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Abstract: The fractured-vuggy carbonate reservoirs display strong heterogeneity and need to be
classified into different types for specific characterization. In this study, a total of 134 cores from six
drilled wells and six outcrops of the Deng #2 and Deng #4 members of the Dengying Formation
(Sichuan Basin, Southwest China) were selected to investigate the petrographic characteristics of void
spaces in the fractured-vuggy carbonate reservoirs. Four void space types (VSTs) were observed,
namely the solution-filling type (SFT), cement-reducing type (CRT), solution-filling breccia type
(SFBT) and solution-enlarging fractures and vugs type (SEFVT). The CRT void spaces presented the
largest porosity and permeability, followed by the SEFVT, SFBT and SFT. The VSTs presented various
logging responses and values, and based on these, an identification method of VSTs using Bayes
discriminant analysis (BDA) was proposed. Two test wells were employed for the validation of the
identification method, and the results show that there is good agreement between the identification
results and core description. The vertical distribution of VSTs indicates that the SFT and SEFVT are
well distributed in both the Deng #2 and Deng #4 members. The CRT is mainly found in the Deng #2
member, and the SFBT occurs in the top and middle of the Deng #4 member.

Keywords: void space type (VST) classification; fractured-vuggy carbonate reservoir; logging data;
Sinian Dengying Formation; Sichuan Basin

1. Introduction

Carbonate reservoirs can be divided into pore reservoirs, fractured reservoirs, vuggy
reservoirs and their mixture combinations, of which the fractured-vuggy reservoirs display
a broad prospect for development. The dolomite fractured-vuggy reservoir of the Moxi-
Gaoshiti block in the Sichuan Basin is one of the oldest gas-bearing reservoirs in China,
which proved itself as an excellent geological reserve with 5900 × 108 m3 of gas production
in the Anyue gas field by the end of 2020 [1]. Carbonate rock can be characterized by
various void spaces, a complex pore structure and cement of the carbonate reservoir [2–8].
For carbonate reservoirs, the inherent heterogeneity and discontinuity [9–11] could improve
complexities and consequently result in more difficulties for reservoir prediction.

Void space types and structures are essential for the classification of reservoirs [12–14].
The permeability is strongly related to the complex pore structures [3,4,8,15]. The phys-
ical properties and productive characteristics of carbonate reservoirs are controlled by
two basic pore networks: the interparticle pore network (r ≥ 5 µm) and the void space
network (r ≥ 100 µm) [4,16]. For the classification of carbonate reservoirs in previous stud-
ies [3,5,13,15–20], the physical properties of carbonates were related to pore types, shapes,
and pore-size distribution, whereas most of the micro-scale models focused on non-vuggy
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reservoirs, and the results they acquired are not applicable for the void space network of
fractured-vuggy reservoirs.

Various studies have been conducted to study the fractured-vuggy reservoir in the
Sichuan basin, mainly focusing on the types of reservoir spaces, the diagenetic history and
their controlling factors. Previous studies have divided the reservoir space in the study
area into pores, vugs, fractures and their combinations [21–28]. The physical properties
of the Dengying Formation reservoir have been discussed [21–28]. The controlling factors
of reservoir space are mainly diagenesis, sediments and tectonic activities [19,25,27–30].
However, there is a lack of detailed characterization of a certain reservoir space. In this
paper, void space, and the relatively effective reservoir space, have been selected in order
to describe the characteristics and differences of the pore size, distribution density, porosity
and permeability of the four types.

Many researchers are trying to create quantitative relations between the core data
and well logs in carbonate reservoirs [31–39]. Geophysical well logging is performed in
order to obtain geophysical characteristics such as the electrical conductivity, acoustic
properties and radioactivity of rock strata. The application of the logging method can
reduce the work of drilling and coring, and quantitatively, or semi-quantitatively, evaluate
the geophysical characteristics of the reservoir. To our knowledge, there is still a lack of
a reliable quantitative interpretation of fractured-vuggy carbonates. The log responses
present the physical properties of minerals, texture, sedimentary structure, and lithofacies
of a reservoir, which could also be used for the identification of void spaces in the carbonate
reservoir.

