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Abstract: The increasing use of electric vehicles in road and air transportation, especially in last-
mile delivery and city mobility, raises new operational challenges due to the limited capacity of
electric batteries. These limitations impose additional driving range constraints when optimizing the
distribution and mobility plans. During the last years, several researchers from the Computer Science,
Artificial Intelligence, and Operations Research communities have been developing optimization,
simulation, and machine learning approaches that aim at generating efficient and sustainable routing
plans for hybrid fleets, including both electric and internal combustion engine vehicles. After
contextualizing the relevance of electric vehicles in promoting sustainable transportation practices,
this paper reviews the existing work in the field of electric vehicle routing problems. In particular,
we focus on articles related to the well-known vehicle routing, arc routing, and team orienteering
problems. The review is followed by numerical examples that illustrate the gains that can be
obtained by employing optimization methods in the aforementioned field. Finally, several research
opportunities are highlighted.

Keywords: electric batteries; vehicle routing problem; arc routing problem; team orienteering problem

1. Introduction

With the goal of promoting sustainability, many cities in the world are observing an
increasing use of electric vehicles (EVs), both for citizens’ mobility [1] and for last-mile
logistics [2]. The use of zero-emission technologies is supported by governmental plans in
regions such as Europe [3], North America [4], and Asia [5]. According to Kapustin and
Grushevenko [6], EVs will account for a noticeable share (between 11% and 28%) of the
road transportation fleet by 2040. Still, many authors point out batteries’ driving range
anxiety, high recharging times, scarcity of recharging stations, and lack of effective financial
incentives that compensate for the higher cost of most EV models as some of the main
barriers for the generalization of EVs in our cities [7–9].

In urban, peri-urban, and metropolitan areas, many activities related to freight trans-
portation and citizens’ mobility are carried out by fleets of vehicles [10]. The efficient
coordination of these fleets becomes necessary in order to reduce monetary costs, operation
times, energy consumption, and environmental/social impacts on the city. However, this
coordination constitutes a relevant challenge that is typically modeled as a mathematical
optimization problem. Depending on the specific characteristics of the transportation
activity, different families of problems can be found in the scientific literature. Among the
most popular ones, we can include vehicle routing problems (VRPs) [11–13], arc routing
problems (ARPs) [14,15], and team orienteering problems (TOPs) [16,17]. These problems,
which can model scenarios involving both road and aerial EVs, are NP-hard even in their
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simplest versions. Thus, the use of heuristic-based algorithms [18] and simulation-based ap-
proaches [19] becomes a first-resource tool when solving rich and real-life instances, which
usually contain a large number of nodes to be visited. From an operational perspective,
the inclusion of driving range constraints and long recharging times constitute additional
challenges that must be properly addressed when providing near-optimal transportation
plans in any of the aforementioned routing problems (Figure 1).

Figure 1. Conceptual schema of the topics discussed in this work.

Among the existing solution approaches for these problems, we highlight the use of
exact methods, heuristic and metaheuristic approaches, approximation, machine learn-
ing (ML), and simulation techniques. Exact methods guarantee the finding of optimal
solutions. However, their use is often limited by the size of instances due to the combi-
natorial nature of these problems [20]. Conversely, heuristics and metaheuristics have
proved to be good alternatives to deal with large-scale problems. These methodologies
are capable of finding near-optimal (or even optimal) solutions in a reasonable amount
of time [21]. Among the most popular metaheuristic approaches, we highlight the use
of evolutionary algorithms, e.g., genetic algorithms (GAs) and non-dominated sorting
genetic algorithm (NSGA) [22]; nature-inspired population-based approaches, e.g., ant
colony (ACO) [23] and particle swarm optimization (PSO) [24]; and iterative methods,
e.g., multi-start (MS) [25], iterated local search (ILS) [26], and variable neighborhood search
(VNS) [27]. Approximation techniques, on the other hand, ensure the finding of solutions
whose cost is probably within some factor of the optimal solution cost [28]. Apart from
efficiently tackling deterministic problems, these solution approaches cannot properly
cope with stochastic components. Therefore, simulation methods have been used to deal
with stochastic problems, being capable of offering efficient solutions for stochastic scenar-
ios [19]. Furthermore, ML methods make use of existing information, often gathered by
the internet of things, i.e., networks of sensors, software, electronic devices, among others,
during the execution, in order to automate the decision-making process based on the
prediction of possible scenarios (see, e.g., in [29]). Finally, hybrid approaches combine two
or more classes of methodologies to enhance the resolution characteristics of each one.

Accordingly, the main contributions of the paper can be summarized as follows: (i) we
provide a literature review on different types of electric vehicle routing problems (VRPs,
ARPs, and TOPs), highlighting the characteristics of each problem as well as the solution
method employed; (ii) we discuss how the sustainable transportation concept relates to
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the increasing use of electric vehicles; (iii) we analyze how the introduction of driving
range constraints, associated with the employment of electric batteries, has been taken
into account during the development of vehicle routing algorithms; (iv) we highlight the
relevance of these range-aware algorithms to avoid increasing the cost of routing plans
more than is strictly necessary; and (v) we provide a novel numerical experiment as well as
a comparative data analysis of results obtained by different researchers when optimizing
routing problems with EVs.

Figure 2 shows the evolution of scientific articles published in Scopus-indexed journals
during the last decade. The data has been obtained using the following query: TITLE-
ABS-KEY (“electric vehicle” AND “routing problem”) (the value for 2021 is an estimated
one, based on the current value at the time this query was performed). One can notice
the rapid increase in the number of scientific works analyzing the use of EVs in routing
problems. The same query also provide us with information about the journals that have
been publishing these papers with a higher frequency (in parentheses): Sustainability
(10), Computers and Operations Research (9), European Journal of Operational Research
(8), IEEE Transactions on Intelligent Transportation Systems (7), Transportation Research
Part B Methodological (6), Transportation Research Part C Emerging Technologies (6),
and Transportation Science (6).

Figure 2. Evolution of related publications in Scopus-indexed journals.

The remaining of this paper is organized as follows. Section 2 analyzes the role of
EVs in promoting sustainable transportation practices. Section 3 discusses different works
on models that estimate remaining driving ranges for EVs. Section 4 summarizes the
existing literature on electric vehicle routing problems. Sections 5 and 6 complete a similar
review on the electric arc routing and the electric team orienteering problems, respectively.
Section 7 illustrates the numerical impact of driving range constraints across different
studies. Finally, Section 8 concludes this work by summarizing the main findings and
describing some open research lines.

2. Promoting Sustainable Transportation Practices

Traditional energy sources employed in mobility and transportation activities also
imply the release of undesired byproducts or externalities, including air pollution, noise,
roads wear-outs, traffic congestion, and global warming [30]. These contaminant elements
are released with the use of vehicles propelled by non-renewable energies with fossil ori-
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gins. Pollutant externalities have a great impact on the environment, forcing governments
to either restrict the use of the energy sources that provoke them or to search for new
propelling sources. This situation has promoted the concept of sustainable transporta-
tion, which McKinnon et al. [31] define as the transportation whose management, use,
and development do not compromise or endanger the future development of the next
human generations.

One popular way to include externalities in optimization models is by transforming
them into penalty costs. This contributes to limit the use of the most pollutant modes
of transportation. Nevertheless, estimating these penalty costs is not easy. Measuring
the willingness to pay (WTP) of carriers and consumers is one technique that can be
employed to estimate the cost of transportation externalities [32,33]. All in all, the goal is to
estimate the propensity to use more sustainable modes of transportation in order to avoid
higher mobility costs [34,35]. Estimating the environmental costs allows us to consider
alternative transportation and mobility strategies [36]. As an example, the work carried
out by Lera-López et al. [37] presents a good analysis of the WTP estimations of the road
freight transportation that traverses the Pyrenees mountain range, located between France
and Spain.

