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Abstract: This article presents the results of the optimization of steam generator control systems
powered by mixtures of liquid fuels containing biofuels. The numerical model was based on the
results of experimental research of steam generator operation in an open system. The numerical
model is used to build control algorithms that improve performance, increase efficiency, reduce
fuel consumption and increase safety in the full range of operation of the steam generator and the
cogeneration system of which it is a component. In this research, the following parameters were
monitored: temperature and pressure of the circulating medium, exhaust gas temperature, oxygen
content in exhaust gas, percentage control of oil burner power. Two methods of controlling the
steam generator were proposed: the classic one, using the PID regulator, and the advanced one,
using artificial neural networks. The work shows how the model is adapted to the real system and
the impact of the control algorithms on the efficiency of the combustion process. The example is
considered for the implementation of advanced control systems in micro-, small- and medium-power
cogeneration and trigeneration systems in order to improve their final efficiency and increase the
profitability of implementation.

Keywords: renewable energy; mCHP; modelling; neural algorithms; PID controller

1. Introduction

The problem of optimal control of nonlinear multi-input multi-output (MIMO) systems
is very complex [1–4]. Currently, many academic centers and private entrepreneurs are
actively engaged in this topic [5–8]. In conventional and renewable energy, such circuits
are very common. In [9–12], challenges and problems related to the resilience of such
systems are described. The potential associated with improving the control of such systems
and methods for experimental optimization of such control are disclosed therein. In most
cases, they are based on linearizing the nonlinear model and attempting to tune various
controllers to the linearized model. In each of these examples, it is necessary to synthesize
a system of equations of the controlled object, which is often impossible or subject to
considerable error due to parametric uncertainty.

Optimal control is also an important domain when using renewable energy sources.
The basic control problems of such systems are described in [13]. With hybrid energy
harvesting sources, one has to take into account the variations in the daytime and nighttime
energy supply for the solar part. Therefore, a suitable structure is required for the controller
to respond optimally and to drive, for example, the appropriate frequency of the generated
current. In [14,15], the basic problems of inverter systems powered by photovoltaic systems
and wind energy conversion in controlled and uncontrolled system architectures are
described. They point out that in power generation, on the one hand, the load is strongly
nonlinear, but also renewable sources are characterized by large disturbances and unsteady
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operating parameters. They indicate that the use of classical immune regulators with a
current observer in the inverter can eliminate the need for additional load sensors, which
results in a reduction in the price of such systems while maintaining control quality.

The problem of regulating nonlinear multivariable systems is also observed in the
field of Building Management System (BMS) technology. The authors in [16–18] suggest
the use of hybrid controllers (PI, PD and LQR) in the load system to control the current
and voltage flow of actuators, air conditioners and external battery charger. However, they
focus most on the well observable side of the load devices and less on the nonlinear energy
supply systems.

There has been extensive research on the control of multidimensional polygenerational
systems [19–26]. These works analyze systems that integrate heat pumps and cogeneration
units with consideration of optimal control strategies. They are also devoted to the defi-
nition of operational strategies, maximizing efficiency considering, performance, battery
energy storage capacity and electricity market opportunities. They clearly indicate the
direction of control technology development in the power industry, which is crucial for the
performance of autonomous cogeneration systems.

When it comes to controlling such facilities, there are a myriad of strategies that have
their advantages and disadvantages. The simplest way to implement the control is through
the serial and parallel PID controller structures algorithms described in [27,28]. They allow
the realization of nonlinearly parameterized adaptive systems leading to coupled PID gain
adaptations and some flexibility within a narrow range of system nonlinearities.