In this study, a total of 134 rock samples from six wells were used to measure the
density, pore size, porosity and permeability of the different void space types (VSTs).
The VSTs of carbonates were identified using the geophysical logging techniques. Bayes
discriminant analysis (BDA) was employed to predict the VSTs, with the aid of geophysical
logging data, and the results were applied to the classification and prediction of the VSTs
in carbonate reservoirs.

2. Geological Setting

The Sichuan Basin, located on the southwestern margin of the Yangtze Platform, is
a multicycle superimposed basin [40]. The Moxi-Gaoshiti (MG) area was selected as the
studied area, which is in the central Sichuan paleo-uplift belt and the eastern axis of the
Leshan-Longnvsi paleo-high [28] (Figure 1), and is surrounded by the northern Sichuan
depression, the western Sichuan depression, the southwestern Sichuan low-steep belt,
thesouthern Sichuan low-steep belt, and the eastern Sichuan high-steep belt. The Sinian
Dengying Formation is one of the oldest and best-preserved dolomite carbonate platforms
in China, extending from the northeast to the southwest in a warm and shallow marine
environment [41,42].

The MG area has experienced multiple phases of tectonic activity, including the Tong-
wan (Sinian—Early Cambrian), Caledonian (Late Sinian-Silurian), Hercynian (Devonian-
Middle Permian), Indosinian (Late Permian-Triassic), Yanshanian and Himalayan (Jurassic-
Cenozoic) tectonic activity phases [43,44]. The formation of the Sinian carbonate reservoirs
was mainly controlled by the Tongwan tectonic activity phase [42,45,46]. The Sinian Dengy-
ing Formation in the MG area is subdivided into four members, from the oldest to the
youngest, and are referred to as the Deng #1 to Deng #4. Due to subaerial karstification
caused by the Tongwan tectonic uplifts, the upper parts of the Deng #2 and Deng #4
members developed dissolved pores and fractures under meteoric water and mixed wa-
ter [20,42,44,45]. This development resulted in these Deng members possessing strong
geophysical characteristics, whilst also being favorable for gas exploitation (Figure 1).
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Figure 1. Location map of the study area and schematic of the lithology profile of the Sinian Dengying Formation.

3. Methodology

The macroscopic characteristics of VSTs, including the shape, filling condition, pore
size, density and distribution, were described. A total of 134 core samples from 6 cored
wells (Wells 1–6) (drilled by the Southwest Company of SINOPEC Petroleum Exploration
and Production Research Institute) and 6 outcrops (outcrops 1–6) were selected in this
study. Full diameter cores were used to directly measure the porosity and permeability,
therefore there was 153 samples for porosity measurements, 29 samples for horizontal
permeability measurements, and 38 samples for vertical permeability measurements. The
porosity of the core samples was measured with the mercury injection method using Boyle’s
law of porosimetry. The permeability of the core samples was measured the CMS™-300
Automated Permeameter (Core Laboratories, Netherland). Measuring tape was used to
measure the size of VSTs in cores from the 6 Wells (Well #1 to Well #6). The sizes of VSTs
(including maximum, minimum, and average) were calculated for 338 data of different
VSTs. A total of 198 data of different VSTs in the core were counted per 1 m. Logging
techniques, including the natural gamma (GR), caliper (CAL), double lateral resistivity logs
(RD and RS), density (DEN), neutron logging (CNL), and sonic-interval transit time (AC),
were chosen for the identification of void space types. The logging data of GR, CAL, DLL,
DEN, CNL and AC were then extracted with a vertical resolution of 0.125 m. Formation
micro-resistivity images (FMIs) were combined with logging data for the identification of
void space types.

4. Results

The space in carbonate reservoirs is composed of matrix pores and void spaces. In
our study, matrix pores had low average porosity (1.52%) and permeability (0.11 mD),
which could be the barrier for fluid flow during hydrocarbon exploitation. Void spaces,
having more storage space, could enhance the capacity of fluid flow during fluid exploita-
tion. In this study, void spaces were the key targeted pore type. Based on the effect of
diagenesis on pore evolution, void spaces in 134 cores from the Deng #2 and Deng #4
members were described, and the results show that the void spaces in the studied area
were composed of four types, including solution-filling type (SFT), cement-reducing type
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(CRT), solution-filling breccia type (SFBT) and solution-enlarging fractures and vugs type
(SEFVT) void spaces.