The literature reviews performed by Dekker et al. [38] and Bektaş et al. [39] describe the
role of mathematical models in supporting decisions that consider environmental costs in
green logistics and green freight transportation, respectively. The concept of the “green cor-
ridor” is defined by Panagakos [40] as routes with low pollution impact and good economic
and logistics attributes. One of the first mathematical models including environmental
costs to solve a transportation problem is shown by Erdoğan and Miller-Hooks [41], who
define the green VRP. Previously, Ubeda et al. [42] solved a variant of that model in a case
study for a real delivery company in Spain. During the last years, several literature reviews
on the green VRP have appeared, e.g., Lin et al. [43], Ren et al. [44], Moghdani et al. [45],
Patella et al. [2], and Asghari and Mirzapour Al-e-hashem [46]. Additionally, the consider-
ation of multi-criteria models are particularly useful when environmental costs are included
Sawik et al. [47].

The use of horizontal cooperation is becoming progressively popular as a way to
promote environmentally friendly transportation practices [48–50]. Similarly, backhauling
strategies in distribution activities are showing good upshots in designing real green
distribution protocols [51–53]. In particular, crowd-shipping can also be contemplated
as a cooperation strategy with positive environmental impacts. Crowd-shipping refers
to “the use of ordinary people, rather than delivery companies or company employed
drivers, to drop-off packages in route to their destination” [54,55]. The benefits of this
cooperation have already been mentioned by McKinnon [56]: a reduction in the demand
for urban transportation services, a better achievement of delivery operations, and cheaper
distribution trips. Environmental benefits can be increased not only by considering EVs,
but also by taking advantage of the solar energy to recharge the batteries. For instance,
Lloyd et al. [57] study a real-world case in Tunisia for distributing vaccines. This kind
of product requires a cold supply chain [58,59], increasing the need for energy in both
the storage and transportation processes. An emerging cooperation strategy relies on
the conjoint development of drones and electric vans to increase service quality in urban
distribution [60,61].

Regarding urban mobility of citizens, two main policies search for diminishing the
damage caused by externalities: (i) managing a large amount of mobility data to reach a
smart mobility paradigm, controlling the number of trips and popularizing the shared use
of vehicles by means of 5G/6G devices [62], and (ii) promoting a massive use of low envi-
ronmental impact vehicles, where the electric ones are the best candidates to be chosen [7].
In this context, Roumboutsos et al. [63] propose a methodology to evaluate the introduction
of EVs in last-mile logistics. Regarding green freight transportation, Demir et al. [64] offer
a review in which different factors of fuel consumption are analyzed. Other strategies
have been depicted by Meyer [65], who enumerates a directory of actions to decarbonize
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freight transportation. A conceptual discussion about the shift to EVs in last-mile logistics
is provided by Ehrler et al. [66]. These authors address a real-world case in Germany
for distributing groceries within an e-commerce context. Mathematical models have also
been proposed to evaluate the impact of EVs in last-mile logistics. For instance, Muñoz-
Villamizar et al. [67] evaluate the implementation of EVs in urban freight transportation
networks, considering a real-world case in Colombia.

3. Estimating Remaining Driving Ranges in EVs

The battery duration of EVs is an issue that concerns both drivers and manufacturers
since their origins. Technological development and improvements in the specific energy,
specific power, service life, and safety of electric batteries are today the most influential
factors for EVs deployment. There are several types of electric batteries developed with
different materials and, therefore, with different characteristics and durability [68].

Apart from the driving range offered by batteries, charging times significantly affect
the efficiency of EVs. Due to the limited capacity of electric batteries, drivers are forced
to formulate driving strategies to optimize stored energy to the maximum, in order to
have the required range for the desired travel time [69]. The low availability of public
charging infrastructure along most planned routes is one of the main variables influencing
the adoption of EVs [70]. Moreover, the availability of charging stations varies from country
to country [71]. In the case of unmanned aerial vehicles (UAVs), their flying range has
to be carefully planned, as the vehicle’s survival might depend on it [72]. As driving
ranges show to be a limiting factor in the adoption of EVs [73], electric battery management
systems are crucial to their efficient, safe, and reliable operation. One of its main functions
is the control of voltage (safety against over-voltage and under-voltage), maximum wind
current, temperature, and battery status. Malik et al. [74] identify the main factors that
affect the range of electric batteries: gaining vehicle weight with increasing energy density,
temperature, cabin air conditioning charge, battery cooling charge, traffic conditions,
driving speed, rolling resistance, and air resistance. Several researchers are developing
function-monitoring and control strategies based on intelligent algorithms. These serve
as the basis for improving the driving ranges of electric batteries, as it is not possible
to directly probe their key microscopic physical variables [75]. Lipu et al. [76] present a
complete review on the different methods and intelligent algorithms that can be employed
to estimate the state of electric batteries. These include regression and probabilistic models,
time series analysis, deep learning, fuzzy controllers, etc.

According to Shi et al. [77], knowing the individual battery range generates a better
understanding of the environmental benefits associated with a large-scale adoption of EV
fleets. These authors develop an optimization model that identifies the minimum required
ranges of batteries at the individual level, using a real-world trip and location data for
charging stations. Their results indicate that improvements in charging infrastructure can
reduce the minimum required range of batteries. Bi et al. [78] estimate the residual range
in EVs with the radial basis function neural network. This methodology is tested with
historical data taken from operational EVs in Beijing, China. Bi et al. [79] also use real
data from EVs in Beijing. They employ a robust nonlinear regression model to predict
the remaining driving range under different conditions of temperature, state of charge,
and speed. The nonlinear effect of driving speed, acceleration, and temperature on the
energy consumption of electric batteries is also confirmed by Fetene et al. [80], who used
big data to estimate the energy consumption and driving range of EVs. Their results
reveal a 25% decrease in the driving range during winter, compared to summer, showing
that the season and the level of precipitation have a strong effect on energy consumption.
Fiori et al. [81] propose one of the most advanced models to calculate energy consumption
according to the selected route. They use a real-time global positioning system, together
with micro-simulation traffic data.

The estimation of EVs driving range is linked to many factors that make necessary to
implement complex algorithms in order to accurately estimate the energy consumption of
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electric batteries [82]. For instance, Neaimeh et al. [83] propose a linear model that uses
Dijkstra’s graph search algorithm to find the route that minimizes the energy consumption.
It aims to extend the driving range of EVs by calculating the minimum energy route to
a destination, based on the topography and traffic conditions of the road network. This
model is used in the decisions of intelligent navigation and eco-driving assistance systems
in EVs. Sautermeister et al. [84] propose driving range estimation taking into account
system uncertainties. They use a recursive algorithm with multi-model estimation to
include driving endurance parameters in the forecast. These parameters are transferred
to a hybrid power train model, which combines the standard longitudinal consumption
model with a function approximation for the dynamic driving behavior on a specific route
segment. There are also data-driven ML algorithms, which require extensive training and
validation procedures to make predictions. Petersen et al. [29] present a methodology
for the development and validation of driving range estimation algorithms based on ML
approaches. The proposed methodology takes into account the evaluation of driver-specific
and non-driver-specific performance. Zhao et al. [85] present a model that combines ML
algorithms to predict the remaining driving range. The model is trained on the relationship
between driving distance and characteristics such as cumulative engine power output,
driving patterns, and battery temperature. Its predictions perform well and have a lower
error compared to other models. Similarly, Zheng et al. [86] develop a hybrid ML model
to predict the energy consumption of EVs, considering high-dimensional multivariate
data and extracting knowledge from historical travel characteristics for other applications.
Moreover, Thorgeirsson et al. [87] harness the connection to a back-end of modern vehicles
to deploy ML-based driving range estimation software. The system allows accurate range
estimation with low latencies, thus improving the experience of EVs users.