A certain solution to the control problem of nonlinear multidimensional structures is
the use of immune controllers. In [29,30], a method is given for controlling temperature in
an office facility using a resilient PI controller algorithm in conjunction with a descriptive
function method, which proves to be applicable to some extent to eliminate oscillations
while maintaining desired HVAC system performance. Ref. [31] details a chaotic Duffing–
Holmes oscillator system in robust control for an industrial robotic manipulator. The
results demonstrate the effectiveness of the algorithm for uncertain MIMO systems with
some external interfering signals, minimal tracking error, and optimal control inputs. In
contrast, Ref. [32] gives a robust PID controller using Kharitonov’s stability theorem. The
controller design is based on a linearized model of a highly nonlinear Twin Rotor MIMO
System (TRMS). It shows that the control quality is satisfactory within a certain range of
model parameters.

A whole class of controller solutions for such systems is the use of fuzzy logic [33–38].
Fuzzy logic based controllers are so widely used because they provide a scientific methodol-
ogy to replicate the behavior of human inference for imprecise and incomplete information
in feedback. So it is a mathematical model of a control system based on heuristic human
experience. With these methods, it is not necessary to build a MIMO system model. In
addition, with appropriate setting of rules and membership functions, it is possible to
control in the full range of nonlinearity of the object. However, it should be noted that in
the construction of MIMO object controllers based on fuzzy logic, expert knowledge is
necessary each time, and the controller itself is only as good as the number of identified
and realized operating scenarios.

In the field of neural networks, neural regulators are also used [39–41]. Advanced
control of MIMO objects with the use of neural networks is mostly concerned with intelli-
gent buildings. In the case of control algorithms with a numerical model, it is necessary to
provide a good quality model representing the entire dynamics of the object. Only in this
case is it possible to guarantee satisfactory performance of smart building control.

In [42], a number of artificial neural network algorithms have been developed, opti-
mized and implemented for the prediction of the outdoor temperature, which has been
identified as a key parameter to reduce the required degree of observability of the system
and, consequently, to reduce the number of required process variable sensors.

In [43], the use of a deep Q-network (DQN) to control a MIMO system is described.
It was demonstrated that the DQN can determine the control equilibrium point between
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different energy consumers in a building, such as chillers, pumps, and air preparation sta-
tions.

This paper presents a proprietary neural controller for a MIMO facility using an actor-
critic network. The proposed neural algorithm solves the discussed problems of previously
known solutions. The research concerns the Twin-Delayed Deep Deterministic Policy
Gradient TD3PG algorithm. The TD3PG agent is an extension of the deep deterministic
policy gradient DDPG algorithm, which uses a reinforcement learning actor-critic structure
that seeks an optimal strategy that maximizes the expected cumulative long-term reward.
The use of a model-free, built-in reinforcement learning method allows the optimization
of the control system to be realized without knowledge of the multidimensional object
model. It also allows the optimum of the objective function for nonlinear objects to be
achieved. This paper presents results for a learning network. For safety reasons, learning
was performed on a numerical representation of the system, followed by final tuning using
reinforcement learning on a real object. The results were compared with control using a
classical PID controller.

2. Measurement Stand

In the system under study (Figure 1), steam is generated by a steam generator fueled
with different types of liquid fuels. The description of the components is listed in Table 1.
The fuels used in the experiment were pure fuel oil, a mixture of fuel oil and FAME
(50/50), a mixture of fuel oil and rapeseed oil (50/50). The operating parameters of the
steam generator were tested in an open system—steam outlet to the atmosphere. The
set temperature of the circulating medium (steam) at the outlet of the device was set at
130 ◦C, the temperature of the medium (water) at the inlet was at the level of the ambient
temperature, approximately 20 ◦C.

Figure 1. Schematic of a steam generator fueled with liquid fuel mixtures. The components of the
steam generator test stand are described in Table 1.
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Table 1. Description of measuring and control elements of the biomass steam generator.

