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Abstract: Global trends such as the growing share of renewable energy sources in the generation
mix, electrification, e-mobility, and the increasing number of prosumers reshape the electricity value
chain, and distribution systems are necessarily affected. These systems were planned, developed,
and operated as a passive structure for decades with low level of observability. Due to the increasing
number of system states, real time operation planning and flexibility services are the key in transition
to an active grid management. In this pathway, distribution system state estimation (DSSE) has
a great potential, but the real demonstration of this technique is in an early stage, especially on
low-voltage level. This paper focuses on the gap between theory and practice and summarizes the
limits of low-voltage DSSE implementation. The literature and the main findings follow the general
structure of a state estimation process (meter placement, bad data detection, observability, etc.) giving
a more essential and traceable overview structure. Moreover, the paper provides a comprehensive
mapping of the possible use-cases state estimation and evaluates 27 different experimental sites to
conclude on the practical applicability aspects.

Keywords: low voltage state estimation; distribution system state estimation; active distribution
systems; low voltage grid control; observability; meter placement; pseudo data generation; grid
models; pilot projects

1. Introduction

Since its first proposal by Schweppe in 1969, state estimation (SE) has become a central
element of power system operation, especially in high voltage (HV) transmission networks.
The challenges transforming power systems (electrification, smart grids, variable renewable
energy sources, distributed generation, etc.) have brought the need for SE to the forefront
of distribution network operation and planning as well. This has led to increased research
activities culminating in hundreds of papers published in this field. High quality reviews
of distribution system state estimation (DSSE) in general have been presented in a number
of papers lately. Primadianto introduces a summary of state-of-the-art DSSE techniques,
grouping scientific papers based on the type of algorithm they use [1]. A similar scientific
scope was defined by Majdoub et al. in [2], with the aim of highlighting the spread of
techniques that are based on evolutionary algorithms.

Dehghanpour et al. created a detailed comparison from the perspectives of mathe-
matical problem formulation, application of pseudo-measurements, metering instrument
placement, network topology issues, impacts of renewable penetration, and cybersecu-
rity [3]. On the contrary, the potential value of DSSE in enabling smart grid features was
focused by Ahmad et al. comparing main differences of transmission and distribution
network applications of SE [4].

The present paper is intended to take a different approach on the subject and present
recent advances in the perspective of practical applications of low voltage (LV) DSSE. LV
distribution networks exhibit important differences compared to medium voltage (MV),
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e.g., the presence of phase-unbalanced loads and subsystems that do not use all phases, the
presence of the neutral conductor, and a different approach to topology processing.

The authors have performed an extensive literature review, which covers the timespan
from 2016 to 2021 with a scope to emphasize the state-of-the-art LV DSSE solutions from
around the world and provides an outlook to MV DSSE. The differences and unique barri-
ers of MV/LV DSSE implementation are discussed in each section separately. While state
estimation has been in daily use for decades in transmission system operation and control,
different concepts have to be applied to LV networks because of the lack of measurements
and other necessary information sources. There are several modern challenges at distri-
bution level (smart grids, smart metering, high penetration of intermittent distributed
generation, and dynamics of microgrids), which will benefit from well-performing LV
DSSE, therefore the scope of the analysis was two-fold:

• Identify the constraints in each stage of the DSSE process which are applicable to a
LV area;

• Create an assembly of practical applications, pilot projects, and experiences.

The paper was organized around the process of DSSE, as the important differences
were collected regarding topology checks, grid structural constraints, meter placement
and observability, algorithm specialties, and error calculation. The main contribution of
this paper is a practical application-oriented review, which compares the novel theoretical
methods while considering the limitations from actual grids. The assumptions are con-
firmed with a detailed analysis of pilot projects; therefore, the crucial challenges, as well as
the state-of-the-art methods, are identified with an implementation focus.

The paper is organized as follows. An extensive DSSE application landscape and the
set of possible application fields are introduced in Section 2. In addition, Section 3 con-
tains an application-oriented review of DSSE systems and highlights the most important
constraining factors, such as observability, meter placement, and algorithm optimization
methods. Beyond the theoretical aspects, Section 3 introduces the main results of demon-
strations and pilot projects, offering a comprehensive overview of the state-of-the-art
solutions. Finally, Section 5 summarizes the main conclusions of the review and designates
the path of development for a LV DSSE system.

