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Abstract: Driver behaviour and distraction have been identified as the main causes of rear end
collisions. However a promptly issued warning can reduce the severity of crashes, if not prevent them
completely. This paper proposes a Forward Collision Warning System (FCW) based on information
coming from a low cost forward monocular camera for low end electric vehicles. The system resorts
to a Convolutional Neural Network (CNN) and does not require the reconstruction of a complete 3D
model of the surrounding environment. Moreover a closed-loop simulation platform is proposed,
which enables the fast development and testing of the FCW and other Advanced Driver Assistance
Systems (ADAS). The system is then deployed on embedded hardware and experimentally validated
on a test track.

Keywords: ADAS; forward collision warning; active safety; hardware-in-the-loop; experimental tests

1. Introduction

The rapid population and economic growth of recent years has led to an increasing
number of circulating vehicles, thus inducing traffic congestion, road accidents and pollu-
tion. The main cause of road accidents is related to driver behaviour, distraction or altered
state (e.g., see recent studies of health and transportation organizations [1–3] and references
therein). The need to improve driver and pedestrian safety led to the development of
on-board active safety systems, which extend the functionalities of the traditional passive
systems, such as seat belts and airbags. Namely, active systems are developed with the
aim to predict the occurrence of an accident, while passive systems are engaged only to
soften the consequences. In this scenario, Advanced Driving Assistance Systems (ADASs)
are recognized as the key enabling technology for the active reduction of the main road
transport issues in the very near future [4–7].

In this perspective, safe and green transport will be possible by embedding the ADAS
on full-electric vehicles that, thanks to their simplified high-efficiency powertrains and
zero direct emission peculiar features, can greatly improve urban air quality by reduction
of COx, NOx and CxHy emissions.

Along this line, the aim of this work is to introduce a Forward Collision Warning
(FCW) system based on a single monocular forward-facing camera. The employment
of an affordable sensor opens the system to a wide range of vehicles. Moreover, it will
be shown how the design of a co-simulation platform can greatly ease the development
and testing of the algorithms. A single camera can be exploited for estimating the TTC
precisely enough to realize a FCW application (e.g., see [8] and references therein). Slightly
improved performances could be achieved via a stereo system that obviously involves
the additional costs in terms of sensors, software, and computing hardware. Note that
FCW has been demonstrated to be an indispensable tool for reducing rear-end crashes by
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promptly warning the driver with acoustic or visual signals. The proposed design takes
advantage of visual cues only, i.e., the information is retrieved in the 2D image space and
the three-dimensional transformation is ignored, in order to target lower-end vehicles. In
so doing, the algorithm has the great advantage of being independent of the particular
mounting angle of the camera, and it works even when lane markings, typically used for
online calibration or to filter out-of-path obstacles, are non-existent. This enables us to
deploy the system on a wider range of vehicles, and enhance the total robustness of the
algorithm. Moreover, a purposely designed co-simulation platform is introduced, which
is particularly useful for the virtual testing of the approach before its deployment on the
actual in-vehicle hardware. Finally, experiments are carried out on an electric vehicle and
the results of the experimental tests are analyzed for the validation of the overall design.

Given the FCW potential, different design approaches can be found in the technical lit-
erature. In particular, the state-of-the-art system relies on geometric or feature-based meth-
ods to detect vehicles, e.g., the Sobel edge detector filter [9,10] or Haar-like features [8,11].
More recent attempts rely on machine-learning techniques, like support vector machine
classifiers [12], Hough Forest [13], deep learning tools by resorting to Single Shot MultiBox
Detector (SSD) [14,15] or You Only Look Once (YOLO) [16–18].

It is worth noting that only a few recent attempts in the technical field rely on two-
dimensional camera information since most of the solutions are tailored for high-end cars
that are equipped at the sensing layer with LIDAR or RADAR. Conversely, in our work,
thanks to the employment of a deep Convolutional Neural Network (CNN), the system
capabilities are generalized and expanded, thus enhancing the very recent results in the
technical literature and allowing the implementation of affordable and reliable FCW to
small low-end cars.

The rest of the paper is organized as follows. Section 2 describes the design of the
FCW algorithm in each of its components, while Section 3 also presents the numerical
analysis based on the purposely designed co-simulation platform. The experimental results,
confirming the theoretical derivation and disclosing the effectiveness of the proposed
approach, are described in Section 4, where the hardware architecture used for the tests is
also illustrated. Conclusions are provided in Section 5.

2. Forward Collision Warning

The aim of FCW is to measure the collision risk and promptly warn the driver if it
grows above a predefined threshold. The warning must be raised promptly enough so that
the driver has sufficient time to react and avoid the collision or at least reduce its severity.

