should be used a local mechanical intensification
of the ventilation of underground excavations and the use of air purification systems,
the basic structural element of which are the non-woven fabrics filters, characterized
by an extensive spatial structure;

• Comparing experimental results with CFD showed a relative error larger than 15%;
therefore, it is recommended to switch the model in the calculation to a better turbu-
lence model. This is because the standard k-εmodel is not capable of capturing the
streamline curvature (which is important in this case to show reasonable directions
and re-circulations), poor near-wall values as shown in Table 5, over prediction of the
turbulence parameters, and many other shortcomings that are typical for the standard
k-εmodel.
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Nomenclature

A,B,C Empirical constants (–)
d Distance from the nozzle (m)
Lt Distance from the inlet of the excavation (m)
LB Distance from the nozzle (m)
pvap Partial vapor pressure (Pa)
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h Enthalpy (J kg−1)
t Time (s)
T Fluid temperature gradient, (K)
Tvap Vaporization temperature (K)
Tp Particle droplet temperature (K)
Tbp Temperature of droplet reaches the boiling point (K)
Sh Source element related to energy exchange (J m−3)
τ̃e f f Stress tensor (kg m−3 s−1)
ke f f Effective conduction coefficient (W m−1 K−1)
Cε1 Empirical constant, Cε1 = 1.44
Cε2 Empirical constant, Cε2 = 1.92
Cµ Empirical constant, Cµ = 0.09
k Kinetic energy of velocity fluctuation (turbulence) (m2·s−2)
P Local production of swirling fluctuation,
ε The rate of dissipation of the kinetic energy of turbulence (m2·s−3)
µt Turbulent viscosity (Pa·s)
σk Turbulent Prandtl number σk = 1.0
σε Turbulent Prandtl number σε = 1.3
ν Fluid velocity (m s−1)
ρ Fluid density (kg·m−3)
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