4.1. Morphology Characteristics of VSTs

On the surface of cores, the SFT void spaces are distributed along the bedding plane
(Figure 2a). The SFT void spaces have an ellipsoidal shape and are widely developed
and distributed along the algal-rich bedding plane in outcrop #4, outcrop #5 and outcrop
#6 (Figure 3a). Based on the investigation of outcrops, the SFT void spaces are widely
developed in each layer, especially in the Deng #2 and Deng #4 members. The SFT void
spaces had small pore sizes, which ranged from 1 to 50 mm, and mainly from 1 to 2 mm
(Figure 4a).
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Figure 2. Typical macroscopic characteristics of void space types in cores: (a) solution-filling type
(SFT) void spaces in a core sample from Well #2 at depth from 5396.54 to 5396.84 m—the white
circles show the millimeter-sized pores along the core bedding; (b) cement-reducing type (CRT)
void spaces in a core sample from Well #1 at depth from 4962.15 to 4962.24 m—the cement-reducing
type (CRT) (inside the white circle) is surrounded by the multiple- period dolomite cement (yellow
circle); (c) solution-filling breccia type (SFBT) void spaces in a core sample from Well #1 at depth
from 4978.12 to 4978.23 m—pores are enclosed between the breccia grains; (d) solution-enlarging
fractures and vugs type (SEFVT) void spaces in a core sample from Well #6 at depth from 5102.12 to
5102.23 m, showing the pores distributing along the fractures.
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(b) morphology of cement-reducing type (CRT); (c) filling features of the cement-reducing type (CRT).
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The CRT void spaces present isopachous rims consisting of the microorganism laminae
and cementations. Each dark lamina had a thickness of approximately 0.1–1 mm (Figure 2b).
The CRT void spaces were formed during the Icehouse period, when the Yangtze region was
in the aragonite sea environment [46], and bacteria and algae were very abundant [24,47,48],
which is favorable for the formation of microorganism laminae in the algae-rich dolomite
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rock. Due to the rise in sea levels, the CRT void spaces were cemented from the edge toward
the interior of the residual vugs by dolomite crystals [49–51], which was the major factor in
reducing the storage space. The CRT void spaces observed in outcrop #1 demonstrated a
shape of “clusters of grapes” (Figure 3b(1)), and were distributed along the bedding plane
under the lateral section view in outcrop #3 (Figure 3b(2)), or the isolated oblique to the
bedding in the cross-section view in outcrop #2 and outcrop #1 (Figure 3b(3,4)). Based on
the porosity tests, the filling degree of CRT void spaces in the Deng #2 member decreases
as the burial depth increases (Figure 3c). The CRT had relatively large pore sizes, which
were generally 4 to 8 mm (Figure 4a).

The irregular-shaped SFBT void spaces are mainly developed in karst breccia dolomites
(Figure 2c), which were strongly eroded and collapsed due to supergene corrosion during
the Tongwan tectonic activity phase II [20–23,52]. The SFBT void spaces are relatively low
in abundance and unevenly distributed in outcrops. The dominant pore sizes of the SFBT
were commonly 2 to 3 mm (Figure 4a).

The SEFVT void spaces displayed various angles of fractures and connection patterns
between the fractures and vugs. The vugs were developed through fractures, or along the
sides of fractures, presenting a string-beaded form (Figure 2d).

In the cores, more than 80% of SFT, CRT and SEFVT had a density less than 200 num/m.
In the Deng #4 member, SFBT density was mainly distributed in ranges of less than 100
num/m and 400 to 600 num/m, with 54% of sample points located in the first range and
38% in the latter (Figure 4b).