2. Literature Review of DSSE Use-Cases

SE solutions are well known in industrial and academic areas. In the last couple
of decades, the transmission system operators’ (TSO) daily operation was based on SE
calculation and estimation to formulate an optimal operation and to be prepared for the
necessary control actions. The novelty of the approach described later is that the experience
and knowledge, which was worked out in the TSO area in the last 30–40 years, plans to
move into a new area: to the distribution level, focusing on medium and low voltage
level adaptation.

Generally, at the LV level, outage management and control possibilities are usually not
available, or cover a small part of the technical needs. The reason is simple: the investment
needs of the assets and devices are high enough that there is no return at all. To give
further support for distributed operation and control and to demonstrate how to utilize
the available information in different heterogenous subsystems, E.ON Distribution system
operator (DSO) Hungary decided to develop a unique LV supervisory control and data
acquisition (SCADA) system focusing on workforce management functionality. There
are several IT systems that can give useful information about the LV network, such as
the geographical information system (GIS) or the SAP data management system. If these
information types are connected, the data can be monitored on the same platform, and the
possibility is given to perform data analysis and prediction, resulting in a more integrated
DSO operation than before.

To extend the current functionality of LV SCADA, the focus of this chapter is to
investigate the available applications in this area, to analyze the state-of-the-art DSSE
solutions, and to select the most valuable use cases to offer effective modules to live
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operating application. This indicates that the DSSE functionality provides new possible
business use-cases on the advanced distribution management system (ADMS) platform.
In that perspective, the ADMS will be extended with DSSE based new functionalities. In
the following, a collection will be introduced about those business use cases, and in the
next chapter, the possible enhancement suggestions will be described in consideration
of DSSE algorithms and measurements themselves. Although actual pilot projects with
on-site results of an operating DSSE and experiences are overviewed in Section 4, the
use cases from those projects are all covered by the research examined here. In several
studies, a dozen of use cases are introduced [5], such as load and generation profile creation,
distributed energy resource management, active network element (on-load tap changing
transformer, demand side management, and energy storage), topology analysis (feeder
and phase detection) technical loss monitoring, or non-technical loss identification (illegal
direct connections and tampered meters) [6]. One of the most common applications is
short-circuit power estimation [7]. Another specific application is outage management [8].
The classical meaning of “generation and demand forecast” is expanding in the smart grid
terminology with renewable generation estimation. To avoid the immediate investment
needs, the planned connection allocation of renewable generation is a possible answer, e.g.,
Sampaio proposes [9].

A commonly appearing DSSE application is the fault localization on LV and MV grids.
Jamali and Bahmanyar proposed an approach based on sparse measurement that enhances
the localization method [10]. Several applications can be further developed, such as Jamali
et al. using smart metering as a data source [11]. Liu and He utilized the most commonly
used weighted last square (WLS) approach [12]. Furthermore, advanced information
technology offers additional opportunities [13], as well as innovative architectures [14,15].
The current level of observability (lack of measurement devices and expert systems) makes
effective fault localization difficult. Therefore, considerable human resource is used at the
moment, which can be replaced by advanced DSSE. The most crucial performance index
at the LV level is service availability, and the next is the quality of service. Consequently,
power quality estimation is another important use case, as it is demonstrated in [15] by Yu
and Cobben. One of the least common applications is about losses and harmonics, such as
Melo et al. describes [16]. Voltage quality issues, e.g., sag and dip volume estimation, are
also feasible [17].

Unique solutions include the e-mobility-specific or the LV observability enhancement
solutions, which provide promising results if the circumstances are appropriate [18]. Table 1
summarizes the technical applications of DSSE in four main categories based on the
literature review. Focusing on the LV level, the identified applications are not relevant
(marked with italic): fault localization is not important due to the size of one MV/LV
transformer area (the selective protection scheme accurately highlights the fault location),
while short-circuit power estimation does not carry any useful information for operators
at this level. Feeders are usually also trivial due to the radial structure and low level of
automation. The group (third column of Table 1) of renewable and e-mobility integration
highly depends on regulatory models (e.g., support schemes such as net metering excludes
the controllability of renewables), existing market condition (no service is available for
charging control), and technical limitations (communication devices are not available for
remote control, or smart asset is not available). These groups are only relevant at exact
locations, but the number of such LV areas are increasing as active distribution systems
are developing.

Summarizing the DSSE application landscape, the key is considering the economic
aspects, besides the tempting technical possibilities, due to the high investment costs of
DSSE hardware. Collecting the value propositions is important in the conceptualization
phase. The literature review showed that most of the DSSE-related functions are software
developments; therefore, a prioritization is needed that considers the local parameters (incl.
instrumentation specification of DSSE). This can help to identify the true values for LV
SCADA expansion at the E.ON DSO Hungary.
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Table 1. Classification of possible DSSE utilization based on the literature review.

