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Abstract: To support farmers and improve the quality of crops production, designing of smart
greenhouses is becoming indispensable. In this paper, a novel prototype for remote monitoring of a
greenhouse is designed. The prototype allows creating an adequate artificial environment inside the
greenhouse (e.g., water irrigation, ventilation, light intensity, and CO2 concentration). Thanks to the
Internet of things technique, the parameters controlled (air temperature, relative humidity, capacitive
soil moisture, light intensity, and CO2 concentration) were measured and uploaded to a designed
webpage using appropriate sensors with a low-cost Wi-Fi module (NodeMCU V3). An Android
mobile application was also developed using an A6 GSM module for notifying farmers (e.g., sending
a warning message in case of any anomaly) regarding the state of the plants. A low-cost camera was
used to collect and send images of the plants via the webpage for possible diseases identification
and classification. In this context, a deep learning convolutional neural network was developed and
implemented into a Raspberry Pi 4. To supply the prototype, a small-scale photovoltaic system was
built. The experimental results showed the feasibility and demonstrated the ability of the prototype
to monitor and control the greenhouse remotely, as well as to identify the state of the plants. The
designed smart prototype can offer real-time remote measuring and sensing services to farmers.

Keywords: deep learning; Internet of things; mobile application; photovoltaic system; plant diseases
classification; remote monitoring; smart greenhouse

1. Introduction

Currently, the problems of climate change and environmental damage (due to CO2
emissions when burning fossil sources such as gas, oil, coal, etc.) have further serious
problems of food and agricultural productivity [1]. The procedure of producing high-
quality crops is very important to meet the increasing demand of food products around
the world. The industry of greenhouses is become a more fast-growing sector around
the world. The greenhouse splits the crop from the environment, thus providing some
sort of housing from the direct influence of external weather conditions. A greenhouse is
mainly designed as a light transparent shelter to improve environmental conditions for
plant production quality. Greenhouses are used to make a suitable atmosphere for planting
and preventing plants from exposure to harsh environmental conditions, such as heavy
rainfall or high solar radiation [2].

High or low temperatures, high humidity, CO2 concentration, aeration, condensation
of water, and water evaporation inside the greenhouse are among the major challenges
faced by traditional greenhouses. Therefore, to achieve maximum returns from greenhouse
cultivations, it is vital to maintain an environment that minimizes energy consumption [3].
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Many parameters such as air temperature (Ta), relative humidity (RH), soil moisture (SM),
light intensity (LI), and carbon dioxide (CO2) concentration are involved and dependent
on each other; this makes the greenhouse climate control a complicated procedure [4].

In the last decades, greenhouse climate monitoring and control problems have re-
ceived considerable attention in agriculture engineering research [5]. Recently, researchers
are more and more attracted to the application of the Internet of things (IoT) [6] to mod-
ernize greenhouses by designing smart monitoring systems [7] and creating artificial
environments [8].

For example, Castañeda-Miranda and Castaño-Meneses [9] developed an automatic
system for monitoring crops inside a greenhouse using solar energy and the IoT technique
so that users could easily monitor the temperature, watering, and light through a mobile
application. A wireless system enabling communication between the central control unit
and four robots that worked in a model greenhouse was developed by Kumar et al. [10];
the results showed the potential of the system for application in real-life greenhouse
operations. Chie et al. [11] designed an IoT-based system to monitor the environmental
factors of an orchid greenhouse and the growth status of Phalaenopsis at the same time.
As indicated by the authors, the system shows a great potential to provide quantitative
information with high spatiotemporal resolution to floral farmers. Liao et al. [12] compared
microclimate parameters inside two different tropical greenhouses using a custom-built
wireless sensor for data fusion. A detailed review about the use of the IoT in the agricultural
sector including greenhouses, various sensors which aid the IoT and agriculture, their
applications, challenges, advantages, and disadvantages are reported in this paper [13].

Diesel is mainly used to supply greenhouses (e.g., for water pumping, irrigation, etc.)
in remote areas, which is costly (e.g., in Saharan regions) [14]; however, currently, the
utilization of solar energy (such as photovoltaic) for supplying greenhouses in remote areas
is considered to be among the important applications of renewable energy sources [15]. The
possibility to apply photovoltaic energy and the IoT to monitor greenhouses was shown by
Aschilean et al. [16].

