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Abstract: The production of a single gas well is influenced by many geological and completion
factors. The aim of this paper is to build a production prediction model based on machine learning
technique and identify the most important factor for production. Firstly, around 159 horizontal wells
were collected, targeting the Duvernay Formation with detailed geological and completion records.
Secondly, the key factors were selected using grey relation analysis and Pearson correlation. Then,
three statistical models were built through multiple linear regression (MLR), support vector regression
(SVR), gaussian process regression (GPR). The model inputs include fluid volume, proppant amount,
cluster counts, stage counts, total horizontal lateral length, gas saturation, total organic carbon
content, condensate-gas ratio. The model performance was assessed by root mean squared errors
(RMSE) and R-squared value. Finally, sensitivity analysis was applied based on best performance
model. The analysis shows following conclusions: (1) GPR model shows the best performance with
the highest R-squared value and the lowest RMSE. In the testing set, the model shows a R-squared
of 0.8 with a RMSE of 280.54 × 104 m3 in the prediction of cumulative gas production within 1st
6 producing months and gives a R-squared of 0.83 with a RMSE of 1884.3 t in the prediction of
cumulative oil production within 1st 6 producing months (2) Sensitivity analysis based on GPR
model indicates that condensate-gas ratio, fluid volume, and total organic carbon content are the
most important features to cumulative oil production within 1st 6 producing months. Fluid volume,
Stages, and total organic carbon content are the most significant factors to cumulative gas production
within 1st 6 producing months. The analysis progress and results developed in this study will assist
companies to build prediction models and figure out which factors control well performance.

Keywords: machine learning; sensitivity analysis; production prediction; grey relation analysis

1. Introduction

There are enormous shale resources distributed worldwide and it requires advanced
exploration and development strategies to get economic production. Due to the applica-
tion of horizontal wells and hydraulic fracturing technologies, the shale reservoirs have
achieved an economic production, which plays an important role in world’s gas supply.
For shale reservoir, the production performance is influenced by many factors such as
geology, drilling, completion. A production model that contains a comprehensive set of
variables is required for production prediction and optimization.

Decline curve analysis (DCA) has been wildly adopted for production forecast and it is
a fast method by matching production rate-time history data. Traditional DCA models [1]
is designed for conventional reservoir and assume a boundary-dominated flow, which is
not applicable for shale wells with multiple flow regimes. Many DCA models have been
specifically designed for shale gas reservoirs [2–7]. However, DCA models still have some
drawbacks as it requires a long production history to get a reliable result, which means they
are mainly applied to on-production wells [8]. In addition, it is impossible to accommodate
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additional geological and completion information to improve prediction accuracy, which
means it is difficult to optimize production.

Reservoir numerical simulation is another approach to forecast production perfor-
mance of unconventional reservoirs. It is a physically driven model and can provide
accurate results when the data is complete and precise. However, it is difficult and expen-
sive to gather the necessary data such as the complex hydraulic fracture distribution and
properties. Moreover, the gas flow system in shale formation is poorly understood [9] and
simulation techniques requires large amounts of computational time [8].