Outage Management
and Power Quality Data Analysis Renewable and

E-Mobility Integration Coordinated Control

Human workforce
management Profile creation Curtailment

Power electronic
controllers

(distribution level)

Outage information
handling (single &

group faults)
Feeder detection P-Q control setpoint

On-load tap changing
distribution
transformers

Fault localization, short
circuit power estimation Phase detection Pattern analysis Energy storage

Voltage limit
violations Loss monitoring Accurate estimation Demand side

management

Asymmetry Non-technical loss
identification

Hosting capacity
calculation Voltage regulators

The two main drivers for DSSE in Hungary are:

• The necessity for capital expenditure (CAPEX) intensive network developments due
to the increasing share of distributed generation (mainly photovoltaics (PV)) and the
increasing amount of connection requests, and

• Growing power usage.

Therefore, any smart solution, e.g., active network components such as energy storage
devices, voltage regulators, distributed generation control, and demand side management,
is an alternative to conventional reinforcement methods. As the distribution system
becomes more complex due to different active elements, observability is crucial for optimal
control. DSSE can provide reliable input for grid operation software and can serve as the
basis for further calculations (load flow and optimal dispatch calculations) in integrating
flexibility, coordinated dispatch.

Another main value is the data that DSSE creates, as the power and voltage estimations
are available for the analyzed grid. The necessary grid development calculations are usually
conducted based on the static profile data and scarce measurements. Integration of the
DSSE output enhances automatization of network calculations and increases modeling
accuracy.

3. Process-Oriented Review of DSSE

Special characteristics of LV distribution networks are reflected in all segments of the
SE process: network data, real, pseudo and virtual measurements, topology procession,
observability analysis, and the SE algorithm itself. A vast amount of SE methods is
published in the literature, including conventional voltage- or current-based static methods
(weighted least squares, least mean squares, weighted least absolute value, least trimmed
squares, etc.), use of artificial intelligence, and advanced techniques. A common approach
in these studies is that they aim to decrease numerical errors and computational time of SE,
usually benchmarking the improvement to the simple weighted least square (WLS) method.
However, increasing the performance of SE methods beyond all seems to be unnecessary,
since the perspective of typical DSSE applicability and the availability of measurement data
have no such requirement. For this reason, the authors focus on those recent contributions
in the literature, which have concentrated the LV DSSE, and present these studies in the
field of measurements.

For achieving the aim to quantify and compare the impact of recent studies, the
structure of the next sections follows the general build-up of SE algorithms. Section 3.1
discusses all the practical and theoretical criteria for fully observable network definition.
Section 3.1.1 introduces the meter placement strategies both at the MV and the LV levels,
using multivariate objective functions. Section 3.1.2 addresses the challenge of real time
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metering, data acquisition, and bad data detection. In most cases (especially at the LV level),
the supplement of metered dataset via pseudo measurement is also an elemental part of
DSSE methods. The third part (3.1.3) reviews these pseudo data generation methodologies
for various load patterns. Section 3.2 focuses on network data and representative network
models that are used for comparing performance of different SE algorithms. Finally,
Section 3.3 presents the SE algorithms themselves.

3.1. Observability Criteria
3.1.1. Classification of Meter Placement Techniques

Besides the observability condition of SE execution, a wide variety of practical as-
pects must be considered for the placement of phasor measurement units (PMU). These
aspects are quantified by objective functions for the reduction of investment costs [19],
maximization of the estimation accuracy [20,21], physical implementation constraints [22],
or a combination of these [23], all of which are relevant from a DSO perspective.

Meter placement optimization algorithms are mainly implemented as a linear [24],
mixed [25], non-linear [26], or binary [27] integer programming problem, but examples for
genetic [28,29] and greedy algorithms [30] are also found.

Performance evaluation is generally validated on a test case network (see Section 3.2)
setting out the applicability limits of the results. Since test grids usually represent MV/HV
looped/meshed network topologies, the algorithms may result in suboptimal scenarios
on radial LV grids. While test grids include fixed loads (constant grid state) dominantly,
the proposed meter placement techniques often do not consider the need of pseudo data
generation or the impact of bad or skewed data.