4.2. Physical Properties of VSTs

The porosity of SFT is mainly from 1% to 3%, whereas the porosity of CRT is from
2.5% to 3.5% (Figure 5). The SFBT and SEFVT have a porosity from 1.5% to 4.0%, of which
71.28% of the SFBT and 80% of the SEFVT are in this range, respectively. Overall, the CRT
has the relatively highest porosity, followed by the SEFVT, SFBT, SFT.
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The permeability of SFTs is mainly between 10−3 and 10−2 mD. The horizontal
permeability of CRT has the largest value of 1 to 10 mD (accounting for approximately
91.10% of all the samples), which is larger than the vertical permeability by one order of
magnitude at the same depth (Figure 6a). For example, the botryoidal residual structure
section of Well #3, having a horizontal permeability of 5.46 mD and a vertical permeability
of 2.08 mD, indicates that the connection in the lateral direction is better than that in
the longitudinal direction. The SFBT and SEFVT have close permeability, from 10−1 to
10 mD, whereas the SFBT has a larger mean permeability than the SEFVT. The SEFVT also
shows larger horizontal permeability than vertical permeability, which could be due to the
development of horizontal fractures.
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Normally, the permeability is correlated with interparticle or intercrystal porosity,
whereas the relationship between the porosity and permeability of the Dengying Formation
reservoirs is weakly correlated (Figure 6b), which could be the effect of the complex void
space system used during the diagenesis and deposition [16,22,23,25,52]. A large number
of isolated dissolved pores were formed with poor connectivity. As Figure 6b shows, the
cross-plot of CRT and SFBT reveals that high porosity does not promise high permeability.
A relatively strong relationship between porosity and permeability of the SEFVT is shown
in Figure 6b, which could be caused by microfractures.

The effective output results indicate that CRT has the best gas output per meter of core
length (Figure 7). The strong performance of this type can be attributed to its good storage
space and physical properties. The SEFVT has the median output, and the production
capacity of the SFT is the poorest.
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4.3. Logging Responses of VSTs

A vertical resolution of 1 m of the FMI logging is employed. Four sections from
five wells were selected for the identification of VSTs, and these read as 4962–4962.8 m
from Well #1, 5430–5431.8 m from Well #4, 4976.2–4978 m from Well #1 and 5112–5113.8 m
from Well #3. The SFT shows a dark “honeycomb” pattern in the bright background
(Figure 8a), which indicates that there were numerous solution-filled void spaces in the
matrix dolomites. The petal-like dark feature of the CRT (Figure 8b) is created by extensive
dissolution during subaerial exposure. The SFBT, characterized by disorderly dark spots
and short lines (Figure 8c), indicates interconnected channels among sharp fragments of
breccia grains. The dark sinusoidal lines of SEFVT shows width-enlarged (>2 mm in width)
diagonal fractures in FMIs (Figure 8d).
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The logging values of the four VSTs are shown in Table 1. The SFT and CRT can be
distinguished from the SFBT and SEFVT because of the high average CNL values of SFT
and CRT (3.842%~9.425%). The average DLL values of the SFT are relatively higher than
that of the other VSTs, resulting in significant differences between the SFT and CRT. The
tri-porosity logging (DEN, AC and CNL), reflecting the occurrence of void spaces, and GR
and CAL logging, demonstrating filling degree, were combined to distinguish these VSTs.
Although the CAL logging does not show obvious changes, when the VSTs are half-filled
or unfilled, it increases slightly.
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Table 1. Range and average of logging values of void space types (SFT—solution-filling type; CRT—cement-reducing type;
SFBT—solution-filling breccia type; SEFVT—solution-enlarging fractures and vugs type).

Type AC (µs/m) CAL (cm) CNL (%) DEN (g/cm3) GR (API) RD 1 (Ω·m) RS 1 (Ω·m)