Some FWC leverage radar technologies for sensing [19] result in high sensing costs.
However, since our main aim is to target lower-end vehicles, here a single monocular
forward-facing camera is leveraged for sensing the obstacles at the front.

In order to measure the collision risk, the following Time-To-Collision (TTC) index
is considered:

TTC =
D
V

, (1)

where D[m] is the distance from the obstacle and V (m/s) is the relative velocity. While
relative distance and velocity are not directly measurable from vision information, in the
following it will be shown how to derive the TTC information leveraging the scale change
of objects in the image frame.

The FWC is in three main components: Detection, tracking and warning logics. Each
of the steps will be described briefly in the following sections.

2.1. Object Detection

There are two main kinds of algorithms to tackle object detection via computer vision
tasks: Feature-based and learning-based. Traditional techniques, such as Sobel edge detec-
tor or Haar-like features, belong to the first kind and, despite their simpler implementation
and lower computational cost, they suffer in terms of accuracy and generalization capabili-
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ties. Learning approaches instead require high-end hardware, due to the computational
cost, but results in higher accuracy [20]. In this context, Convolutional Neural Networks
(CNNs) are the state of the art for object detection tasks. Common approaches leverage
two stage detectors, where the neural network first generates the region candidates and
then classifies them [21]. Alternatively, a single stage detector can be exploited to directly
predict the location and the class of an object in one step, thus resulting in faster inference
time (e.g., see YOLO [22] and SSD [23]).

Taking into account the application strict real-time constraints, the single stage de-
tectors have been investigated. In particular, due to YOLO faster computation time with
respect to SSD, and comparable mean Average Precision (mAP) [22,24], the first has been
chosen for our application design.

The third improved version YOLOv3 is a multiscale one stage object detector, which
uses a Darknet-53 as backbone to extract features and localize possible objects in the input
image. Despite its depth, it achieves state-of-the-art performance in classification and the
highest measured in floating point operations per second. From the base feature extractor,
several convolutional layers have been added, which predict bounding box, objectness
and class. To achieve the best result, the K-means algorithm is run on the dataset before
training, and the final K value chosen is the one with the best recall/complexity tradeoff.
In order to address the multiscale problem, the network predicts boxes at three different
scales, using a Feature Pyramid Network (FPN)-like architecture. FPN makes predictions
at each layer (scale) and uses multiscale features from different layers combining low
resolution (semantically strong) features with high resolution (semantically weak) features
using top-down pathways and lateral connections. The network architecture is shown
in Figure 1.

The described network is used to detect the vehicles, pedestrians, bicycles and motor-
cycles. The output of the network is the so-called bounding box, for each detected obstacle,
defined as:

b = [bx by bw bh]. (2)

where bx and by are the pixel coordinates of the bounding box top-left corner, while bw and
bh are the bounding box width and height, respectively.

Figure 1. YOLOv3 Network Architecture [22].

2.2. Multi-Target-Tracking

The tracking component is essential in order to build a history of each detected
object [25]. Taking into consideration that our scenario involves more than one detection
for each frame, a Multi-Target-Tracker (MTT) algorithm is employed. An MTT must assign
each new incoming detection, to the existing tracks before it can use the new measurements
to update them. The assignment problem can be challenging due to the number of targets
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to track and the detection probability of the sensor which can lead to both false positives
and false negatives.

The Global Nearest Neighbour (GNN) algorithm is chosen [26] with a bank of linear
Kalman filter. The GNN is a single hypothesis tracker, whose goal is to assign the global
nearest measurement to each track. Due to the fact that conflict situations can occur, a cost
function must be defined and an optimization problem must be solved at each time-step.
The Intersection-Over-Union (IOU) ones’ complement , between detection and track pairs,
is chosen as cost function:

J(i, j) = 1− IOU(di, tj), (3)

where di is the i-th detection and tj is the j-th track. The optimization problem is solved
by using the Munkres algorithm [27,28], which ensures the global optimum convergence
in polynomial time. Due to the small number of tracks and detection (typically below 20)
the Munkres algorithm can be solved in real time on the chosen deployment hardware.
Moreover, in order to reduce the complexity of the problem, a preceding gating step is
applied during which a high cost in bid to unlikely assignments.

Once the association problem is solved, the measurements are used to update the bank
of filters. A constant velocity linear Kalman filter [29] is used for each track by defining
the state as x = [bx bxv by byv bw bwv bh bhv ] where bx and by are the abscissa and
the ordinate of the top left corner of the bounding box, while bw and bh are its width and
height; finally, the subscript v denotes the respective velocities in the image frame. It is
pointed out here that the state is defined in the frame coordinate, which simplifies the
problem of measuring three-dimensional coordinates from a monocular camera. Finally,
track management additionally involves creating track hypotheses from non-associated
detections, and deleting old non-associated tracks.