For a comparison, Table 2 shows the implementation objectives of six reviewed pa-
pers [31–36]. These validate the implemented PMU placement methods on IEEE 14 and
IEEE 30 HV/MV bus systems, respectively. Despite the different optimization objectives,
similar result patterns can be identified. In [32–36], an average of 10 PMUs were placed to
17 different buses with noticeable similarities on IEEE 30 bus system. Moreover, ref. [32–34]
and [36] placed PMUs to the same four buses in case of an IEEE 14 network. These stud-
ies reflect approx. 20% PMU penetration at least, which will be capital-intensive at the
distribution level.

Table 2. Classification of possible DSSE utilization.

Ref. PMU Placement Objective Optimization Algorithm

[31] SE error minimization particle swarm opt., artificial bee colony

[32] minimize no. of PMUs rational random walk

[33] minimize no. of critical measurements
and maximize redundancy optimization using unreachability index

[34] satisfy observability criteria fruit fly optimization

[35] minimize no. of PMUs artificial bee colony

[36] maximize redundancy integer linear programming

3.1.2. Bad Data Detection

The accuracy of state estimation methodologies cannot be investigated individually,
the evaluation performance highly depends on spatial and temporal data granularity as
well as measurement accuracy. The observability criteria only represent the solvability of
SE, but do not guarantee any authenticity of the estimation results. For this reason, input
data assessment is an essential step in transition to the physical implementation of SE. Ali
and Exposito revealed that 1% standard error of measurements may imply 10% standard
error in SE [37]. The uncertainty of data measurement was evaluated in 76 papers of the
reference list, the principally used solution was to define a constant uncertainty value [38],
or modeling measurement error via a normal distribution function [39]. Beyond the few
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real implementations, it is a reasonable assumption due to the lack of real metering dataset.
However, this issue highlights the weakness of simulation environments and the use of
test bus grid topologies.

Furthermore, the practical modeling of measurement accuracy has various aspects.
At the LV level, the literature dominantly proposes the application of (micro) phasor mea-
surement units (µPMUs). These synchronous devices can capture waveform samples in
every 10 milliseconds and reconstruct the phasor quantities using angle and magnitude
measurement, while remote terminal units (RTUs) only provide information about the
temporal change of phasor values in every 2 to 6 s. Although PMU unit price had a
significant decrease in the past decade, the major limiting factor of wide deployment is the
investment cost of associated communication infrastructure (e.g., instrument transformers).
Therefore, the parallel utilization of these technologies is an important step in transition
to PMU-driven state estimation. Hybrid state estimation (HSE) enables the application of
multiple input data granularity in two possible configurations: (i) one-phase HSE jointly
process all the input data, and (ii) two-phase HSE manages RTU and PMU measurements
in separate SE modules. Richter et al. proposed a mixed communication architecture and
validated using HSE [40]. Beyond conceptual aspects, the technological challenges of using
synchronized and non-synchronized measurements (e.g., communication delay, distortion
of correction tables, digital-to-analog conversion, etc.) are discussed by Manousakis and
Korres [41]. To eliminate temporal communication failures, Mosbah and El-Harawy intro-
duced a dynamic estimation method using stochastic fractal search [42]. Saran and Miranda
identified the erroneous metering data as a noise in the entire sample dataset [43]. The
paper proposes a novel pre-filtering scheme of multiple autoencoders. Beyond temporary
events and permanent meter device inaccuracies, outlier metering points are also widely
discussed in the literature [44,45]. An alternative approach is introduced by Su et al. using
circuit representation to estimate the non-observable part of the network and decreasing
the number of necessary metering devices [46]. Othman et al. aimed to estimate active
power losses in different configurations of radial low voltage networks [47].

3.1.3. Pseudo Data Generation Techniques

Despite the proliferation of smart metering technologies in energy industry, the LV
distribution system operators usually have sparse spatial grid information due to the
wide physical dimensions of the network. To fulfil observability criteria of the SE, pseudo
measurement generation techniques are essential. However, the indicated increase in
cumulative error of the metering points may question practical applicability of the DSSE
results. The addressed problem results in various approaches to reduce pseudo data
generation error to the scale of metering unit offset. The majority of the papers use
historical load profiles and probability distributions for modeling the temporal change
of node parameters [48,49]. Alternative predictor models use additional attributes (e.g.,
current state of the grid) or extract new features for better accuracy [50,51]. Pau et al. and
Shafiei et al. addressed the spatial and temporal dependencies of pseudo data generation
and the effect of meter placement strategies [52,53]. Teixeira et al. and Abdel-Majeed et al.
introduced methodologies to compensate limitations (e.g., lack of power measurement,
bad sampling frequency) of metering units. Due to the appearance of time-varying loads
and expansion of distributed generation [54,55], Cheng et al. and Macii et al. focused on
the influence of local prosumers on the accuracy of SE [56,57].