Another issue is the greenhouse crop diseases identification and early classification;
recently, attempts have been made to design efficient approaches based on the IoT tech-
nique and image processing [17], for example, Mishra et al. [18] designed an IoT-based
strawberry disease prediction system for smart farming; the capability of the model in dis-
ease prediction was shown. Kim et al. [19] used the IoT technique and a machine learning
algorithm to classify plant diseases at an early stage. An IoT-based monitoring system
for precision agricultural applications such as epidemic disease control was developed
by Pavel et al. [20]; an expert system was also developed to make decisions regarding
the diseases. A survey on the current techniques and prediction models based on image
processing and the role of the IoT being applied for identification, detection as well as
quantification of tomato plant diseases was shown by Khattab et al., Verma et al., and
Diyan et al. [21–23].

The objective of this work was to design an effective smart monitoring system for
modern greenhouse applications. To do this, the IoT technique, a clean source of energy,
and deep convolutional neural networks (DCNN) were used. The proposed modern
greenhouse will help farmers to:

• control different environmental parameters inside the greenhouse,
• ensure remote sensing and easy analysis of the collected data in real time,
• ensure early detection and classification of tomato diseases in plants,
• receive notifications about the state of the greenhouse.

The main contributions are listed below:

• design of a low-cost monitoring prototype,
• development of a webpage for monitoring parameters inside the greenhouse,
• development of deep neural networks for diseases detection and classification,
• development of an Android application for notifications about anomalies.
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This paper is organized as follows: the next section provides the Materials and
Methods including different steps to design the prototype (webpage, mobile application,
and diseases identification and classification). The experimental results are reported in
Section 3. The final Section 4 gives some concluding remarks and perspectives.

2. Materials and Methods
2.1. Monitoring and Displaying Greenhouse Parameters

Figure 1 shows a block diagram of the proposed monitoring system. It consists mainly
of sensors (capacitive soil moisture, relative humidity, air temperature, light intensity, CO2,
and ultrasonic), actuators (valve, water pump, fan, and servomotor), LCD (liquid crystal
display; allows visualizing the measured data). A low-cost microcontroller (Arduino Mega
2560) was used to control and monitor different parameters inside the greenhouse. The
parameters monitored were Ta, SM, RH, LI, CO2 concentration, and water level (WL).
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Figure 1. Basic structure of the monitoring system (solid red line: power, dashed blue line: data).

The control process is summarized in the following steps:

X Step #1: Initialization, defining, loading reference parameters (CO2ref, Taref, SMref,
RHref, WLref, and LIref) based on thr experimental thresholds.

X Step #2: Measurements of the actual parameters (Ta, RH, SM, WL, CO2 and LI).
X Step #3: Comparison of the parameters (measured versus references) for each sensor

(e.g., if the measured Ta is outside of the Taref interval, the controller sends a signal to
activate the corresponding relay and start the fan to refresh the environment inside
the greenhouse).

X Step #4: Sending a signal to the actuators by activating the corresponding relays:

- water pump: start filling the tank;
- valve: start watering and irrigation of the plants;
- servomotor: open windows for fresh air;
- fan: turn on air ventilation;
- LED: turn on the light.

CO2ref, Taref, SMref, RHref, WLref, and LIref are reference parameters.
Most sensor networks require careful manual installation and configuration to assure

that software components are properly associated with the physical instruments that they
represent. The calibration method for each sensor is shown in Appendix A.
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2.2. IoT and Webpage Development

To design the webpage, CCS, HTML, JavaScript languages and the Firebase platform
were used. A Wi-Fi module named NodeMCU ESP8266 and a Wi-Fi camera module (ESP32)
were used to collect and upload the measured data and images of the plants to the webpage
for visualization and possible diseases classification.

Figure 2 shows a block diagram for uploading the measured parameters and images
to the designed webpage using the IoT technique.
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Figure 2. Block diagram for uploading parameters and images to the designed webpage using the
IoT technique.

The HTML language was mainly used to make the page structure, CCS—for designing
a suitable environment, and JavaScript—for creating a dynamic environment. The Firebase
designed by Google was used for hosting the webpage and database management.

2.3. Mobile Application and Notification

A mobile application was developed using Expo React-Native and a NodeMCU
ESP8266 module. This application allows us to visualize the greenhouse parameters
remotely (See Figure 3a).