Measuring and Safety Elements Executive and Control Elements

ST—temperature measurement of the
circulating medium MP—feeding pump

SP—circulating medium pressure measurement OB—liquid fuel burner

ET—flue gas temperature measurement PLC—programmable logic controller

EL—measurement of concentration of oxygen in flue gas FI—frequency inverter

FR—photoresistor CPU—computer

The working fluid flow through the evaporator-coil of a high-speed steam generator
(flow-through boiler) with an inner diameter of 26.9 mm and a nominal tube thickness of
2.8 mm was analyzed in the studied facility. The maximum constant operating parameters
of the steam generator are 191 ◦C and 12 barG. The optimum operating parameters are
185 ◦C and 10 barG; the steam output for a constant flow of circulating medium at full
burner power is 180 kg of steam per hour. The key parameters are the temperature and
pressure of the medium at the outlet of the steam generator, the oxygen content in the flue
gas and its temperature. In the studied system, a constant flow of the medium is used, and
the feed pump (PO) works at a constant speed of 70 L per hour. The controllable element is
the oil burner (PO), which consists of a liquid fuel pump and a fan coupled on a common
shaft. The fuel supply is throttled by a proportional valve, analogically controlled within
4–20 mA. This means that the speed of the fuel pump and fan will be the same, but the flows
will no longer be proportional. Note that their operating parameters at different points do
not change in a linear fashion, as the steam generator was originally designed for hysteresis
operation. Therefore, it may not be possible to control with classical adaptive controllers,
which is why it was decided to use an autoadaptive neural controller. The control of the test
plant was based on an industrial PLC, and the program was implemented using Ladder
(LD) graphical language. The burner power (PO) control was based on 0–10 V analog
signal sent from a PLC to frequency converter. The system was equipped with a number
of hardware and software protections to maximize safe operation—these conditions were
the boundary conditions necessary to model the operation and learning of the neural
network. The run tests required to achieve the above-mentioned steam generator operating
parameters, which are the input data for the simulation work, were carried out following
the same procedure for all fuel types. The tests consisted in starting the steam generator:
heating up the combustion chamber with a constant flow of circulating medium through
the coil, bringing the medium to the point of phase transition and its evaporation and
stabilization of operating parameters at a specified level, which took about 360 s. After
reaching a temperature close to 130 ◦C, which is the most important operating parameter of
the generator, the originally implemented PID controller with original settings maintained
the temperature oscillating in values close to the setpoint temperature for a period of 300 s.
This was followed by a slow extinguishing of the steam generator consisting of a burner
shutdown and cooling of the coil walls and heat extraction from the combustion chamber
through the flow of circulating medium until a safe temperature was reached at the steam
generator outlet. The goal of the research was to collect measurement data aimed at
developing an autoadaptive control algorithm in a manner that takes into account not only
the main parameter, which is the temperature of the circulating medium, but also other key
measurement signals with specific priorities and weights. Ultimately, the steam generator
could be fed with a mixture of liquid fuels based on plant products (bio-oil, bio-ethanol)
and provide a heat source in micro and small-scale cogeneration/trigeneration systems.

Based on the developed technology, a general decision diagram for a model control
system was created (Figure 2). The state machine allowed for the determination of the
interdependencies between the set parameters and measured values, which is the basis
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to start work on the base control algorithm based on PID regulators. The scheme can be
divided into four areas:

1. Ignition, which includes:

• Switching on the circulator motor, fuel valve, spark igniter and fan motor and
fuel pump (coupled on a common shaft),

• Checking the status of power, flow and burner operation.

2. Control the operating parameters of the unit which includes a set of three cooperating
PID controllers operating in parallel:

• temperature controller (based on the temperature in the steam manifold),
• Pressure controller (based on the pressure in the steam collector),
• lambda coefficient controller (based on oxygen concentration in the flue gas).

3. Software protection system, which includes a system ensuring safe operation, which
reacts to exceeding the operation-threatening parameters, and cuts off the operation
of electric motors/closes the valves from the software level when the operation-
threatening parameters have been exceeded.

4. Continuous work allowing for constant work of the system after reaching stable
parameters until:

• change of selected parameters,
• end of steam generator operation by the user,
• emergency situations.

The form of used PID controller is shown in Equation (1).