3.2. Grid Models in DSSE, Practical Limitations of Model Topologies

As the SE is to be performed on a specific network topology (or a set of topologies),
it is important that all elements of the SE process should be tailored not only to the
application supported by the SE but also to the characteristics of the tested network. The
comparison of transmission and distribution networks is often discussed in the literature,
but less emphasis is given to the differences of the MV and the LV distribution networks.
Notable recent contributions in this field include the adequate handling of high R/X
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ratios. Thukaram et al. [58] proposed and tested a robust three-phase SE for application
in radial networks to handle this issue, while Abood et al. [59] used a regularized WLS
SE to solve the problem of ill-conditioning, using an adjustable regularization parameter.
The proper modeling of earthing and sequence components is discussed by Rankovic
et al. [60], focusing on the modeling of distributed generators (DGs) with unbalanced
output and by Liu et al. [61] who chose voltages as state variables of a WLS SE and pseudo-
measurements of low-voltage systems to represent unbalances in the three-phase four
conductor model. The analysis of symmetrical and asymmetrical network models is also
discussed by many. Chusovitin et al. [62] compared a three-phase model to a decoupled
model in which SE is solved for each phase. Chen et al. [63] used a three-phase DG
model to represent unbalanced power injections, while Brinkmann et al. [64] developed
a generic method that supports the decision between using the single- and three-phase
state estimator method, depending on the network topology and metering configuration.
Blazic [65] proposed the decoupling of the gain matrix to consider specific characteristics
of low-voltage distribution network. SE was adapted to low currents by Svenda et al. [66]
in accordance with back and forward sweep-based load flow calculations. Finally, the use
of multi-area SE is demonstrated in [67] and [68], concluding that networks with large
number of nodes can effectively be handled with such tools.

Literature on LV networks was also reviewed by authors, which was made difficult
by misleading or incomplete descriptions at times. A total of 230 test cases were found
for the DSSE, of which 223 included the description of the network model being used. A
surprising finding was that ~43% of the papers used HV networks (typically IEEE standard
models). The remaining 57% was dominated by MV networks (~48% of all cases), and only
9% of the reviewed test cases were performed at LV level, thus results of the vast majority
of scientific studies were not validated for LV distribution networks.

The LV test cases included standard models (CGMES [69], CIGRÉ European LV [70],
IEEE PES European LV [71]), real-world models from Germany [48,51,55,72], Australia [53],
Portugal [54], the United Kingdom [59], and Slovenia [65,73]. The size of these networks
shows large variations. Smaller ones have only 10–20 nodes, while the node count of
wider areas exceeds 100. Cable and overhead networks are both found. No papers were
identified in which standard models and real networks are both used, and most papers are
also restricted to using a single network for demonstrating the DSSE.

3.3. Application Constraints of the Algorithms

As it was highlighted at the beginning of this section, the range of SE methods
published in the literature is broad. Besides conventional solutions, large emphasis has
been placed on the use of artificial intelligence: fuzzy logic [74,75], artificial neural net-
work [76–79], particle swarm optimization [80,81], evolutionary algorithms [82], inte-
rior point optimization and brain storm optimization [83], biogeography based optimiza-
tion [84], firefly algorithm [85], Kalman-filters [73,86–90] and advanced techniques (forecast-
aided SE [50,73], multi-area SE [14,63,67,68,91–93], and event triggered approaches [94]).

Although these complex methods outperform conventional voltage- or current-based
static SE, they often rely on data that is not available with the desired spatial and temporal
resolution.

Typical use cases of LV network operation are related to voltage or energy management
issues, both of which are handled with temporal resolutions greater than a minute [72].
Most power quality performance indicators have to be evaluated using 10 min averages,
according to EN 50160, while the typical electricity settlement period is 15 min long.
Exceptions include, e.g., real time identification of power injection [95].