4. Electric Vehicle Routing Problems

Different fleet alternatives can be found in the literature to reduce greenhouse gas
emissions in the VRP [88]. One of these alternatives is the use of EVs, which are character-
ized as one of the main contributing actors in green logistics [45]. For the transportation
industry, EVs represent long-term cost reductions associated with fuel and operations.
This is due to their energy efficiency, and despite their relatively low driving range before
recharging [89]. VRPs are combinatorial optimization problems that seek to design the
optimal routes for a given fleet of vehicles while satisfying customers’ demands [46]. EVs
are the cleanest possible fleet in terms of carbon dioxide emissions, which has raised the
interest of researchers and the concept of electric VRPs (E-VRPs). When solving the VRP,
the goal is to design cargo vehicle routes with minimum transportation costs in order to
distribute goods between a single depot and a set of customers. Each customer demands a
single product from the depot, where a set of capacitated homogeneous vehicles is avail-
able. Each vehicle visits a set of customers to meet their demands. Once all customers are
serviced, the vehicle returns to the central depot. The objective aims at minimizing the
distribution cost, e.g., travel distance or time-based cost, to serve all customers, without ex-
ceeding the loading capacity of the vehicles, subject to (i) each route starts and ends at the
depot, (ii) each customer must be visited only once and by exactly one vehicle, and (iii) the
total demand required by the costumers in a route does not exceed the vehicle’s capac-
ity. Figure 3 illustrates a simple E-VRP scenario, with a single depot, several customers
whose demands must be satisfied, a maximum loading capacity per vehicle, and traveling
costs between any pair of nodes. These problems are characterized by planning routes
to deal with electric commercial vehicles in the field of logistics services [45]. Their basic
constraints mainly involve the variable amount of energy remaining in the vehicle when
arriving at a customer, starting routes with full charge, the location of permitted charging
points, and the travel, charging, and service times [46].
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Figure 3. Visual representation of a basic E-VRP.

Conrad and Figliozzi [90] propose one of the first E-VRPs in the literature, where
vehicles with limited range recharge at customer locations during the route. Juan et al. [91]
introduce the VRP with multiple driving ranges inspired by the constraints of EVs and
hybrid-EVs, where the total distance traveled by each vehicle is limited and is not necessar-
ily the same for all of them. These authors propose an integer programming model, and a
multi-round heuristic based on a biased-randomized algorithm [92,93]. This algorithm gen-
erates solutions to the problem with pre-specified fleet configurations. Furthermore, their re-
sults support the hypothesis that hybrid vehicles and EVs can be used in the E-VRP without
necessarily incurring significantly high distance-based costs. Likewise, Afroditi et al. [94]
formulate a mathematical model for the E-VRP, considering the different constraints as-
sociated with the vehicle characteristics and requirements. Schneider et al. [95] develop a
solution based on a hybrid heuristic combining a VNS algorithm with a tabu search (TS)
heuristic for the E-VRP with time windows and charging stations. Schiffer and Walther [96]
solve a similar problem by integrating realistic constraints, such as partial battery charging
during routes. Their aim is to minimize route costs with the minimum distance traveled
and the lowest possible number of vehicles and charging stations.

Zhou et al. [97] summarizes the most representative articles on E-VRPs variants
and heuristic solution methods. Among the exact methods, branch-price-and-cut and
branch-and-price algorithms are highlighted. In the heuristic and metaheuristic algorithms,
the most widely implemented are savings-based heuristics together with ILS, VNS, and the
adaptive large neighborhood search (ALNS) metaheuristic frameworks and GAs. Erdelić
and Carić [98] and Asghari and Mirzapour Al-e-hashem [46] also develop an analysis of
papers up to 2018 and 2019, respectively. Erdelić and Carić [98] focus on the E-VRP and
variants associated with battery EVs, as well as the solution methods. Although Asghari
and Mirzapour Al-e-hashem [46] mostly center their work on green VRPs, they also
emphasize on E-VRPs and their variants, including a discussion on formulation, solution
methods, and applications.

Table 1 summarizes the review of recent Scopus-indexed articles addressing the E-VRP.
Within these results, it is possible to find solution proposals for the most general version
of the E-VRP, especially with approaches in the urban area. For instance, Li et al. [99]
propose a model considering time windows and solve it by employing a mixed algorithm
including ACO and GAs. Zhao and Shi [100] focus mostly on the solution method by
developing an algorithm based on ALNS to generate efficient initial solutions according to
the geographical location and time windows of the customer. It also integrates simulation
experiments to prove that the solutions reduce the logistics cost in urban distribution.
Similarly, Zhu et al. [101] propose an elitist GA for the E-VRP with time windows in which
the scheduled route initiates with a neighbor directionality. They conduct experimental
tests on a real simulated case study of a postal company. Outalha et al. [102] propose a
model with an adaptive control strategy to manage the routes. They employ timed Petri
nets to control the distribution of customers and phase transitions.
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Table 1. Classification of recent papers on the E-VRP according to the problem characteristics and the solution approach.

Authors
Problem Characteristics Solution Approach

Single
Vehicle

Multiple
Vehicles

Time
Windows

Homog.
Fleet

Heterog.
Fleet Det. Stoch. Exact Heuristic Metaheuristic Approximation Machine

Learning Simulation Hybrid

Li et al. [103] • • • ACO •
Zhang et al. [104] • • • • ALNS, VND •
Zhen et al. [105] • • • • • PSO
Keskin et al. [106] • • • • ALNS • •
Bahrami et al. [107] • • • • • •
Zhu et al. [108] • • • SSH-VNS
Kancharla and Ramadurai [109] • • • ALNS
Mao et al. [110] • • • • ACO •
Lu et al. [111] • • • IVNS
Raeesi and Zografos [112] • • • • LNS
Li et al. [113] • • • MA, SVND •
Karakatič [114] • • • GA
Li et al. [115] • • • • GA
Granada-Echeverri et al. [116] • • • ILS
Löffler et al. [117] • • • • LNS, GTS •
Lee [118] • • •
Al Theeb et al. [119] • • • •
Zhu et al. [101] • • • • GA
Lin and Zhou [120] • • • •
Taş [121] • • • •
Zhao and Li [122] • • • ACO •
Hulagu and Celikoglu [123] • • • •
Zhao et al. [124] • • • • ACO •
Outalha et al. [102] • • •
Yang et al. [125] • • • • •
Bac and Erdem [126] • • • • VNS, VND
Yu et al. [127] • • • ALNS
Li et al. [128] • • • • • •
Yindong et al. [129] • • • • EDA-LF
Basso et al. [130] • • • • •
Jia et al. [131] • • • BACO
Wang et al. [132] • • • MA
Deng et al. [133] • • • • • IDE •
Ham and Park [134] • • • • • •
Florio et al. [135] • • • • •
Park and Jin [136] • • • •
Ferro et al. [137] • • • • • •
Zhao and Shi [100] • • • • ALNS •
Ge et al. [138] • • • • TS •
Wang et al. [139] • • • • VNS
Li et al. [99] • • • ACO, GA •
Keskin and Çatay [140] • • • • • ALNS
Verma [141] • • • • • • GA
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The most recent E-VRPs consider different real-life decision variables related to
recharging costs, heterogeneous fleet, and the degradation or extension of the battery’s
lifetime. For instance, Li et al. [128] solve the E-VRP with time windows and mixed fleet
by decomposing it according to the Dantzig–Wolfe principle. They also propose both a
heuristic and a GA to give an initial solution. Then, the branch-and-price algorithm is used
to find the optimal solution. Regarding battery charging management, it is observed that
partial or full charging of EVs turns out to be a key differentiation between the best known
variants of the problem. Therefore, an E-VRP with time windows and a single recharge is
formulated by Löffler et al. [117]. Similarly, an E-VRP with time windows, heterogeneous
fleet, and partial charging is solved employing heuristics based on the VNS and the variable
neighborhood descent (VND) algorithms [126]. The E-VRP considering realistic energy
consumption with partial charging is addressed by Yu et al. [127], who propose an ALNS
as the solution method. A time-dependent E-VRP with chance-constraints and partial
recharging is tackled by Basso et al. [130] through a probabilistic Bayesian ML approach to
predict the energy consumption.