The emerging machine learning technique has provided a potential method for pro-
duction modeling as a result of advanced computing powers and access to large data
set. Liao et al. [10] used random forest, Extreme Gradient Boosting (XGBoost), and Light
Gradient Boosting Machine (LGBM) to build a stacking model and identified that stim-
ulated length, total stage count, pumped proppant per stage, pumped fluid per length
and injection rate are the most important factors for Wapiti-Montney tight gas formation.
However, the model did not include reservoir parameters such as total organic carbon
content (TOC). Hirschmiller et al. [11] used recursive feature elimination to select features
and used random forest to predict and optimize well performance. Sheikhi et al. [12] used
linear regression, Random forest, Gradient Boost, XGBoost, Bagging, ExtraTrees and neural
network to build models and applied Individual Conditional Expectation and Partial De-
pendency to assess completion performance, but the input variables selected for the model
were limited to completion information. Shelley et al. [13] built a feed forward neural net-
work model to estimate Wolfcamp production and evaluate the economics for completion
designs. Han et al. [14] used deep neural network and exploratory data analysis to build
robust model for production prediction and provide some insights about shale reservoirs.
However, the input variables were limited to completion factors. Wang et al. [15] used
random forest, adaptive boosting, support vector machine and neural network to estimate
the well performance. It was concluded that random forest has the best performance and
these models were useful for designing hydraulic fracture treatments. Liang et al. [16]
used multi-objective random forest to predict dynamic production data. However, there
remains a challenge to choose the right method for production prediction. In general,
multiple linear regression can only describe linear relationship. Regression tree requires
a lot of data to perform well. The construction of neural network is time-consuming and
tedious [15]. Compared with neural work, regression tree and multiple linear regression,
support vector regression and gaussian process regression have a better performance for
small data sets [17,18].

The originality of this paper is that geological and completion data are coupled to
more accurately describe the reservoir property. In addition, feature selection is used to
provide a variety of geologic and completion parameters specifically related to production.

In this study, a workflow based on data driven approach was proposed for production
modeling. A large data set (including geological and completion factors) in Duvernay
formation was used to illustrate the application of workflow. Grey relation analysis and
Pearson Correlations were applied to screen the geological and engineering parameters
related to shale gas productivity. Gaussian process regression, support vector regression,
and multiple linear regression were applied for production predicting. A tornado plot was
used to identify the most important factors for production performance.

2. Methodology

Figure 1 is a flowchart illustrating the procedures of the study, Pearson correlation
degree and grey relation degree is calculated to select features. Gaussian process regression,
support vector regression, and multiple linear regression were applied to model cumulative
production. After training and testing the model, the model with the best performance is
selected to applied sensitivity analysis.
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Figure 1. Flowchart of the research progress.

2.1. Pearson Correlations

The Pearson correlation degree (PCD) is one of the commonly used relation measure-
ment standards, it can measure the monotonic relationship between different variables [19].
The Pearson-correlation formula is as follows:

ρ =
Cov(x, y)√

Var(x)Var(y)
(1)

where Cov(x,y) denotes covariance between x and y, Var(x) is the variance of x, and Var(y)
represents the variance of y.

PCD varies from −1 to 1. The value of −1 or 1 shows that there is a strong linear
relationship between two variables, whereas 0 means no linear relationship. Normally, the
relationship strength of variables is estimated on the basis of following value ranges [20], i.e.,
0.8–1.0: very strong correlation; 0.6–0.8, strong correlation; 0.4–0.6, moderate correlation;
0.2–0.4, weak correlation; 0.0–0.2 very weak correlation.

2.2. Grey Relation Analysis

The grey relation analysis, which was originally proposed by Deng et al. [21], provides
a multi-factor analysis method which describes the posture relationship among factors.
In a sample data, the grey relation degree (GRD) represents the change trend (speed,
size, direction), A high GRD between two factors means a strong correlation. On the
contrary, a small value means a weak correlation [22,23]. The advantage of grey correlation
analysis is that it requires less data and calculation compared to other multi-factor analysis
methods [24] (random forest, regression, etc.). The basic steps of grey relation analysis are
as follows:

2.2.1. Determine the Reference Series and Comparison Series

Reference series is a data series which reflect the system behavior. Comparison series
is a data series composed of variables affecting system behavior. X0′ represents reference
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series, Xi′(i = 1, 2, . . . m) denote comparison series. The whole data series are represented
as matrix (2):

(X0′ , X1′ , . . . , Xm′) =


x0′(1) x1′(1)
x0′(2) x1′(2)

. . . xm′(1)

. . . xm′(2)
...

...
x0′(n) x1′(n)

. . .
...