Tsitsimelis and Antón-Haró presented a regularized SE algorithm that operates on
two timescales; observations from the SCADA are handled every 15 min, while the PMU
data are used to compute estimates between main time instants [96]. The method is
presented to be robust against low redundancy measurement sets. A similar approach
is used in [83] to create a framework for SE, using on-line and off-line computing, and
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measurement data of different temporal resolution. Combining low-resolution advanced
metering infrastructure (AMI) data with other observations is also proposed by [40,97–99],
which discusses the general data protection regulation (GDPR) aspects of using smart
meter data for SE, concluding that voltage measurements from smart meters can be seen as
non-private data.

Another often emerging drawback of complex SE methods is that the personnel of the
system operator are rarely trained in the mathematical background of these methods, thus
tuning, adapting, or developing an algorithm after installation is a challenging task [100].
If the personnel are undertrained, it limits the exploitation of the SE’s potential and may
lead to obsolescence.

Rasmussen et al. presented an interval estimation method, which combines worst-case
loading scenarios based on fuse ratings and observations from smart meters, concluding
that reliable estimations can be created in the case of low observability, if reliable network
data is available [70].

Brandalik and Wellssow proposed the duplicated use of active and reactive power
measurements, while maintaining linearity, thus improving the observability of LV net-
works [71].

Caro presented a robust search algorithm that aims to minimize the error of voltage
angle estimation variability by selecting the proper bus for reference [101]. Adaptability of
the results to a radial topology may be of interest [102].

4. Evaluation of Pilot Projects

The scope of this section is to analyze pilot applications and compare the approaches to
theoretical research, underlining the limitations occurring from the technical circumstances,
economic viability, and the need of the DSOs.

Several project disseminations can be found in the literature, where pilot applications
and field test results are also available. A total of 27 different projects were assessed during
this review, considering both MV and LV levels, focusing on Europe but also including
projects from the United States of America and China. Table 3 summarizes the main
attributes, as the project name and location, voltage level, main use case, main algorithm
specifics, and data sources. In general, most pilot studies are connected to research projects
in which consortiums (research institutes, technology providers, and DSOs) work together
to arrive at practical results. The topology is usually limited, and certain lines (MV) or
MV/LV transformer areas (LV) are included in the pilot study. Major rollouts, with over
10,000 customers involved, at the LV level were conducted in Spain [103] and Poland [104];
other LV projects include only hundreds of customers.

The most common motivation for applying DSSE is renewable energy integration
(as Table 3 describes), but the observability of networks in dense urban areas is also
present [105]. Most of the pilots stressed the importance of observability; however, cost-
benefit analysis was not found in any of the studies, which shows the immaturity of
the DSSE.

Regarding data sources at the MV level, HV/MV substation measurements are com-
monly available (therefore not included in Table 3). Besides, remote-controlled pole
switches [106], PMUs [107], distributed generation and storage [108] and MV/LV sub-
station [109] measurements are used, when available. In the case of LV DSSE, pilot studies
clearly indicate the lack of observability [103], which becomes the most important aspect of
algorithm developments. Smart meter data is another usual source of data [110]; however,
the penetration of meters vary from 5% to 100% in different projects, which makes the
actual pilot study results hard to compare. Phasor measurement and synchronized data
are usually missing at the LV level (instrument development was performed to solve this,
e.g., the GridEye sensor in [111] or “micro” PMUs [51,112]), which limits the possible
applications.

Two separate approaches are identified considering algorithms: dominantly, WLS SE
is used (with minor modifications, see Table 3), which highlights a dissonance between the
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algorithm development trends previously presented in Section 3 and the actual practical
implementations. The structure of the distribution grid is usually radial and does not
change over time, which can be exploited in simplifications, e.g., the reduction of nodes
or the creation of virtual measurements by related power flows [113]. Advanced algo-
rithms usually rely on data structures that cannot be constructed economically in practice;
therefore, the simplest WLS solutions appear in the pilot projects. Conversely, the use
of artificial intelligence (e.g., neural networks [114]) does not require accurate topology
information and can be faster in computational time. However, the analysis of these models
lacks long-term analysis (seasonal trends, effects of different day types such as weekdays,
weekends, holidays), the advantages were only shown in limited datasets. The LV DSSE
applications usually consider asymmetry and apply a three-phase and neutral model for
the grid [115]. Most DSOs do not have a database for phase connections. This can be
handled by measurements and examination of each area, but this requires a huge amount
of human workforce in the case of a major roll-out. DSSE offers a possibility to create
more accurate models for unbalanced operation and can help to identify phase connections
based on measurements, instead of visual inspection [9,27,44].