C = Kp +
Ki
s
+

Kds
Tf s + 1

(1)

where:

C—control,
Kp—proportional gain,
Ki—integral gain,
Kd—derivative gain,
Tf —derivative filter constant.

Figure 2. Decision diagram for the baseline algorithm based on a set of PID controllers.
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3. Methodology

The TD3PG agent is a reinforcement learning network agent searching for an optimal
solution that maximizes the expected value of the aggregate reward. While training the
network, the DDPG agent changes the weights for the actor and critic in each learning
iteration. However, the history of these weights is stored in the network memory. Therefore,
it can be interpreted as the experience of the actor and critic. The agent modifies the
parameters of both learning participants each time using randomly selected elements of the
experience buffer. At each stage of network training, the performance of the participants
is also intentionally perturbed by the agent with a disturbance in the form of stochastic
noise. The agent learning of the TD3PG network starts by optimizing the parameters θQk
of the critic function Qk(S, A) and the parameters θµ of the deterministic agent µ(S). The
parameters θQk′ of the critic’s future (target) function Q′k(S, A) and the parameters θµ′ of
the actor’s future (target) function µ′(S) satisfy condition (2) in the first iteration.

θQk′ = θQkθµ′ = θµ (2)

At each learning epoch, an action A is selected for the current observation S by adding
stochastic noise N to the deterministic actor function according to Equation (3)

A = µ(S) + N (3)

Following step S, the reward function R and the next observation S′ are calculated.
Both the current action A, the current and next observation (S and S′) and the calculated
reward function R are stored in the experience buffer. When a sufficiently large experience
buffer is obtained, the draw of an experience series of size M is activated in each iteration.
At the point if S′i is added, the goal function yi takes the value Ri. In any other case, yi takes
the value according to (4).

yi = Ri + γ ∗min
k

(
Q′k
(
S′i , clip

(
µ′
(
S′i |θµ

)
+ ε
)
|θQk′

))
(4)

The mechanism of the algorithm is to add the experience rewards Ri with the minimum
aggregate value of future rewards from the critter function. In addition, at each step, the loss
function Lk is minimized according to all available experience according to relation (5)

Lk =
1
M

M

∑
i=1

(
yi −Qk

(
Si, Ai|θQk

))2 (5)

At certain iteration intervals, the actor is updated using the gradient policy by com-
puting the expected return from the initial distribution J, according to relation (6).

∇θµ
J ≈ 1

M

M

∑
i=1

GaiGµi (6)

where Gai is the gradient of the minimum output of the critter function considering the
action A computed by the actor network, and Gµi is the gradient of the output of the actor
function depending on the current actor parameters θµ. Both gradients can be defined by
the relation (7)

Gai = ∇A min
k

(
Qk
(
Si, µ

(
Si|θµ

)
|θQ
))

(7)

Gµi = ∇θµ
µ
(
Si|θµ

)
At the specified iteration interval τ, the parameters of the target actor and critics are

also refreshed according to relations (8)

θQk′ = τθQk + (1− τ)θQk′ (8)
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θµ′ = τθµ + (1− τ)θµ′

The main advantage of the neural controller approach as opposed to classical differen-
tial equation models is the fact that there is no need for the actual model itself. The TD3PG
agent allows for model-free control implementation. In classical controller synthesis, it
can be difficult or impossible to identify system parameters. In the Q-learning algorithm
approach, the network is trained with the largest possible spectrum of nonlinearities, which
on the one hand makes the controller nonlinear, model-free, and also provides better control
quality over a wider range of controlled system parameters.

The A shares approved by the agent are the direct object controls. So the task of
TD3PG is to calculate the optimal controls m1, m2 for the object (CHP). A schematic of the
control system is shown in Figure 3. The signals described in this schematic are, in order:
x—setpoint; e—static deviation; m—controls; y—outputs from the object. The indexing for
the signals x, e, y are in order :1—O2 concentration in the flue gas; 2—water vapor pressure;
3—flue gas temperature; 4—water vapor temperature. Control signal m1 is responsible for
fan operation, while signal m2 for fuel flow throttling valve control.