Some recent formulations consider the discharge process as well. For instance,
Karakatič [114] proposes an E-VRP with nonlinear charging and load-dependent discharg-
ing. Likewise, Zhao and Lu [142] solve a real-life E-VRP with the objective of reducing
costs. These authors use a heuristic based on an ALNS framework and integer program-
ming. Eskandarpour et al. [143] also propose a mixed integer linear programming model
to minimize the total cost and carbon dioxide emissions of the heterogeneous fleet VRP
with multiple loading capacities and driving ranges. They use an enhanced multidirec-
tional local search to approximate the Pareto frontier. Recently, Hatami et al. [144] develop
a multi-round iterated greedy metaheuristic to solve a similar problem. These authors
provide an efficient solution with different combinations of vehicles in the network and
environmental sustainability levels. A comprehensive review of the main variants of the
E-VRP with heterogeneous fleet is provided by Hiermann et al. [145].

4.1. E-VRPs Focusing on Battery Recharge

Battery management and recharge-oriented models include different variables that
are increasingly adapted to the real constraints faced by commercial EVs. Mao et al. [110]
propose a hybrid solution combining an ACO algorithm with insertion heuristics and a
local search for solving an E-VRP with time windows and considering multiple recharging
options. Other variants of the E-VRP include decisions associated with portable charging.
Raeesi and Zografos [112] study an on-road charging alternative using two stages. The first
stage is for the EVs visiting the customer. The second is for electric vans that require to
exchange the depleted battery with a fully charged one. The problem is solved by a two-
stage hybridization of a dynamic programming algorithm and an integer programming
algorithm. The proposed solutions are then enhanced by using a large neighborhood
search (LNS) algorithm. Park and Jin [136] model and apply an E-VRP with heterogeneous
vehicles and partial charge. They consider different characteristics of vehicles, such as
loading capacities, battery capacities, energy consumption rates, and charging speeds.
Lee [118] propose a model that considers nonlinear charging times. This model is solved
by the branch-and-price method in the extended charging station network.

In addition, Deng et al. [133] propose a more general version of an E-VRP wit time
windows and nonlinear loading constraints. This problem is solved employing a hybrid
approach that combines an improved differential evolution algorithm and different heuris-
tics. Keskin and Çatay [140] have studied an E-VRP with time-windows, in which partial
recharging is allowed and may take place at any battery level. Two cases that benefit from
partial recharging, for instance, occur when vehicles visit a station near the end of its route,
or when two consecutive recharges are possible, where the full recharging may not be
needed. To solve this problem, the authors formulated the problem as a 0–1 MILP and
proposed an ALNS to solve it. As a result, the routes could be significantly improved
when partial recharging is allowed, even at a predetermined constant level. Similarly,
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Verma [141] have addressed an E-VRPTW. In their case, apart from serving as a recharging
station, each station support battery swaps. Therefore, the visiting of an EV to a station can
either choose a battery swap or recharge the vehicle battery to its full capacity. To solve
this problem, a local search routine combined with GA and improvement heuristics were
proposed. They concluded that battery swapping is more efficient in case the swapping
time and battery swapping cost are small.

Some recent publications also present E-VRPs variants that consider stochastic vari-
ables associated with more realistic scenarios. For instance, Zhang et al. [104] propose a
fuzzy E-VRP with time windows and charging stations. Here, uncertainty is modeled by
fuzzy simulated numbers for service times, battery energy consumption, and travel times.
They also allow partial charging. This creates an initial scenario, from which additional
random values are generated. An integrated algorithm, combining an ALNS with a VND,
is used as solving approach. Zhao et al. [124] and Zhao and Li [122] propose E-VRPs with
time-varying traffic conditions. The goal is to plan the routing of fresh products in the
urban cold chain, which is affected by the road type, customer time-windows requirements,
freshness of products, and in-route loading queues. An ACO algorithm is used to solve this
problem. The results are tested using simulation, showing how this optimization approach
allows EVs to effectively avoid traffic congestion during the distribution process, reduce
the total distribution cost, and improve the overall performance of the system.

According to Florio et al. [135], EVs route planning must always consider their rela-
tively short autonomy and the effects of traffic congestion on battery consumption. There-
fore, they propose a new methodology that serves as a framework for optimization al-
gorithms to solve the E-VRP with stochastic and time-dependent travel times without
allowing battery recharging along the way. Granada-Echeverri et al. [116] introduce the
E-VRP with backhauls. Furthermore, Yang et al. [125] propose an E-VRP with mixed
backward, time windows, and recharge strategies. In order to solve the problem, they
decompose it and use the time-dependent forward dynamic programming algorithm to
solve it. Similarly, Keskin et al. [106] extend the E-VRP with time windows by consider-
ing stochastic waiting times at refueling stations, as these cause disruptions in logistics
operations. They employ a two-stage simulation-based heuristic. Initially, waiting times
are estimated, while the actual times are simulated and the route is readjusted within the
algorithm. This approach provides good-quality solutions, and the uncertainty in waiting
times has a positive impact on the routes design.

In E-VRPs with long distances, heuristic approaches are proposed to compute routing
and charging point options in heterogeneous networks, as well as the charge level and
speeds that optimize them in time. For instance, Cussigh et al. [146] show real-time
applicability by providing near-optimal strategies in short computing times. More extensive
works, such as that of Desaulniers et al. [147], consider four different variants of E-VRPs
with time windows: (i) maximum single full-battery recharge per route, (ii) multiple
full-battery recharges per route, (iii) maximum single-battery recharge per route as well
as possible partial battery recharges, and (iv) multiple partial recharges. They use exact
branch-price-and-cut algorithms based on customized one-way and two-way labeling
algorithms that generate feasible routes. Their results show that multiple and partial
recharges help to reduce routing costs and the number of employed vehicles. E-VRPs are
also used with the objective of finding an optimal and adaptive routing and charging policy.
Taş [121] proposes an E-VRP with flexible time windows, in which vehicles can serve
customers before and after the time windows limits. This model is solved by a column
generation algorithm. Regarding the policies for charging stations, the approach developed
by Sweda et al. [148] considers them as the nodes in the network with a certain probability
of being available. Froger et al. [149] propose an E-VRP with a nonlinear charging function,
considering the limit of available charges of stations as a constraint. They solve it with a
route-first-assembly-second metaheuristic. Montoya et al. [150] also solve this problem with
a hybrid metaheuristic that combines an ILS and a concentration heuristic. Their results
allow them to state that the battery charge level is a nonlinear function of the charging
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time, and not considering it generates unfeasible and costly solutions. Kancharla and
Ramadurai [109] propose a more realistic extension by taking into account load-dependent
discharge and nonlinear charging in the E-VRP. They assume that the heaviest load should
be delivered first, thus extending the battery charge duration. They use a modified ALNS
algorithm with removal and insertion operators. Recently, Lin and Zhou [120] investigate
the effects of different factors (service area, number of customers, battery capacity, number
of charging stations, vehicle capacity, and charging rate) on electric trucks. They use a local
search heuristic to solve this problem, which is modeled as a single-depot green E-VRP
including both pickup and delivery actions.