To notify users about the state of the greenhouse (missed power supply, failure sensors,
Internet failure, and diseases of the plants), a A6 GSM module with Arduino Uno were
used. Figure 3b shows the workflow of this application.
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2.4. Database and Deep Learning CNNs for Diseases Classification

Classification and identification of plant diseases at early stages using image pro-
cessing and analysis of environmental sensing data not only help farmers to get healthy
plants but also maximize the production. In this work, we focused mainly on one type of
vegetables (tomatoes).

The database used in this study comprises various images (e.g., tomato diseases) [24].
To detect and classify the tomato diseases, a deep convolutional neural network (DCNN)
was developed. Figure 4 shows the basic workflow of the DCNN for multiclass images
classification. It consists of two parts, (1) the features extraction part, which contains
some layers (convolutional and maximum pooling) and (2) the classification part, which
performs nonlinear transformations of the extracted features (flattened and fully connected
layers). The output could be the softmax function for predicting the class.
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The DCNN code was implemented using the Python language in Raspberry Pi 4. The
different steps for implementing the model into a Raspberry device are summarized below:

• Step 1: Train the DCNN model
• Step 2: Call the model on Raspberry with tf.lite.Interpreter()
• Step 3: Program the ESP32 camera to save images every time we access its IP address
• Step 4: Resize and change the type of the image to fit our model
• Step 5: Predict this image with the model and get the result
• Step 6: Use the Pyrebase library to make connections with the database
• Step 7: Save the result to the Firebase database
• Step 8: Read with NodeMCU and send an SMS if there is a problem

2.5. Standalone Photovoltaic Power System

A standalone PV system was used to supply the different components of the green-
house, including electronic boards, water pumps, fans, lights, and the servomotor. It com-
prised three PV modules (360 W) connected in parallel, with one battery (12 V, 200 Ah), a
charge regulator (24 V/30 A), a DC–DC buck converter, and a voltage regulator (in = 7–12 V,
out = 5 or 3.3 V).

Figure 5 shows the block diagram of the standalone PV power system utilized to
supply the greenhouse.
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Figure 6 shows a real photo of the standalone PV system (SAPV) available at the
Renewable Energy Laboratory, Jijel University (Jijel, Algeria).
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3. Results and Discussion
3.1. Photovoltaic Power Supply System

To test the PV power system, we plotted in Figure 7 the data acquisition system, the out-
put current, voltage, solar irradiance, and air temperature for a short period (25 May 2021,
from 10 am to 12 am, with a time step of 5 s). To track the maximum power, the maximum
power point algorithm was integrated, and more details can be found in our previous
work [25,26].
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Figure 7. PV power system measurements: (a) measurement system using Arduino Uno, (b) PV voltage and current, (c) air
temperature, and (d) solar irradiance (25 May 2021, from 10 am to 12 am, with a time step of 5 s).

From Figure 7b, it can be seen that the produced PV current and voltage were enough
to supply the main components of the greenhouse.

3.2. Smart Greenhouse Prototype

Figure 8 depicts a real photo of the designed prototype, including the data acquisition
system. The used components are listed in Appendix A (Table A1). The whole prototype
cost around 150 dollars.
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3.3. Monitoring and Data Visualization

Figure 9a shows the main webpage designed for the smart greenhouse. The users can
easily visualize the measured parameters online.

To test the monitoring system, we illustrated in Figure 9b an example of the data
posted to the webpage. The uploaded data were the real-time values of Ta, RH, LI, CO2
concentration, air pollution, WL, and SM. The data were collected on 19 June 2021 for a
period of 112 min. These results confirm and show clearly the correct functioning of the
developed monitoring system and the webpage.
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and SM for a short period of 110 min.

3.4. Warning SMS and Mobile Application
3.4.1. Warning SMS

A mobile application was developed in order to check the state of the greenhouse.
Thus, users could be notified with a simple phone SMS in case of any problem in the system.
The following Figure 10 displays a type of an SMS message received by a user (e.g., no
Internet connection).
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Figure 10. SMS notification (e.g., no Internet connection).

3.4.2. Mobile Application (Android)

The main Android screens of the developed mobile application are depicted in
Figure 11. This application can help farmers to visualize the collected parameters and
monitor the greenhouse remotely.
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Figure 11. The main Android application screens for the designed smart greenhouse.