More complicated solutions, e.g., multiple-hypothesis trackers combined with ex-
tended Kalman filters, would require more information about the target position and
relative angle with respect to the camera in the three-dimensional space, which is not
natural information given by the chosen sensor architecture. Regardless, the proposed
solution has been proven simple enough to be scheduled in real time, yet effective for the
purpose of developing a forward collision warning system.

2.3. Collision Risk Evaluation

Once the tracks are updated at each time step, the collision risk for each one of them
can be checked. It is shown now how the TTC in Equation (1) can be linked to the scale
change of the bounding box between consecutive frames.

The width of an obstacle in the three-dimensional space is projected to the i-th image
frame through the pinhole camera model giving:

wi =
f W
Di

, (4)

where wi is the obstacle width in the image frame, W is the obstacle width in the three
dimensional space and f is the camera focal length. By tracking the objects between two
frame i and i + 1, it is possible to define the scale change as:

S =
wi

wi+1
=

Di+1

Di
. (5)

Since the time interval between the two frames ∆t is small ('1/30 s), constant relative
velocity is assumed and hence:

Di+i = Di + V∆t. (6)

By substitution of Equation (6) into Equation (5), the following is obtained:

S =
Di + V∆t

Di
, (7)
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and hence, from Equation (1), the TTC can be written as:

TTC =
∆t

S− 1
. (8)

Note that the above formulation of the TTC is independent of the actual distance
between the camera and the obstacles, which enables us to ignore camera calibration and
assumptions on road properties, e.g., flatness, bank and slope angles. The accuracy of
Equation (8) mainly depends on the choice of ∆t, and on the accuracy of the detection
and tracking system. In particular, by increasing ∆t, the noise coming from the detection
system can be attenuated, but a reduced number of measurements are obtained for each
obstacle. Discussion on theoretical bounds on ∆t are addressed in [30].

If the TTC in Equation (8), for any track, is below a chosen threshold, between 2 and
3 s, a collision might occur. The warning should be raised if and only if the examined track,
with a TTC lower than the threshold, is in the ego vehicle’s path. In order to check the
latest, the state of its Kalman filter can be used considering that it contains information
about the velocity of the obstacle. In particular, the position of the bounding box in the
image frame can be predicted by using the following:

bxpr = bx + TTC · bxv , (9)

where bxpr is the predicted abscissa of the top left of the bounding box. With the same
reasoning, the right corner can be predicted by using the width of the box. If the pre-
dicted box is inside a precalibrated region of the image frame the warning is issued. The
Equation (9) is based on constant velocity assumption which results in a good approxima-
tion in the scenarios of interest, additionally considering that the in these cases the TTC
takes low values.

3. Testing and Deployment

The effectiveness of the approach is first investigated via model-in-the-loop leveraging
a purposely designed virtual test platform and is then confirmed by experiments with an
electric vehicle on the Kineton test track located in Naples, Italy.

Model-in-the-Loop Testing

The design for improved solutions of safety-related features is greatly eased by the
usage of appropriate simulation platforms. Here, a co-simulation platform for Model-In-
the-Loop (MIL) is proposed where autonomous vehicle can be safely tested, while moving
within a potentially dangerous, realistic traffic scenario.

This co-simulation environment has been built leveraging the following two components:

• Matlab/Simulink has been used to develop the algorithm and lately auto-generating
C code through the Embedded Coder toolbox.

• the open-source urban simulator CARLA (CAR Learning to Act) [31] has been used to
design traffic scenarios and generate synthetic sensor measurements.

CARLA has a python-based core with embedded physics simulation which is capable
of generating realistic measurements. In order to retrieve reliable sensor data, the simu-
lation is carried out in synchronous fashion between the two environments; in particular,
Simulink acts as a client by sending simulation commands to CARLA, acting as a server,
which replies with the new generated measurements. In order to link the two environments
a series of API have been implemented to create a communication between matlab-based
Simulink and python-based CARLA cores. Figure 2 shows a screen capture of the proposed
platform during a use case. In the case of the FCW feature the raw RGB frames are required,
which are generated, at 30 fps, by a camera attached to a moving vehicle, mounted behind
the windshield. The raw frames are the input to the algorithm introduced in Section 2.
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Figure 2. Screenshot of the co-simulation platform. On the right the CARLA server; on the left the
Simulink implementation of the proposed algorithm supported by the communication APIs between
the two components.