4.2. E-VRPs Focusing on Customers’ Demands

Customers’ demands also play an important role in terms of stochasticity and dy-
namism within the E-VRP formulation. For instance, Ge et al. [138] propose an E-VRP
with stochastic demands and proactive corrective measures. They develop a model with
probability constraints that is solved by a hybrid heuristic algorithm combining a sparing
method and an improved TS algorithm. Similarly, in the context of delivering products
directly from the manufacturing plant to the end customers, Al Theeb et al. [119] propose
a constructive heuristic and an exact method for the E-VRP. Their objectives are both
ensuring routes optimality and customer satisfaction. The results of both solution methods
are competitive in terms of computational times and quality. Given the complexity of
considering both customers’ demands and EVs charging, Jia et al. [131] develop an E-VRP
with capacity constraints that is solved in two stages. In the first stage, they do not consider
EVs charging and prioritize customer satisfaction using an ACO algorithm. In the second
stage, they design a heuristic that satisfies the electrical requirements of the grid. In passen-
ger transportation E-VRPs, Hulagu and Celikoglu [123] consider explicitly intermediate
nodes, as well as time-varying passengers’ demands at bus stops, vehicle dynamics, bat-
tery characteristics, and recharging times. Wang et al. [132] propose a dynamic E-VRP in
which the customers’ demands may change over time. They propose an adaptive memetic
(AM) algorithm to solve this problem, in which they use an evolutionary algorithm to
obtain efficient solutions. The authors of [108] propose an E-VRP which considers multiple
depots with capacity constraints, and where the customers’ demands are composed of
two-dimensional weighted items. This problem is solved by a hybrid metaheuristic that
combines a VNS algorithm and the space-saving heuristic.

4.3. E-VRPs Focusing on Carbon Emissions and Hybrid Fleets

Minimization of CO2 emissions has also been a topic of interest in several E-VRP
articles. For instance, Li et al. [103] include the environmental cost related to carbon taxes in
the objective function. These authors optimize the model by employing an ACO algorithm.
They also perform simulations considering different realistic scenarios, where electricity
prices vary over time and carbon prices are taken into account. Zero-emission technologies
have also been employed in multi-echelon distribution systems. In the same direction,
Li et al. [115] study a variant of the E-VRP that considers constraint on both battery life
and battery swapping stations. They use an adaptive GA based on scaling optimization
and neighborhood search to optimize energy costs as well as travel times. Computational
results indicate that optimal management of energy consumption and travel times reduce
both carbon emissions and total logistics delivery costs. A novel formulation for a two-
echelon capacitated E-VRP with time windows and partial recharging is proposed by
Caggiani et al. [151]. In this system, while electric vans are employed for delivering goods
from the depot to satellites, electric cargo bikes are utilized in the last-mile delivery. A set
of dummy stations is available, and several visits are allowed at each recharging station.
The problem is formulated as a mixed-integer linear programming model and solved with
the commercial CPLEX solver.

Hybrid fleets of vehicles are an intermediate point in the transition to fully sustain-
able fleets for some transportation sectors. They have the ability to switch between the



Energies 2021, 14, 5131 12 of 30

use of fossil fuels and electric power. For this reason, several E-VRPs also focus on the
combination of gasoline and electric powered vehicles. Therefore, Zhen et al. [105] use a
PSO algorithm to minimize energy consumption in hybrid fleets of vehicles. In a similar
way, Bahrami et al. [107] propose a model that manages the utilization of different energy
sources. This model is solved through an exact branch-and-price method and a heuristic
routing-first-distribution-later algorithm. Li et al. [113] also addresses a similar problem by
combining a memetic algorithm with a VND.

5. Electric Arc Routing Problems

The electric arc routing problem (E-ARP) is a variation of the classic ARP in which
electric vehicles are employed to perform the routes. The classic ARP is defined on an
undirected graph, in which a subset of edges (requesting edges) has a positive demand
that must be satisfied by a set of capacitated homogeneous vehicles. The rest of the edges
(traversing edges) are assumed to have a null demand, thus visiting these edges is not
mandatory, but they can be freely traversed by the available vehicles. Figure 4 shows a
simple example of an E-ARP with these characteristics. Therefore, the E-ARP consists in
designing a set of routes that satisfy the demands of all requesting edges, with the objective
of minimizing total costs. These costs can be defined in terms of expenses, traveled distance,
or time. Each route is traversed by only one capacitated electric vehicle that departs and
returns to the same single depot. This return can be performed either using the same
edges employed in the outward journey or different ones. The sum of the demands of
all requesting edges in each route must not exceed the capacity of the assigned vehicle.
Each edge with positive demand is serviced exactly once. Additionally, electric vehicles
have a limited driving range—usually measured in terms of time or distance—that must
be respected.

Figure 4. Visual representation of a basic E-ARP.

Most articles on the E-ARP refer to the employment of unmanned aerial vehicles
(UAVs), also known as drones, in multiple applications. One paper that does not consider
UAVs is the one by Yurtseven and Gökçe [152]. This paper uses mixed integer programming
to model an ARP related to the use of electric-powered street sweepers. The goal is to
minimize the energy consumption of vehicles. Multiple sets of small instances, based on a
real case in the city of Izmir (Turkey), are solved optimally. Different levels of demands
and time windows are analyzed. Table 2 classifies recent E-ARP articles according to
the following dimensions: (i) the characteristics of the addressed problem and (ii) the
solving approach employed. Regarding the first dimension, the analyzed papers can
consider either one or multiple periods to design the routes. All available vehicles can
either have the same capacity (homogeneous fleet) or different capacity (heterogeneous
fleet). Additionally, the parameters and variables can either be uncertain (stochastic
problem) or not (deterministic problem). Only Yurtseven and Gökçe [152] consider time
windows. Regarding the second dimension, pure exact and heuristic approaches are the
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most used methods, with the exception of Campbell et al. [153], who employ a combined
matheuristic approach.

Table 2. Classification of the revised E-ARP papers according to the problem characteristics and the solution approach.

Authors
Problem Characteristics Solution Approach

Single
Period

Multiple
Periods

Time
Windows

Homog.
Fleet

Heterog.
Fleet Det. Stoch. Exact

Method Heuristic Matheuristic

Yurtseven and Gökçe [152] • • • • •
Campbell et al. [153] • • • • •
Campbell et al. [154] • • • •
Chow [155] • • • •
Li et al. [156] • • • • •
Liu et al. [157] • • • •
Luo et al. [158] • • • •

Poikonen and Campbell [159] highlight that UAVs not only can be used in scenarios
where they show advantages over other alternatives, but also that their flying capabilities
enable their use in completely new applications. Poikonen and Campbell [159] outline
some application areas of drone routing, such as goods delivery, surveillance, agriculture,
healthcare, and infrastructure inspection (e.g., inspection of power lines, pipelines, and rail-
roads). Additionally, Campbell et al. [154] cite applications in traffic monitoring, as well as
others regarding three-dimensional arc routing problems, such as the inspection of wind
turbines and undersea infrastructure.

In general, UAVs can be powered by either fuel or batteries. Despite the utilization of
fuel is explicit in this research, cost and capacity parameters can be easily extended to the
battery-powered case. For instance, the vehicle fuel capacity affects the drone flight time in
a similar manner as a battery endurance does. Donateo et al. [160] perform a comparison
between a hydrogen fuel cell and different types of lithium batteries, in terms of the UAV
endurance. Their experiments show a superiority in performance of batteries over fuel.
However, Fotouhi et al. [161] state that employing drones powered by gasoline allows for
longer flight times. Different drone characteristics are analyzed by these authors as well as
Mozaffari et al. [162].

UAVs can directly travel from a vertex to any other vertex, without the limitations
of existing roads. This characteristics is analyzed by Campbell et al. [154], who study a
set of drone ARPs. Additionally, UAVs may start and end the service of an edge at any
point. For instance, the UAV can initially serve a part of the edge, then serve another edge,
and finally return to the first edge to serve the rest of it. This assumption makes the drone
ARP a continuous optimization problem. Therefore, authors approximate the edges as
polygonal chains in order to solve a discrete optimization problem. The opportunity of
employing approximate methods, such as metaheuristics for deterministic E-ARPs [163]
and simheuristics for stochastic E-ARPs [164], remains open for future research. Campbell
et al. [154] study a set of randomly generated instances, where a single drone with unlimited
driving range is consider. Then, a more realistic case is analyzed by assuming limited
riving ranges. This forces to employ a fleet of drones. The discussion about the latter
case is extended in Campbell et al. [153]. The edges approximation through polygonal
chains is also considered. Two methods are proposed to solve this problem. First, a mixed-
integer linear model is formulated and solved through a branch-and-cut algorithm. Second,
a matheuristic based on splitting edges, local search, and optimization procedures is
proposed.