3.5. Plant Diseases Classification

The database used in this study consists of six categories (five disease classes and one
health class). It contains a single leaf, multiple leaves, a single background, and a complex
background. All the images were unified to 227 × 227 pixels. The diseases examined (in
case of tomato plants) were bacterial spot, black leaf mold, gray leaf spot, late blight, and
powdery mildew.

Figure 12 shows an example of the images (diseases of tomato plants) available in
the database.
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To develop the DCNN model, 4970 unified images were used; 3976 images (80%) were
used for the training process, 994 images (20%)—for testing the model. The structure of the
developed DCNN model is given below:

• Number of layers: ten layers (one AveragePooling2D layer, two ConvD2 layers, two
MaxPool2D layer, one Flatten layer, one Dropout layer, and three Dense layers)

• Epoch = 20
• Optimizer = Adam
• Activation function = ReLU and SoftMax
• Loss = SparseCategoricalCrossent

The main code of the model is given as follows:

Model_DCNN = keras.Sequential([

keras.layers.AveragePooling2D(12,(4,3),
input_shape=(227,227,3)),
keras.layers.Conv2D(128, (3,3), activation=‘relu’),
keras.layers.MaxPool2D(2,2),
keras.layers.Conv2D(64, (1,1), activation=‘relu’),
keras.layers.MaxPool2D(2,2),
keras.layers.Dropout(0.4, input_shape=(2,)),
keras.layers.Flatten(),
keras.layers.Dense(128, activation=‘relu’),
keras.layers.Dense(64, activation=‘relu’),
keras.layers.Dense(32, activation=‘softmax’)

])
Model_DCNN.compile(optimizer=‘adam’,loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[‘accuracy’])
history=Model_DCNN.fit(train_ds, epochs=20, batch_size=32)
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The code was implemented and run under Google Colab, which is a free online
cloud-based Jupyter Notebook environment. The DCNN model was trained under a GPU
(Tesla K80 with 12 GB of GDDR5, Intel Xeon Processor with two cores @ 2.20 GHz and
13 GB RAM).

Figure 13 shows the loss and the accuracy during the training process. The loss was
close to 0.001 and the accuracy was about 0.99. These results confirm the good training
of the model; thus, the DCNN model was ready to classify and identify the diseases of
tomato plants.
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To evaluate the performance of the developed DCNN model, we calculated the
following error metrics:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(1)

Precision =
TP

(TP + FP)
(2)

Recall =
TP

(TP + FN)
(3)

F1 − score = 2
(Precision ∗ Recall)
(Recall + Precision)

(4)

where TP—number of true positive, TN—number of true negative, FP—number of false
positives, FN—number of false negative.

The results of the calculated error metrics are listed in Table 1.

Table 1. Error metrics: precision, recall, F1 score, and accuracy.

Category of Disease Precision (%) Recall (%) F1 Score (%) Accuracy (%)

Bacterial spot 87 85 86.88

88

Black leaf mold 85 87 83.35
Gray leaf spot 82 85 83.51

Healthy 90 89 92.73
Late blight 83 86 84.47

Powdery mildew 82 85 83.51

According to Table 1, good accuracy (88%) was obtained for diseases classification of
tomato plants. However, the results could be improved by using a large database with
high-quality images.
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Although the smart prototype designed has some advantages such as low-cost, free
source of energy, good flexibility, capability to monitor diseases, good skills and knowledge,
particularly in the implementation of the DCNN, to classify diseases are indispensable.

4. Conclusions and Outlook

A smart greenhouse was designed and experimentally verified at a laboratory scale.
The greenhouse prototype was equipped with a smart monitoring system able to control
and remotely monitor greenhouse parameters. The greenhouse was supplied by a free
source of energy, a small-scale autonomous PV system, which was basically used to supply
the main components of the greenhouse such as sensors, electronic boards, water pumps,
LED lights, fans, servomotors, and relays. Thus, an artificial climate inside the greenhouse
was created, with appropriate control of air temperature, relative humidity, soil moisture,
CO2 concentration, light intensity, by means of precise ventilation, lighting, and irrigation.
Users could be also notified by an SMS about the state of the plants before the outbreak
of the disease. The combination of the Internet of Things and deep learning have showed
their capability to monitor the health of the plant investigated in this study. Detection and
classification of plant diseases can help farmers to monitor plants growth efficiently for
better crops production.