SFT 45.334−52.684
49

6.302−6.594
6.448

3.842−7.078
5.560

2.659−2.832
2.746

11.272−14.203
12.738

652.000−15474.160
8063.08

561.377−3579.652
2070.515

CRT 45.652−52.643
49.148

6.170−6.652
6.411

4.176−9.425
6.800

2.637−2.871
2.754

10.262−17.517
13.890

570.284−3043.968
1807.126

232.783−791.534
512.1585

SFBT 46.377−49.429
47.9

6.300−6.800
6.551

0.742−3.578
2.160

2.746−2.799
2.773

10.072−16.272
13.890

936.422−5145.797
3041.110

518.766−3233.535
1876.1505

SEFVT 44.824−47.237
46

5.870−5.926
5.898

0.191−3.771
1.980

2.710−2.899
2.804

12.757−21.014
16.890

965.882−3649.836
2307.859

1151.992−3886.6924
2519.342

1 RD and RS are the deep and shallow laterolog resistivity, respectively.

4.4. Identification Process of VSTs Using Logging Data

Bayes discriminant analysis (BDA) was used for the quantitative interpretation of
the VST distribution in fractured-vuggy carbonate reservoirs. The logging datasets (i.e.,
GR, CAL, DLL, AC, DEN and CNL) of each VSTs were used as the input variables for
establishing the linear discriminant equations. The Bayes discriminant analysis in this
study was performed using the Statistical Product and Service Solutions (SPSS) software.
On the basis of the known VSTs of cores or FMIs, the logging data of five wells (Well #1,
Well #2, Well #4, Well #9, Well #10) corresponding to these types were selected. Before
performing BDA on the well log responses, all the data were normalized. In this study, the
logging data of Well #1 was used as the standard well for logging standardization (Figure 9).
The types of the fractured-vuggy carbonates can be identified based on the principle of
the maximum posterior probability of the Bayes discriminant. The cross-validation results
(Table 2) suggest that the identification accuracy of the SFT, CRT, SFBT and SEFVT is 80.8%,
80.0%, 93.7% and 100%, respectively, which indicates that the Bayes discriminant analysis
is valid for the VSTs’ identification.

The validation test evaluates classification performance using two independent sam-
ples of data. The interval in Well #3 was 200 m in the Deng #4member, while the interval
in Well #5 was 60 m in the Deng #2 member were chosen for the validation test, and the
validation results are shown in Figure 10. The validation column consists of cores and
FMIs. The VSTs including SFT, SFBT and SEFVT alternately appear in the Deng #4 member,
whereas the CRT is only present in the Deng #2 member. Thick SFT and SEFVT layers are
common from top to bottom in the Deng #4 member. The SFBT appear as thin layers in
the upper and lower parts of the Deng #4 member. In general, good agreement is shown
between the identification results using discriminant analysis and core samples. However,
uncertainties arose in the error areas located in the middle of the intervals. The horizontal
fractures of the bedding plane were mistaken for the SEFVT, which inevitably affected the
identification by the logging results. Although the discrimination errors require improve-
ment, the results of the BDA are still applicable for predicating VSTs in other wells in the
study area.

According to the BDA results of four wells (Well #1, Well #2, Well #3, Well #5), the
vertical distribution of VSTs is shown in Figure 11. The SFT is efficiently distributed in
each well, followed by the SEFVT. The CRT presents itself in the thick layers, and is only
shown in the Deng #2 member of Well #5, which could result from the relatively strong
Tongwan tectonic activity phase I in the northeastern MG gas field. The SFBT appears
thin in the upper and middle parts of the Deng #4 member of Well #1 and Well #3. The
vertical distribution of multiple VSTs demonstrates high heterogeneity in fractured-vuggy
reservoirs.
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Table 2. Classification results of the void spaces of the MG carbonate reservoirs (SFT:solution-
filling type; CRT:cement-reducing type; SFBT:solution-filling breccia type; SEFVT:solution-enlarging
fractures and vugs type).

VSTs
Predicted Group Membership

SFT CRT SFBT SEFVT Percent Correct

SFT 80.8 19.2 0 0 80.8%
CRT 13.3 80.0 6.7 0 80%
SFBT 6.7 0 93.3 0 93.7%

SEFVT 0 0 0 100 100%
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5. Discussions

The results of the VSTs classification are summarized in Tables 1 and 3. The deeply
burial dolostones have experienced successive diagenesis, such as subaerial karstification
during the Tongwan tectonic activity phase, cementation and filling, and dissolution by
thermal fluid in the deep-burial environment, which has strongly influenced the porosity
and pore size distribution of VSTs (Figures 4 and 5). Furthermore, the differences in the
logging characterization of the VSTs correspond to their density, pore size and physical
properties (Tables 1 and 3).

Table 3. Range and average of pore size, density and physical properties of void space types (SFT—
solution-filling type; CRT—cement-reducing type; SFBT—solution-filling breccia type; SEFVT—
solution-enlarging fractures and vugs type).