Real-world cases considering drone E-ARPs have also been studied. For instance,
Li et al. [156] address a traffic monitoring problem in Shanghai (China). They formulate
a mixed integer programming model that combines the ARP and the inventory routing
problem. The inventory consideration is useful to study dynamically traffic monitoring.
In this problem, taking into account multiple periods becomes relevant, as the service level
demand of each arc in each period depends strongly on previous periods’ events, e.g., a
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traffic accident. Given the limited battery capacity, a set of UAVs is necessary to perform
efficiently the monitoring tasks. A local branching-based heuristic is proposed to solve
the problem.

Designed routes can be traveled as well by employing simultaneously a ground
vehicle and a drone, so that the UAV covers larger areas. In this case, the ground vehicle
transports the drone to a known location, where the drone is launched to perform the
scheduled task along the edges. Later, the ground vehicle retrieves the drone in a different
point of the network to recharge or replace its battery before re-launching it. This process
is repeated until the demand of all edges in the network has been met. A procedure with
these characteristics requires a double-layer routing problem, i.e., each vehicle travels using
its own network, and both networks have common nodes to perform the battery recharging
task. The ground vehicle travels using existing roads according to a traditional routing
problem, while the UAV travels following power lines, pipelines, streets, or any other
element requiring attention. For instance, a two-layer E-ARP for the inspection of high-
voltage power transmission lines is proposed by Liu et al. [157]. The inspection system is
composed of a ground vehicle and a drone equipped with airborne sensors. Two heuristics
based on cluster-first-route-second, route-first-split-second, and local search procedures
are proposed to solve the problem. A similar problem is tackled by Luo et al. [158], who
study traffic patrolling activities with drones in urban areas. This problem is modeled as a
double-layer E-ARP, as the drone is transported by a patrol vehicle, which also perform
mission visits. Therefore, the vehicle retrieves the drone before its battery is depleted. A
mixed integer programming model is proposed, and a two-stage heuristic algorithm is
designed to solve the problem. A set of benchmark instances and a real-world case in the
city of Hefei (China) are employed to test the algorithm performance.

6. Electric Team Orienteering Problems

Unlike VRPs, visiting all customers in a TOP is not mandatory. Frequent situations in
which this particularity lies occurs due to the restrictions on the fleet size and the maximum
length that any route can cover. In a typical TOP, each customer offers a reward to be
collected, which is gathered the first time it is visited. In this way, solving the TOP aims
at maximizing the total reward gathered by a fixed fleet of vehicles when visiting a set of
customers. In other words, vehicles depart from an origin node (start depot), visit a set
of customers, and move towards the destination node (end depot). Differently from the
VRP, cargo constraints are usually not considered in the basic version of the TOP. In the
case of employing EVs, the operation of each route is constrained due to their limited
driving range. As a consequence, it is typically the case that not all customers can be visited.
Figure 5 shows a representation of a basic electric team orienteering problem (E-TOP),
with an origin depot, a destination depot, a distance or time threshold per route, some
customers who are visited to collect the associated rewards, and some other customers
who are skipped due to the fleet and time/distance limitations.

The TOP was first introduced in the literature by Chao et al. [165]. The use of UAVs
in cargo transportation by parcel delivery companies has gained attention over the years,
and consequently, this new mode of transportation has been also employed in TOP systems.
Apart from being restricted in load capacity, UAVs are also limited by the driving range
due to the use of batteries. Particularly, the latter requires efficient planning operation
for such vehicles, as undesirable and usually expensive route failures can occur [166].
Consequently, new challenges have arisen, such as additional decisions about where and
when to recharge the batteries, which is not only related to the use of UAVs but also with
every type of EV [167].
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Figure 5. Visual representation of a basic E-TOP.

6.1. Orienteering Problems with Multiple Vehicles

UAVs have been primarily used in military missions, where their use goes from goods
delivery (e.g., weapons) to surveillance (e.g., to gather intelligence). In the latter, UAVs are
equipped with sensors for gathering intelligence information from a set of known targets.
Mufalli et al. [168] address a TOP to optimally assign sensors to UAVs and route them
through a target field to maximize intelligence gain. A single base (the depot) is available,
from where the UAVs must depart, survey a set of targets, and return to. The travel
time is limited by the driving range of the UAVs. The authors have considered that,
by collecting sensors, the driving range of the UAVs is reduced by the weight which has
been added. To solve this simultaneous sensor selection and UAVs routing, the authors
propose both an exact mathematical programming model and three local search-based
heuristics. The model is solved using the CPLEX commercial solver. However, it is limited
to solve small-sized missions. Larger missions are solved employing heuristics, which are
enhanced by column generation.

Apart from using UAVs for surveillance purposes in TOP systems, these vehicles have
been also considered in the context of smart cities. In this case, UAVs aim at delivering
goods in a space that is shared by different types of operations, vehicles, and users. Reyes-
Rubiano et al. [166] studied a TOP in which a set of UAVs must visit a series of customers
without violating a driving-range constraint. In their case, the rewarding quantity implied
that visiting a customer is modeled as a random variable, which results in a stochastic TOP.
Moreover, instead of considering a fixed service time when visiting each customer, this
time depends on the collected reward, i.e., a higher reward is more likely to require more
time to perform the collection. Consequently, feasibility issues can occur as more time than
estimated for the battery might be necessary for completing the routes. A simheuristic
algorithm [19] is proposed to cope with this problem. In conclusion, they assert that
solutions for the deterministic TOP should not be used in the stochastic version, since
they become suboptimal under uncertainty scenarios. Likewise, Panadero et al. [169] have
studied a stochastic TOP, in which the uncertainty not only refers to the collected reward,
but also to the adoption of random travel times. Although travel times in real-life are
completely stochastic due to externalities that vary from traffic to weather conditions,
the deterministic versions of TOP are still the most studied in the literature. Hence,
by considering stochastic travel times in their model, the authors provide decision-makers
with additional information regarding the probability of UAVs violating the driving range
threshold due to unexpected events, thus avoiding the collected rewards from being lost
because of route failures. A simheuristic algorithm is proposed to solve this problem.
In their case, a VNS is combined with Monte Carlo simulation. The solutions returned by
the simheuristic approach offer better and more reliable performance under the presence
of uncertainty.



Energies 2021, 14, 5131 16 of 30

In Juan et al. [170], the dynamic conditions of smart city environments are jointly
addressed in a TOP system. Therefore, dealing with them requires the solving methodology
to be able to react to these changes in real-time. In order to solve the TOP and provide solu-
tions in real-time, an “agile optimization” strategy is proposed, which combines a biased-
randomized version of a fast constructive heuristic with parallel computing [171,172].
On average, the optimal solution was found for the majority of instances in less than one
second. Bayliss et al. [16] propose a learnheuristic to solve the TOP, in which travel times
between targets are realistic by considering associated physical constraints, such as air
resistance, scent angle, gravity, and speed reduction caused by turning. This learnheuristic
combines the use of a metaheuristic with ML, being the latter mainly responsible for pre-
dicting these realistic travel times [173]. Similarly, Saeedvand et al. [174] propose a hybrid
solution method that combines an evolutionary multi-objective approach with a learning
algorithm to solve a TOP with time windows for rescue operations. In this case, the fleet
is composed of humanoid robots which aim at optimizing five different objectives: task
rewards, task completion time, total energy, maximum energy consumption for a single
robot, and missed deadline penalties. Each robot serves a route by performing a set of
tasks, which generates a profit whenever a task is visited within its time window. Similar
to previous examples, the energy of each robot is limited, which implies that the allocated
tasks must be concluded before it is over. They address both static and dynamic environ-
ments, in which the static scenario is very optimistic as the nature of rescue applications is
completely dynamic. In this way, the learning algorithm aims at updating robots’ plans to
make proper online fast decisions in the global perspective.