The most common limitation of DSSE is data quality [45]. Redundancy is hard to
achieve at such a low level of instrumentation, and if the sufficient level is reached, loss
of data (usually due to communication errors) leads to unavailability of the DSSE in the
control center. Therefore, the pilot studies assess different ways to create adequate pseudo
measurements based on:

• nominal values [51];
• synthetic load profiles [107];
• control functions (Volt/VAR compensators, on-line tap changing transformer setpoints,

inverter control, etc.) [116];
• weather data [117].

Table 3. Summary of the main attributes from pilot applications.

Project and Location Topology
Scope Algorithm Use Case Metered Data Source

VENTEEA–France
[106,113] MV WLS + Weighted

Least Absolute
Closed-loop voltage control,

hosting capacity increase

U, P, Q sensors, MV/LV
transformer measurements,

remote-controlled
pole switches

Monica–Spain [103] MV/LV N/A (asymmetry
consideration for LV)

Observability, non-technical
loss identification

Smart meters, MV voltage
sensors LV wide range of

sensors (P, Q, U, I)

Smart Area
Aachen–Germany

[51]
MV N/A (Monte carlo

error function)

Renewable integration,
observability, situational

awareness

P, Q, I, U sensors at MV/LV
transformers

UPGRID–Sweden
[118] MV/LV N/A

Comparison and compatibility
between different suppliers,

network planning input,
observability

RTU, fault indicators,
smart meter

evolvDSO–France
[114,119] MV/LV LV–Neural

network/(MV-OPF)
Flexibility calculation (MV),

voltage monitoring (LV) Smart meter, U sensors

PRICE GDI–Spain
[109] MV Hachtel Augmented

Matrix Method Hosting capacity increase
Generation measurements,

Static compensators, RTU for
MV/LV transformers

Low carbon
London–Great Britain

[105]
MV WLS Technical loss calculation,

meter placement calculation
MV/LV transformer U, P

measurement
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Table 3. Cont.

Project and Location Topology
Scope Algorithm Use Case Metered Data Source

A2A–Italy [120] MV N/A Fault localization, loss of
mains detection, local dispatch

MV PMU, generation
measurements

A.S.SE.M–Italy [121] MV N/A Loss of mains detection,
voltage control

MV PMU, generation
measurements

InteGRIDy–Italy
[117,122] MV N/A

Loss reduction, storage
operation enhancement,
hosting capacity increase

Generation measurements,
smart meter

France [123] MV Heuristic power
adjustment Algorithm development PMU

Denmark [107] MV WLS
Minimal metering requirement
calculation, improving pseudo

measurements
PMU (end of the lines)

Sustainable–Portugal,
Greece [124] MV WLS DSSE evaluation, renewable

integration Smart meters, PMU

Korea, Canada [108] MV N/A Event detection, voltage
observation

Generation and energy
storage measurements, PMU

Belgium [38] MV N/A PMU application verification PMU

ADMS4LV–Portugal
[125] LV N/A Phase connection verification Smart meter

Integrid–Portugal
[126] LV N/A Flexibility market

enhancement N/A

RESOLVD [127] LV N/A
Power quality, renewable

integration, flexibility
management

PMU, smart meters, smart
assets (e.g., storage)

Slovenia [73] LV Extended Kalman
filter

Algorithm test, EV charging
integration, voltage control

U sensors, P-Q data for
nodes

SmartSCADA–
Germany

[45,110,115]
LV Linear algorithm

(from WLS) Bad data detection Smart meter

evolvDSO–Portugal
[114,128] LV Neural network, Observability Smart meter, U sensors

LV SCADA–Portugal
[129] LV

Neural network,
particle swarm
optimization

Monitoring, observability
Smart meter, LV RTU,
MV/LV On-line tap

changing transformers

UPGRID–Portugal
[130] LV N/A

Visualization for operators,
group error identification,

coordination between
operators and electricians

Smart voltage regulators

UPGRID–Poland
[104] LV N/A Technical loss estimation,

event detection

Fault indicators, Remote
controlled pole switched,
MV/LV transformer U, I

measurements

Switzerland [111] LV WLS Asset management, grid
development input

Smart meter, “Grid-eye”
sensors (U, I)

China [131] MV WLS-based Use of multi-source
measurements Micro PMU, Smart meter

USA [132] MV WLS-based Voltage monitoring MV sensors, Smart meters
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5. Conclusions and Outlook

This paper addressed the practically applicable best practices and constraints of DSSE.
As the DSOs face challenges in integrating further amounts of distributed generation
and load, conventional grid planning, development, and operation methods become
too expensive, and smart grid solutions can be competitive. The LV grids are currently
practically unobservable, but the new elements and technical solutions offer data that can
be used to create tailored solutions for a practically applicable DSSE.