The driving scenarios designed in CARLA are those defined in the safety assist
assessment protocol by EuroNCAP [32], namely:

• Car-to-Car Rear Stationary (CCRS): A collision in which a vehicle travels toward a
stationary leading vehicle;

• Car-to-Car Rear Moving (CCRM): A collision in which a vehicle travels towards a
slower vehicle moving at constant speed;

• Car-to-Car Rear Braking (CCRB): A collision in which a vehicle travels towards a
braking vehicle.

All the scenario are repeated with varied vehicle velocities and lateral overlap ranging
from −50% to +50%, as defined by the protocol procedures. To demonstrate proof of
concept, two exemplary scenarios will be shown, namely a CCRS with the ego vehicle
traveling at v = 50 km/h with a starting distance of around d = 67 m, and a CCRM with
the ego vehicle traveling at v = 50 km/h, the leading vehicle traveling at v = 20 km/h with
a starting distance of around d = 30 m. Moreover, a quantitative comparison is performed
with respect to the latest literature results, see [18], in which the authors proposed a similar
CNN-based solution. Nonetheless the risk estimation index takes into account a single
frame bounding box, resulting in velocity-independent information.

Figure 3 shows the numerical results in the first driving scenario (CCRS). Namely,
the estimated TTC and the real one are compared in Figure 3a in order to assess the
accuracy of the algorithm. Due to the constant relative velocity between the two vehicles,
the TTCs decrease linearly with time. While the oscillations are in the estimated TTC, no
false positives are reported in all the CCRS scenarios. Furthermore, only a small constant
percentage error bias can be appreciated, essentially due to the constant distance between
the forward facing camera, mounted behind the windshield, and the front bumper of the
car, where the actual TTC is evaluated. Note that this bias varies with the distance to the
forward obstacle, so it could be compensated by its estimation, which is currently not
embedded in our particular design; it is the object of our next research work. Figure 3b
shows the warning activation which occurs as soon as the estimated TTC goes below
the threshold, chosen as 2.1 s. The comparison in Figure 3b discloses that by taking into
account multiple frames a more accurate warning can be issued. Indeed a warning issued
around TTC ' 1 s could not be enough to avoid a collision. Figure 4 shows the numerical
results for the CCRM scenario and, as expected, the TTC trend is similar to the previous
case. Note that the inaccuracies at high distances do not worsen the performances of the
system, in fact no false positives are reported. Finally, Figure 4b shows the activation signal
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for the FCW for the CCRM case, along with the comparison with [18]. The outcome is very
similar to the CCRS case.

(a) (b)

Figure 3. Simulation results, through MIL testing, in the CCRS scenario. (a) Time-history of the estimated time-to-collision,
T̂ , and of the real one, T. The warning threshold is shown as a constant horizontal line; (b) time-history of the forward
collision warning activation.

(a) (b)

Figure 4. Simulation results, through MIL testing, in the CCRM scenario. (a) Time-history of the estimated Time-To-Collision,
T̂ , and of the real one, T. The warning threshold is shown as constant horizontal line (b) Time-history of the Forward
Collision Warning activation.

4. Experimental Validation

In-vehicle experiments were carried out to validate the whole design. The camera-
based algorithm was deployed on a NVIDIA Jetson AGX Xavier Developer board equipped
with 8 CPU cores, 512 GPU cores and 32 GB of RAM. The hardware platform is able to
achieve the 30 fps for real time purposes. The application was developed using the open
source YoloV3 implementation available at [33] for the object detection component. This
implementation is particularly convenient for embedded deployment because it uses
CUDA and cuDNN for the fastest CNN inference on GPU cores. The remaining steps were
implemented in MATLAB/Simulink at first for rapid prototyping, finally auto-generating
C code through the Embedded Coder toolbox. Finally, the C++ OpenCV library [34] was
used for visualization purposes during tests. The camera used is an HDR 2MP Starlight
Camera, which uses an Omnivision Sensor. The combination of the high dynamic range,
up to 120 dB, and the ultra low light technology allows the camera to capture images
in difficult light conditions, thus enabling the FCW logic even during nights or inside
tunnels [35]. It uses an electronic rolling shutter and a 58° field of view lens with fixed
focus. Finally, it is connected to the NVIDIA board through the USB protocol. Clearly, more
robust solutions can be deployed by fusing the camera signals with additional data coming
from more accurate yet more expensive radar or lidar measurements.