A different application of EVs in TOP systems is presented by Xu et al. [175]. Here,
energy-critical sensors are geographically distributed, and they need to be charged by
mobile chargers. These mobile chargers have pre-defined limited energy capacities, which
may not be enough to charge all the sensors, thus limiting the visiting of all sensors from
the network. Apart from considering the edge-travel cost, an additional cost is set to each
node as the mobile charger also consumes energy when charging a sensor. Different vehicle
types are considered, which depends on their battery and, consequently, their flying range.
Moreover, a sensor can be visited by different vehicles, then incurring less marginal profit.
To solve the problem, an approximation algorithm is proposed, which is subsequently
enhanced to cope with the case in which the vehicles are of the same type.

Recently, a concurrent multi-threaded branch-and-price algorithm with acceleration
schemes was proposed by Sundar and Sanjeevi [176] to solve a TOP. In this case, fixed-wing
drones were considered, whose employment brought additional constraints to the problem.
Among them, kinematic constraints that prevent them from making on-the-spot turns, then
restricting to a minimum turn radius. For this reason, the assumption that the minimum
distance between two points is equal to the Euclidean distance is invalidated. In turn,
the minimum distance becomes dependent on both the angle of departure and angle
of arrival, whose information becomes part of the decision-making process. Branching
techniques are proposed to cope with these constraints. The authors have tested their
approach on instances composed of up to 65 targets, with a maximum running time of
one hour. The approach was able to find optimal solutions for most problem instances.
However, the use of exact approaches, such as those proposed in this study, limits finding
solutions in real-time, which is a requirement in many dynamic systems.

6.2. Orienteering Problems with a Single Vehicle

The single-vehicle orienteering problem (OP) has been used as a basis for different
problems, such as the tourist trip design problem [177]. In this case, tourists must select,
from a set of points of interest, the most important attractions they desire to visit [178].
When considering EVs as part of this trip planning process, the limitation of the driving
range of batteries should be taken into account in order to allow tourists to continue their
trip without incurring in long waiting times. A seminal study that addresses EVs in OPs
is presented by Lee and Park [179]. In their case, the OP is modeled as a tour planning
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service, in which a maximal number of spots are selected to be visited. To solve this OP,
a GA is proposed. The waiting time denotes the time interval in which the tourists wait
for their vehicles to be charged without doing anything. They assume that every spot has
a charging facility. As expected, employing EVs in these systems is limited not only by
their battery capacity, but also by the existence of charging stations. From the experiments,
the authors conclude that 95% of the selected spots could be visited without generating
waiting times for tourists. A tour recommendation scheme for EVs is also proposed by
Lee et al. [180]. Their goal is to minimize the time waste induced by long charging times.
Differently from the previous work, this system combines the traveling salesman problem
and the OP. While the spot selected by the tourists should be included in the final tour
plan, the recommendable places do not need to be mandatorily included. Similar to Lee
and Park [179], a GA is proposed to solve this rich OP, which was able to reduce waiting
times in up to 67%.

Wang et al. [181] consider an EV tour planning with time windows. These authors
introduce EV recharging logic constraints, which allow them to obtain the battery’s state
at each node. Consequently, they can check whether the next part of the trip is feasible
or not. Heuristic-based approaches are proposed to solve this problem by considering
problem reduction techniques. Each reduced problem is solved by an exact algorithm by
simultaneously examining the score of a location and the time to reach it. The heuristics
were tested on the road network of Penghu Island (Taiwan). Another EV tour planning
with time windows has been studied by Chen et al. [182] in order to maximize profitability
and minimize energy anxiety within a planning horizon. Range anxiety of drivers is known
as one of the main barriers to promote the use of EVs. In contrast to Lee and Park [179],
in this work recharging nodes are not simultaneously attraction nodes. They consider
both the full- and partial-recharge policies. To solve this challenge, they formulated it
as a bi-objective nonlinear programming model and solved it with an interactive branch-
and-bound algorithm based on non-dominance sets. The proposed approach was able
to obtain optimal solutions for different recharging policies. A multi-stage tourist trip
design problem is addressed in Karbowska-Chilinska and Chociej [178]. Unlike previous
works, this study considers a tour that is composed of more than one connected trip, i.e., a
multi-stage strategy. Therefore, it is possible to consider this set of connected trips as a
“team” of trips, which leads to a TOP. The vehicles are assumed to start the trips with fully
charged batteries. To solve this problem, the authors also propose a GA that was tested
on a realistic database composed of 303 nodes and 21 charging stations, in the Poland
Silesian region. When compared with a greedy approach, the GA was able to generate
more attractive routes to tourists in shorter execution times.

Similar to the study presented by Mufalli et al. [168] in the context of surveillance
operations, Pěnička et al. [183] analyze an OP employing a drone for data collection
missions. This variant considers that the data (i.e., the reward) may be collected from a
close neighborhood sensing distance around the target locations. A VNS metaheuristic is
proposed to solve this problem.

Table 3 summarizes the revised papers. These works were classified according to the
following characteristics: the consideration of either single or multiple vehicles in the fleet,
the inclusion of time windows for visiting corresponding locations, the employment of
either homogeneous or heterogeneous fleet of vehicles, and the problem formulation as de-
terministic or stochastic. Regarding the proposed solution approaches, they are categorized
into exact methods, heuristics, metaheuristics, approximation methods, ML, simulation,
and hybrid approaches. As we can see, only a few studies in the literature address the
stochastic variant of the TOP with EVs. Regarding the solving approaches proposed to
cope with these problems, most studies make use of heuristics and metaheuristics methods.
For the latter, we highlight the use of evolutionary algorithms, as well as VNS and MS
approaches. Some hybrid methodologies have been also proposed, e.g., simheuristics [169]
and learnheuristics [16].
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Table 3. Classification of the revised E-TOP papers according to the problem characteristics and the solution approach.

Authors

Problem Characteristics Solution Approach

Single
Vehicle

Multiple
Vehicles

Time
Windows

Homog.
Fleet

Heterog.
Fleet Det. Stoch. Exact Heuristic Metaheuristic Approximation Machine

Learning Simulation Hybrid

Mufalli et al. [168] • • • • • •
Reyes-Rubiano et al. [166] • • • BRMS • •
Panadero et al. [169] • • • VNS • •
Xu et al. [175] • • • •
Juan et al. [170] • • • •
Bayliss et al. [16] • • • BRMS • •
Saeedvand et al. [174] • • • • NSGA • •
Sundar and Sanjeevi [176] • • • •
Lee and Park [179] • • • GA
Lee et al. [180] • • • GA
Wang et al. [181] • • • • • • •
Pěnička et al. [183] • • • VNS
Chen et al. [182] • • • • •
Karbowska-Chilinska and
Chociej [178]

• • • GA
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With the emergence of sustainable transportation practices, the employment of EVs in
OPs and TOPs has resulted in many operational challenges. Most of the aforementioned
studies consider the driving range limitations imposed by the use of electric batteries. In the
case of UAVs, one should consider the impact of the load weight on the driving range.
As pointed out by Wang et al. [181], the future development of EVs depends not only on
increasing the vehicle range and speed, but also on improving their recharging efficiency.

7. Some Numerical Examples

This section describes three numerical examples that illustrate the concepts discussed
in the previous sections. The first two analyses make use of data extracted from previous
works on these topics, while the last one relies on completely new experiments.