Over 20 different use cases showed that the potential values are widely identified
in consideration of the DSSE. However, there is a large gap between theoretical research
and constraints deriving from the grid; most of the papers tried to integrate new sources
of measurement and information to increase accuracy. The different applications were
clustered into four main categories:

• Outage management and power quality;
• Data analysis;
• Renewable and e-mobility integration.
• Coordinated control.

It is witnessed that multiple meter placement objectives do not necessarily result in
different placement patterns. The importance of bad or skewed data detection is usually
neglected, giving suboptimal SE results. Especially in the case of LV grid topologies, pseudo
data generation is essential to complement the real metering devices due to economic
considerations. The comprehensive introduction of pseudo data generation techniques
concluded that the performance highly depends on the grid structure and the penetration
of the metering points.

Algorithm developments are usually tested in a network environment with a level
of observability that is inconceivable in practice. The vast majority of the network mod-
els used are IEEE test systems, while LV grid analysis is rare. Therefore, an important
direction for the near future may be the creation of a test system for LV, which covers the
different circumstances of the regions around the world. This indicates that most of the
developments should focus on the currently and potentially available data. Research is
focused on the diversification of data sources (beside measurements from the grid and
customers, the weather, historical energy values, and effect of local prosumers) in the
pseudo measurement generation.

The analyzed pilot projects showed great potential in exploiting the values, including
in the case of low level and bad data quality. The WLS method covers a definitive part
of the pilot projects, while advanced computational methods such as neural networks
are also present. Data sources are similar due to the current operation of DSOs: HV/MV
substations, pole switches, and fault indicators on the MV network, smart meters, voltage
(and oftentimes current) sensors, and smart assets on the LV network provide input for
tailored DSSE solutions. However, real-time phasor measurements are not common;
therefore, pseudo measurement inclusion is a regular attribute of DSSE. At the LV level, a
usual time interval of 15 min is present, and asymmetry is a key factor, thus three-phase
and neutral models are usually developed. The reliability test of pseudo measurements
is the most common contribution of the papers since the observability issue is a key area
for development.

In sum, DSSE seems to be a valuable tool in the LV SCADA expansion for DSOs, as
active elements become increasingly common, thus increasing complexity and the number
of possible system states. This paper contributes to the definition of fundamental principles
for practical application, starting from the idea in which the DSSE can bring value, through
the appropriate handling methods for the most important challenges (observation and
data sources). The review shows examples for how to tailor an algorithm for the actual
circumstances and gives insight into the international best practices from pilot projects.



Energies 2021, 14, 5363 12 of 17

Author Contributions: Review of applications, I.V.; review of meter placement techniques, pseudo
meauserements and bad data handling B.S.; review of algorithms B.H.; review of pilot projects I.T.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Hungarian Academy of Sciences and E.ON Hungary
through the “Célzott Lendület” Program application of the MTA-BME FASTER Research Group.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ADMS Advanced distribution management system
CAPEX Capital expenditure
DG Distributed generator
DSSE Distribution system state estimation
DSO Distribution system operator
GDPR General data protection regulation
GIS Geographical information system
HSE Hybrid State Estimation
HV High voltage
LV Low voltage
MV Medium voltage
PMU Phasor measurement unit
PV Photovoltaic
RTU Remote terminal unit
SCADA Supervisory control and data acquisition
SE State estimation
TSO Transmission system operator
WLS Weighted least square

References
1. Primadianto, A.; Lu, C.-N. A Review on Distribution System State Estimation. IEEE Trans. Power Syst. 2016, 32, 3875–3883.

[CrossRef]
2. Majdoub, M.; Boukherouaa, J.; Cheddadi, B.; Belfqih, A.; Sabri, O.; Haidi, T. A Review on Distribution System State Estimation

Techniques. In Proceedings of the 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco,
5–8 December 2018; pp. 1–6.

3. Dehghanpour, K.; Wang, Z.; Wang, J.; Yuan, Y.; Bu, F. A survey on state estimation techniques and challenges in smart dis-tribution
systems. IEEE Trans. Smart Grid 2019, 10, 2312–2322. [CrossRef]

4. Ahmad, F.; Rasool, A.; Ozsoy, E.; Sekar, R.; Sabanovic, A.; Elitaş, M. Distribution system state estimation-A step towards smart
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