Q-learning network description techniques are well known. The structure of the
TD3PG agent is also well known. The novelty proposed in this paper is the actor neural
network structure and the new reward function design. The reward function optimizes the
control solution with special focus on the two most important parameters for the operator.
These are steam pressure and temperature. Thus, the novelty is such a modified reward
function to determine the key state variables for the TD3PG agent.

Figure 3. Schematic of the cogenerator control system.

In order to learn the agent, a bench model was created. The identification experiment
was conducted in an open system. The control values of the supply fan and the fuel
flow throttling valve were set directly. The system response in the form of four process
variables (O2 concentration in the exhaust gas measured with a lambda probe, vapor
pressure measurement, exhaust gas temperature and vapor temperature) along with the
control signals were recorded at a frequency of 1 Hz. A parametric black box model was
created based on these measurements. This model was used for offline learning of the
TD3PG agent.

4. Results

For the controller, the structure shown in Figure 4 is used as the proposed TD3PG
agent. A vector of signal lapses (1) goes to an observation generator (2) and a reward
generating function (3). The function compares the current observation with the action
from the previous iteration computed by the actor-critic block (4). Based on the signal
vectors from the current observation (3) and the current reward function (2), the decision
block (4) derives a new current action. The action of the inference block can be terminated
at any time by block (6). After superimposing saturation on the computed action (which is
related to mapping the physical constraints of the signal magnitude), the control vector
(5) is derived.
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Figure 4. Structure of the regulator with the TD3PG agent.

The agent learning process consisted of introducing negative weights for the reward
coefficients. In this approach, the agent that suffered the least penalty will be the agent
with the best structure. Figure 5 shows the reward function in each learning iteration of the
neural network. The blue color shows the current reward of the actor, and the orange color
shows the average reward of the actor. The critic’s evaluation of the actor’s performance,
the expected value of the critic’s reward, is shown in yellow. Two aspects can be seen
in the first iterations. An inexperienced actor makes big mistakes, which results in a big
penalty (low reward), and a critic with a neutral attitude in 0 iterations evaluates the actor
increasingly poorly. From approximately 250 iterations and above, the actor’s and critic’s
rewards stabilize. The actor makes fewer mistakes because of his acquired experience,
and the critic does not greatly change his evaluation. It is worth noting that each time the
actor decreases in quality, the critic’s reward decreases, causing the actor’s performance to
improve and vice versa. However, these reactions are shifted relative to each other.

Figure 5. Learning of the TD3PG agent.

In order to evaluate the quality of the neural regulator and compare it with classical
control systems, two criteria were defined. The first was the static deviation, ei, and the second
was the integral index from the square of the deviation signal, IL, defined by Equation (9). The
importance of IL is very high, since its physical interpretation is the energy lost in the control
process. Its minimization, therefore, allows the comparison of different controls in terms of
efficiency, which is of direct importance for thermal systems in terms of control optimality.

IL =
∫ ∞

0
[ei(t)]

2dt (9)
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Figure 6a presents the regularization results for the top 15 agents in the TD3PG network.
Performance of the best 5 agents is presented in Table 2. Agent67 is the best agent. It achieves
zero lag as early as the 8th minute of operation. The other agents can respond faster, but the
negative static lag indicates that the process has overshot. For comparison, Figure 6b shows
the static deviation for a critical gain tuned controller with the Pessen algorithm. It does not
reach the setpoint until about the 25th minute without overshoot. For the cases shown in
Figure 7a,b, the energy loss difference for the system with the neural controller is 29.1%.
This illustrates the energy gain that can be achieved with the neural regulator.

(a)

(b)

Figure 6. Plot of control deviation for: (a) the best 15 neural network agents (b) PID controller.

Table 2. The improved performances of PID and different neural agents controllers.