The first experiment is based on data provided by Eskandarpour et al. [143] and
Hatami et al. [144]. Our analysis aims at investigating the expected environmental impact—in
terms of the saved amount of CO2 emissions—when combining three different types of
vehicles: small-sized (S) EVs, medium-sized (M) hybrid vehicles, and large-sized (L) com-
bustion engine vehicles. Figure 6 depicts how the environmental impact reacts according
to the changes in the type of vehicles that composes the fleet. Each set of three points
(vertically) represents the results obtained for a single instance in terms of both the en-
vironmental impact and the distribution of the vehicle types in the corresponding fleet.
Therefore, each point represents the percentage of its type of vehicle for a given environ-
mental impact. For example, for the problem instance with an environmental impact of
53, we require a fleet with 84% of large vehicles, 3% of medium vehicles, and 14% of small
vehicles. When analyzing Figure 6, we can notice how the use of EVs has an impact on the
environmental aspect of these transportation systems. We can analyze both extreme cases,
in which the environmental impact goes from 53 to 88. The lowest case addresses the use of
only 14% of the fleet to EVs. Consequently, this solution does not provide efficient planning
operations in terms of environmental cost. On the contrary, the last solution employs 49%
of EVs in its fleet, which results in a greener solution. Regarding the remaining data, it can
be seen through the trend line that the higher the number of EVs employed, the higher the
achieved environmental impact, and vice versa.
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Figure 6. The expected environmental impact according to the percentage usage of each vehicle type
of the fleet.
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Figure 7 displays the trade-off between the economical and environmental aspects of
two different VRP solutions. For each solution, four different fleet schemes are represented
by the 3-tuple (S, M, L), which addresses the percentage of small-, medium-, and large-sized
EVs, respectively, in these solutions. Noticeably, the solutions with higher environmental
impact require a higher operating cost, due to the use of more EVs (e.g., solutions with
79% or 42% usage of EVs). In contrast, solutions with cheaper costs employ larger vehicles,
which also implies higher environmental costs (e.g., solutions from 83% of large vehicles).
Therefore, considering a balance between the fleet size is a key factor in order to ensure
both economical and environmental efficiency of these fleets.
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Figure 7. Trade-off between environmental and economical costs.

Our second experiment is based on data provided in three studies concerning the E-
TOP: Panadero et al. [169], Pěnička et al. [183], and Karbowska-Chilinska and Chociej [178].
The decision on selecting these specific articles is based on the fact that they provide similar
driving range of the electric vehicles (i.e., the capacity of the batteries employed), as well
as similar collected rewards, which are sometimes defined as profits. Although the former
addresses a stochastic TOP, the solutions for both the deterministic and the stochastic
variants are discussed. In this way, the results regarding the deterministic problem can
be directly compared with the ones provided in the latter papers. Accordingly, Figure 8
presents a stacked bar chart with the relationship between the battery capacity and the
total collected reward.

In the case of the TOP, the quality of the solutions—in terms of accumulated reward—is
directly dependent on the employed batteries, as Figure 8 shows. This behavior is expected,
as the larger the battery capacity of a vehicle, the higher the number of locations that the ve-
hicle can feasibly visit. Consequently, it is possible to collect a higher reward amount from
them. In contrast, for vehicles with a low battery capacity, it becomes relevant to consider
in-route charging operations—which might generate idle times for drivers. For these cases,
the operational planning of the routes must be flexible and take into consideration the
number of recharging stops that must be completed in order to guarantee the effectiveness
of the operation. In the case of tour planning problems, these recharging operations directly
affect the waiting time of tourists, which results in sub-optimal solutions for them.

As our third experiment, we have generated new data inspired by a real-world case
related to the first months of the COVID-19 crisis in the city of Barcelona (Spain). A group
of volunteers offered their home 3D printers to produce items such as face shields, ear
savers, and door openers. These items should be collected in each house by a group of
volunteer drivers and transported to several consolidation centers. The details of this case
study can be found in Tordecilla et al. [184]. Up to 95 nodes (houses) should be visited in
the considered instance. This problem is addressed both as an E-TOP and as an E-VRP (if
the driving range allows to visit all nodes). Our performed experiment consists in testing
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different values of the driving range—measured in minutes—and analyzing the behavior
of the output variables reward, cost, and number of visited nodes. Figure 9 displays the
obtained results. The number of visited nodes is provided. When the driving range is 270
min or greater, all nodes are visited. Furthermore, the obtained reward and the incurred
cost are provided. Notice that the rise in both variables is steady until the limit of 95 nodes
is reached. Thus, a driving range greater than 270 min does not have any effect in the
reward, and leads to a very slight decrease in the cost.
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Figure 8. The expected reward (profit/benefit) according to the battery capacity of EVs.

Figure 9. Effect of changing the driving range over three output variables using the E-TOP and
E-VRP (if possible).

8. Conclusions

This paper has discussed the relevant role of EVs in promoting sustainable transporta-
tion activities. It also analyzes how the introduction of vehicles with electric batteries
raises new operational challenges due to the inclusion of driving range limitations, long
recharging times, scarcity of recharging/swapping stations, and a higher uncertainty on
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the remaining driving capacity. These new characteristics need to be included in different
routing optimization models when EVs are considered, but they also represent additional
issues in problems that are already difficult to solve. In particular, we review the existing
works on electric VRPs, electric ARPs, and electric TOPs, and how different authors have
been using alternative approaches to deal with these richer environments. Our review
shows that the number of scientific publications on E-ARPs and E-TOPs is much lower than
the one corresponding to E-VRPs, which also means that there are many open research
lines in the former problems.

Developing efficient algorithms to obtain near-optimal solutions is a critical step in
order to promote the generalization of EVs and sustainable transportation practices. Sus-
tainability in transportation and mobility activities can also be promoted by the adoption of
horizontal cooperation strategies, the use of telecommunication technology (e.g., Internet
of vehicles), new mobility paradigms (e.g., ride-sharing and car-sharing), and the inclusion
of externalities in the mathematical models. A series of numerical examples allow us to
illustrate how the introduction of driving range limitations can affect the quality of the
generated routing plans.

When using electric batteries, the estimation of driving ranges depends on many
factors, and several ML models have been proposed. Still, these models are diverse,
and there is not a standard framework yet. With the aim of mitigating users’ anxiety,
manufacturers of electric batteries and EVs are called to develop more sophisticated and
accurate models to better estimate the remaining driving ranges.

Recent articles show an increasing interest on integrating real-life characteristics of
transportation systems in their optimization models. These include partial recharging,
battery swapping, soft time windows, location and probabilistic availability of charging sta-
tions, horizontal cooperation strategies, backhauling practices, cost of externalities, random
traveling times and customers’ demands, traffic conditions, hybrid gas and electric fleets,
updated estimates on battery durability, etc. Therefore, simulation-optimization methods,
and simheuristics in particular, have become a first-hand tool to generate high-quality
routing plans in scenarios under uncertainty. Likewise, as the described characteristics
also describe a dynamic environment subject to varying weather or traffic conditions,
agile optimization approaches are also required in order to quickly react to changes in the
system conditions.

Some of the open research lines identified in our study are (i) the development of
statistical and ML models capable of predicting the remaining duration of the batteries
according to multiple factors (weather conditions, speed, weight of the vehicle, road and
tires condition, etc.); (ii) the proposal of techniques that complement the willingness-to-pay
method when estimating the economic cost of transportation externalities; and (iii) the con-
ception of hybrid methodologies that combine optimization algorithms (metaheuristics and
matheuristics) with simulation and ML methods, so that electric vehicle routing problems
(E-VRPs, E-ARPs, and E-TOPs) can account for dynamic and uncertainty scenarios.
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39. Bektaş, T.; Ehmke, J.F.; Psaraftis, H.N.; Puchinger, J. The role of operational research in green freight transportation. Eur. J. Oper.
Res. 2019, 274, 807–823. [CrossRef]

40. Panagakos, G. Green corridors basics. In Green Transportation Logistics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 81–121.
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