During MIL tests one can use the ground truth quantities, given by the simulator,
to assess performances, whereas during experimental validation a second reliable source
of information is required in order to make the same kind of assessment. In particular,
an automotive RADAR was used, namely, ARS 404-21 from Continental, which can di-
rectly measure obstacle distances and relative velocities accurately; thus, it is possible to
use Equation (1) to evaluate the TTC and make a comparison with the camera based in
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Equation (8). Finally, RADAR messages and warning activation signals, along with other
vehicle data of interest, were collected from the vehicle CAN-bus using a PCAN-USB by
PEAK System. Figure 5 shows the chosen hardware architecture and Figure 6 shows the
electric platform employed during in-vehicle experiments.

Figure 5. In-vehicle hardware architecture.

Figure 6. Electric vehicle used for experimental validation.

The driving scenario is the well-known EuroNCAP, which is one of the standard
driving cycles for validation. In the CCRS scenario the following vehicle starts accelerating
until it reaches around v = 30 km/h, moving towards a stationary vehicle. The FCW
system emits a sound alarm when the TTC is lower than a threshold, which was set to
2.45 s during the tests. A test should be considered successful if the FCW algorithm
generates an alert in a proper time, to brake the ego-vehicle and avoid the impact with the
forward obstacle (see Figure 7 where an exemplary frame extracted from a recorded video
of the CCRS scenario is shown).
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Figure 7. Example of captured image frames from CCRS scenario video.

Experimental results are disclosed in Figure 8, where the comparison between the
estimated TTC based on camera information and the one based on expensive high-accuracy
high-performance on-board radar are also shown (see Figure 8a). Results confirm that the
performance obtained by the camera is comparable to the one achievable with the radar, so
confirming the effectiveness of the approach for low-end commercial cars; moreover, no
false positives or false negatives were reported during the experimental tests, as reported
in Figure 8c.

(a)

(b)

(c)
Figure 8. Results of the experimental validation in a CCRS scenario. (a) Time-history of the estimated
Time-To-Collision, T̂, compared to the estimated through the RADAR sensor, T. The warning
threshold is shown as a constant horizontal line. (b) Time-history of the vehicle speed. (c) Time-
history of the Forward Collision Warning activation.
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5. Conclusions

In this paper a forward collision warning system is presented which leverages a deep
convolutional neural network based on sensing data from an on-board forward camera.
Moreover, it is shown that, by resorting to the scale change between consecutive frames, it
is viable to rule out the error coming from camera calibration, making the system more
robust with respect to camera mounting angle.

A general model-based virtual-testing platform has been designed to perform model-
in-the-loop tests in a safe manner, exploitable even for more complex active safety systems.
The numerical and experimental analysis show that the system is capable of promptly
warning the driver if a collision is about to occur by replicating the EuroNCAP safety
test assessments. Despite using a low-cost monocular camera for sensing, the overall
architecture is accurate enough, at least in the TTC range of interest, i.e., below 3 (s).
As prescribed by Euro NCAP protocol, we have extensively tested our design, not only
experimentally, but also numerically by randomly varying the scenario conditions, thus
verifying that the typical false/true warning rate requirements [36] are fulfilled. Results
showed no false positives in all the appraised scenarios. Moreover, the employment of
a state of the art deep CNN enhances the performances of the latest literature results.
Future work will involve the investigation on estimation of the obstacle distance leveraging
a mono or stereo camera, along with the implementation of more complex traffic and
driving scenarios.

Author Contributions: Conceptualization, methodology and supervision, M.T., L.N., G.F.; software,
validation and formal analysis N.A. and F.M.; writing—original draft preparation, N.A.; writing—
review, editing and visualization, L.N., F.M., M.T. and G.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Italian Ministry of Economic Development (MISE)’s
Fund for the Sustainable Growth (F.C.S) under grant agreement (CUP) B61B19000410008, project
KINEBRAIN (“Key INteraction among Entertainment and BRAIN”).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FCW Forward Collision Warning
TTC Time To Collision
CNN Convolutional Neural Network
YOLO You Only Look Once
SSD Single Shot Detector
FPN Feature Pyramid Network
mAP mean Average Precision
MTT Multi Target Tracker
GNN Global Nearest Neighbour
CUDA Compute Unified Device Architecture
CPU Central Processing Unit
GPU Graphics Processing Unit
RAM Random Access Memory
MIL Model-In-the-Loop
CARLA CAR Learning to Act
CCRS Car-to-Car Rear Stationary
CCRM Car-to-Car Rear Moving
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CCRB Car-to-Car Rear Braking
RGB Red Green Blue
RADAR RAdio Detection And Ranging
LIDAR Laser Detection and Ranging
EuroNCAP European New Car Assessment Programme
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