Future work will focus on the application of advanced predictive control algorithms
for parameters control inside the greenhouse. Furthermore, the application of computer
vision and other deep learning frameworks will be investigated. A large dataset with
different cultivated plants (images) will be used.
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Abbreviations

CO2 Carbon dioxide
CO2ref Reference carbon dioxide
DC Direct current
DCNN Deep convolutional neural networks
DL Deep learning
GSM Global System for Mobile Communications
HTML HyperText Markup Language
IoT Internet of things
Ipv Photovoltaic current
LED Light-emitting diode
LCD Liquid Crystal display
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LI Light intensity
LIref Reference light intensity
NodeMCU Node MicroController Unit
PV Photovoltaic
RH Relative humidity
RHref Reference relative humidity
SAPV Standalone PV System
SM Soil moisture
SMref Reference soil moisture
SMS Short Message Service
Ta Air temperature
Taref Reference air temperature
TVOC Total volatile organic compounds
Vpv Photovoltaic voltage
WL Water level
WLref Reference water level

Appendix A

• Calibration of the CO2 and air quality sensors (CCS811):

The CCS811 sensor will recalibrate itself each time it is powered on. CCS811 does
not require calibration, but it does need to be “burned-in”. This means that after around
1 week the sensor is more stable.

• Calibration of the air temperature and humidity sensor (DHT11):

We connected the sensor to a Vernier data collection interface, used the Vernier data
collection program, and the stored calibration was used. Furthermore, we could compare
the collected data with another calibrated instrument that measures relative humidity
(hygrometer or psychrometer).

• Calibration of the light sensor (BH1750):

BH1750FVI (or BH1750) is a calibrated digital light sensor IC that measures the incident
light intensity and converts it into a 16-bit digital number. The BH1750FVI sensor directly
gives digital output. The sensor output can be accessed through an I2C interface. It can
measure ambient light intensity and the units of measurement are lx. Interfacing this
module with Arduino is quite easy.

• Calibration of the current sensor ACS 7120 (30 A)

The calibration of the current sensor ACS 7120 (30 A) was performed using the
methodology described in [27].

• Calibration of the voltage sensor

We followed the method of calibration used with Arduino as indicated in [28].

• Calibration of Ultrasonic (HC04)

For the calibration of Ultrasonic HC04, we used the methodology given in [29].
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Appendix B

Table A1. Used components specifications, accuracy and prices.

Item Reference/Specification Accuracy/Resolution Price (USD)

Microcontrollers Arduino Mega 2560

Accuracy of ± 2 LSB
The maximum error is 2 bits (4 decimal) in 10 bits
(1024 decimal).
The worst-case accuracy of the converter is 4/1024,
or 1 part in 256 i.e., 0.25%.

14

Processor Raspberry 4 pi 2 Go Resolution up to 1080p at the 60 Hz refresh rate. 70

LED 12 V - 3

GSM module A6 Sensitivity < −105 5

Wi-Fi module NodeMCU ESP8266

14-bit resolution.
The minimum resolution could reach as much as
44 ns.
External clock accuracy between 15 and +15 ppm

2.5

Relative humidity and
air temperature sensor (DHT11) ± 5% RH, ± 0.5 ◦C accuracy 1.5

Position sensor Ultrasonic HC04 Absolute accuracies of 1–3% in the operating range
from −25 ◦C to +70 ◦C. 0.75

Relay 5 V - 10

Light sensor BH1750
Accuracy: ± 20%.
This sensor can accurately measure the lx value of
light up to 65,535 lx.

0.95

CO2 sensor CCS811 2% tolerance due to accuracy of the internal clock
in Mode timings 4

Valve 12 V - 2.5

Water pump 12 V High accuracy 8

Fan 12 V - 3

Servomotor MG960R

Servos operate accurately at speeds up to
5000 rpm or more.
Its stopping accuracy is within ± 0.05 degrees
(with no load).

5

Voltage sensor 25 V Resolution of 0.00489 V 1.5

Current sensor ACS 7120 (30 A) Accuracy < 2% 2

LCD 4 × 16 - 2.5

Screen 1.3 inch - 3

Capacitive soil moisture V 1.22 2–3% of the actual soil moisture 3
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