. . . xm′(n)


n×(m+1)

(2)

where Xi′ = (xi′(1), xi′(2), . . . , xi′(n))
T , I = 0,1,2, . . . , m; n is the length of variable series.

2.2.2. Dimensionless Processing

In general, each variable series has a specific physical meaning and dimensions or
order of magnitude vary from variable to variable. Therefore, it’s important to process raw
data before using, the following formula is used for dimensionless:

xi(n) =
xi′(n)−min(Xi′)

max(Xi′)−min(Xi′)
(3)

After dimensionless processing, the data matrix can be represented as matrix (4):

(X0, X1, . . . , Xm) =


x0(1) x1(1)
x0(2) x1(2)

. . . xm(1)

. . . xm(2)
...

...
x0(n) x1(n)

. . .
...

. . . xm(n)


n×(m+1)

(4)

2.2.3. Calculate Grey Relation Degree

Compute the absolute value between reference series and comparison series and
get absolute difference matrix (5), then transform matrix (5) into correlation coefficient
matrix (7) using formula (6), finally, use Equation (8) to calculate grey relation degree.

∆01(1) ∆02(1)
∆01(2) ∆02(2)

. . . ∆0m(1)

. . . ∆0m(2)
...

...
∆01(n) ∆02(n)

. . .
...

. . . ∆0m(n)


n×m

(5)

ξ0i(k) =
∆min + ρ∆max

∆0i(k) + ρ∆max
(6)


ξ01(1) ξ02(1)
ξ01(2) ξ02(2)

. . . ξ0m(1)

. . . ξ0m(2)
...

...
ξ01(n) ξ02(n)

. . .
...

. . . ξ0m(n)


n×m

(7)

r0i =
1
N

N

∑
k=1

ξ0i(k) (8)

2.3. Multiple Linear Regression (MLR)

Multiple linear regression describes the relationship between several independent
variables, X and a dependent variable, Y. Y is often called response variable and indepen-
dent variables X are named predictor variables. Equation (9) is the universal form of a
multiple linear regression model.

Y = f (X) + ε = β0 + β1X1 + β2X2 + . . . + βpXp + ε (9)
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where p is the number of predictor variables, ε is the noise terms, it is assumed that noise
terms are uncorrelated and have independent and identical normal distributions with
mean zero and constant variance [19,25,26]. The noise terms represent some variables that
not include but may have contribution to Y.

2.4. Support Vector Regression (SVR)

Support vector machine (SVM) is a supervised learning method, which was originally
identified by Cortes et al. [27]. SVM has been comprehensively used as a robust technique
for classification and SVR is a regression technique used from SVM. SVR is regarded as a
nonparametric method as it relies on kernel functions. Kernel function can project the data
to a higher dimensional feature space, hence avoiding the non-linearity in lower space.
The aim of SVR is to find a function f (x) that diverge from response y by a value no more
than ε, and in the meantime the function f (x) as even as possible (Figure 2). More details
about SVR are described in Al-Azani et al. [28], Da Silva et al. [29], El-Sebakhy et al. [30],
Li et al. [31] and Schuetter et al. [26].

Figure 2. Support vector machine regression diagram.

In SVR, the choice of kernel function directly determines the performance of the model,
the main kernel functions used in this study are shown as follows:

Linear:
G
(

xj, xk
)
= xj

′xk (10)

Gaussian:
G
(
xj, xk

)
= exp

(
−‖xj − xk‖2

)
(11)

Polynomial:
G
(
xj, xk

)
=
(
1 + xj

′xk
)q (12)

2.5. Gaussian Process Regression (GPR)

Gaussian progress regression (GPR) is a non-parametric model. A Gaussian process
(GP) refers to a collection of random variables, any finite number of random variables in
this collection has a joint gaussian distribution [32,33]. GP has quite good adaptability
for dealing with some complex problems such as small samples, high dimensionality,
and nonlinearity. GP is determined by its mean function and covariance function, and it
inherits many properties of the Gaussian distribution [34,35]. A finite dimensional subset
of a Gaussian process obeys a Gaussian distribution.