SFT CRT SFBT SEFVT

Pore size (mm) 0.5−10
1.71

1−30
8.2

1−4
2.19

0.5−6
2.34

Density (num/m) 3.70−460
101

16.67−475
124

7.14−588.89
219

1.75−206.67
63

Porosity (%) 0.82−9.03
2.78

1.23−9.88
4.35

1.17−6.04
3.13

1.63−9.88
3.38

Permeability (mD) 0.0001−9.720
0.853

0.002−8.005
1.974

0.026−3.077
0.650

0.001−1.870
0.494

The SFT void spaces were formed due to further dissolution and expansion of in-
terpartical pores and intercrystal pores during the Tongwan epoch. However, SFT void
spaces were greatly affected by being filled with siliceous fluid, or with asphalt in later
diagenesis [27,50], resulting in the worst porosity. The SFT has relatively small pore size
and low porosity, but high AC and CNL values, which could result from the high density
of SFT void spaces. The SFT has the highest DLL values, because the trapped gas in the
SFT could increase resistivity.

The cementation related to the CRT has three phases successively: fibrous-shaped
dolomite cements in the first phase of cementation, blade-shaped dolomite cements in
the second phase of cementation and crystal dolomite cements in the third phase of
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cementation [25,53,54] (Figure 5). Although cemented by botryoidal calcite, the CRT
underwent long-term meteoric water dissolution, resulting in good porosity. The CRT
corresponds to high AC and CNL responses and low DEN responses, which results from
relatively high porosity and permeability. The low GR values and the abnormally high DLL
values indicate that the CRT void spaces may be filled by crystal cement instead of mud.

The SFBT has the highest CAL values due to breccia rocks collapsing and the diameter
of the borehole enlarging. The fractures in fragile and soluble dolomites were dissolved
and enlarged due to the downward seepage of meteoric water during the Tongwan tectonic
activity phase. Although the SEFVT and the SFBT have similar physical properties, due
to the relatively low filling degree by the Himalayan tectonic activity phase [22], and
the following influences by organic acid fluid [46], the SEFVT void spaces were better
preserved than the SFBT void spaces. The low DLL logging data of the SEFVT indicate the
existence of diagonal fractures of the SEFVT.

6. Conclusions

The fractured-vuggy carbonate reservoirs have various pore types, which demonstrate
different capacities for gas storage. The description and prediction of VSTs could contribute
to the exploration and development of natural gas in the fractured-vuggy carbonate reser-
voirs. In order to predict the VSTs and their distribution in the fractured-vuggy carbonate
reservoirs of the ancient Dengying Formation in the Moxi-Gaoshiti (MG) block, in cen-
tral Sichuan Basin, Southwest China, a classification method using geophysical logging
techniques was proposed in this study. Specific conclusions are as follows:

(1) Four VSTs in carbonate fractured-vuggy reservoirs were observed, including the SFT,
CRT, SFBT and SEFVT. The CRT has the largest porosity and permeability, whereas
the SFT void spaces are characterized by the worst porosity and permeability. The
SFBT and SEFVT have close physical properties. There appears a better relationship
between the porosity and permeability of the SEFVT than the SFBT presents, which
could be caused by microfractures.

(2) Each VST shows different responses on the FMIs. The SFT shows a dark “honeycomb”
pattern. The CRT presents petal-like dark features. The SFBT is characterized by
disorderly dark spots and short lines. Dark sinusoidal lines appear in SEFVT. The
high DLL values in the SFT and high AC and CNL values could help to distinguish
CRT from SFBT and SEFVT. The SFBT corresponds to CAL values due to breccia rocks
collapsing, and the GR values show the filling degree in SEFVT.

(3) The BDA were used for the classification of VSTs using logging data. The results
of the BDA were applied in the case study (Well #3 and Well #5), and there is good
agreement between the identification results and the core and FMI results, indicating
that the proposed method is valid for VST identification and prediction.

(4) The void spaces in the Deng #2 and Deng #4 developed four VSTs, which were
contained in an interbedded pattern displaying the SFT and SEFVT in each layer, with
the CRT positioned in the thick layer in Deng #2, and the SFBT in the top and middle
of the Deng #4.
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