Rising Time Settling Time Steady State Error Overshoot Undershoot

PID 440 691.67 0 0 N/A

Agent67 280 389.99 0 −2.95 N/A

Agent60 280 389.99 0 −4.24 N/A

Agent72 280 634.44 −0.00012 −5.98 N/A

Agent138 280 722.55 −0.009 −6.56 N/A

Agent130 280 894.93 −0.005 −7.35 N/A
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(a)

(b)

Figure 7. Energy Loss for (a) the best 15 neural network agents (b) the PID controller.

5. Conclusions

MIMO systems are very complicated. In order for an object to be defined as a MIMO,
there must be oblique links between the inputs and outputs of the object. Designing a
controller for a MIMO object is generally more difficult and time consuming than for a one-
dimensional object because of the significant complexity of the mathematical description.
The degree of complexity of the control problem for a MIMO object is greatly affected by
how strong the interactions are between the input and output values. The description of
the model and the synthesis of the controller require expert knowledge in each case and
often cause the controller to be under-tuned. Some of the objects also have large parametric
uncertainty or are unobservable. This paper presents the application of neural networks in
optimal control of a MIMO system in the form of a biofuel cogenerator.

A reinforcement learning neural network based on the TD3PG agent is a structured control
method in which system performance is expected to outperform the use of classical controllers.
In this paper, an actor-critic structure is used to design an optimal neural controller.

The added value of the proposed solution is as follows:

• self-optimization of object control,
• possibility of constitution of regulator operation on the basis of intuitive selection of

network rewards,
• possibility of reaching a convergent control solution without the necessity of con-

troller synthesis.

The TD3PG agent was used to control an existing cogenerator. The control quality was
compared with the existing control system based on PID controllers. The only intervention
in the reference system was the re-tuning of the PID controllers using gradient methods.
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In no case did the classical control system achieve higher control quality than the selected
TD3PG agents.

The proposed solution reaches the setpoint of the process variable faster. It should
also be noted that it reduces energy losses as early as the control stage. This is crucial
because, although not all losses can be eliminated, in process automation, they should be
minimized in the control program of the MIMO device.

Further work will investigate the robustness of the actor-critic algorithm to respond
to changes in object parameters associated with disturbance and non-stationarity and the
possibility of training or retraining the controller in on-line operations.
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Abbreviations
The following abbreviations are used in this manuscript:

MIMO Multi-Input Multi-Output
BMS Building Management System
PID Proportional–Integral–Derivative controller
LQR Linear–Quadratic Regulator
HVAC Heating, Ventilation, Air Conditioning
TRMS Twin Rotor MIMO System
DQN Deep Q-Network
DDPG Deep Deterministic Policy Gradien
TD3PG Twin-Delayed Deep Deterministic Policy Gradient
FAME Fatty Acid Methyl Esters
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20th Polish Control Conference, Łódź, Poland, 21–28 October 2020; Volume 1196.

41. Chen, Y.; Tong, Z.; Zheng, Y.; Samuelson, H.; Norford, L. Transfer learning with deep neural networks for model predictive
control of HVAC and natural ventilation in smart buildings. J. Clean. Prod. 2020, 254, 119866. [CrossRef]

42. Demirezen, G.; Fung, A.S.; Deprez, M. Development and optimization of artificial neural network algorithms for the prediction
of building specific local temperature for HVAC control. Int. J. Energy Res. 2020, 44, 8513–8531. [CrossRef]

43. Ahn, K.; Park, C. Application of deep Q-networks for model-free optimal control balancing between different HVAC systems.
Sci. Technol. Built Environ. 2020, 26, 61–74. [CrossRef]

http://dx.doi.org/10.1177/1045389X15610907
http://dx.doi.org/10.1016/0165-0114(94)00189-E
http://dx.doi.org/10.1016/j.scs.2020.102091
http://dx.doi.org/10.1016/j.jclepro.2019.119866
http://dx.doi.org/10.1002/er.5537
http://dx.doi.org/10.1080/23744731.2019.1680234

	Introduction
	Measurement Stand
	Methodology
	Results
	Conclusions
	References