Given a set of data:

D = {(xi, yi), i = 1, 2, . . . , n}, xi ∈ Rd, yi ∈ R (13)

Mean function is defined as:

m(x) = E[ f (x)] (14)
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Covariance function is defined as:

k
(
x, x′

)
= E

[
( f (x)−m(x))

(
f
(
x′
)
−m

(
x′
))]

(15)

where: x, x′ ∈ Rd, the GP can be defined as:

f (x) ∼ GP
[
m(x), k

(
x, x′

)]
(16)

As for regression question, the model can be defined as:

y = f (x) + ε (17)

Assuming the noise ε ~ N (0, σ2
y ), then the prior probability distribution of the obser-

vation value y is obtained:
y ∼ N

[
0, K(X, X) + σ2

y In

]
(18)

y and f (x∗) have a joint Gaussian distribution:[
y

f (x∗)

]
∼ N

(
0,
[

K(X, X) + σ2
y In K(X, x∗)

K(x∗, X) K(x∗, x∗)

])
(19)

where: K(X, X) = Kn = Kij, it is a n ∗ n positive definite matrix, the matrix elements
Kij = K

(
xi, xj

)
describe the correlation between xi and xj, K(X, x∗) = K(x∗, X)−1 is used to

measure the correlation between data X and x∗, K(x∗, x∗) is used to describe the correlation
between data x∗.

Then the posterior probability distribution of f (x∗) can be expressed as:

P( f (x∗)|x∗, X, y) ∼ N(µ∗, Σ∗) (20)

where:
µ∗ = K(X, x∗)

[
K(X, X) + σ2

y In

]−1
y (21)

Σ∗ = K(x∗, x∗)− K(X, x∗)
[
K(X, X) + σ2

y In

]−1
K(x∗, X) (22)

Σ∗ and µ∗ represent the covariance and mean of f (x∗).
Kernel function controls the accuracy of GP as GP is parameterized by a mean function

and a kernel function. The main kernel functions used in this study are shown as follows:
Squared Exponential Kernel:

k
(
xi, xj

∣∣θ) = σ2
f exp

[
−1

2

(
xi − xj

)T(xi − xj
)

σ2
l

]
(23)

where σl is the characteristic length scale and σl is the signal deviation.
Exponential Kernel

k
(
xi, xj

∣∣θ) = σ2
f exp

(
− r

σl

)
(24)

r =
√(

xi − xj
)T(xi − xj

)
(25)

where σl is the characteristic length scale and r is the Euclidean distance between xi and xj.
Mater 5/2:

k
(
xi, xj

)
= σ2

f

(
1 +

√
5r

σl
+

5r2

3σ2
l

)
exp

(
−
√

5r
σl

)
(26)

r =
√(

xi − xj
)T(xi − xj

)
(27)

where r is the Euclidean distance between xi and xj.
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Rational Quadratic Kernel:

k
(

xi, xj
∣∣θ) = σ2

f

(
1 +

r2

2ασ2
l

)−α

(28)

r =
√(

xi − xj
)T(xi − xj

)
(29)

where σl is the characteristic length scale, r is the Euclidean distance between xi and xj and
α is a positive-valued scale-mixture parameter.

2.6. Goodness-of-Fit Metrics

There are many measures for evaluating the quality of a model. In this study, two tech-
niques are used: root mean squared errors (RMSE) and R-squared value (Note that the
calculation of R-squared is not always as easy as squaring the Pearson correlation, as
R-squared can be smaller than 0. However, in linear regression, the square of the Pearson
correlation is equal to R-squared). R-squared value indicates the part of variability in the
response which is interpreted by the model, it is defined as the ratio of explained sum of
squares (ESS) to total sum of squares (TSS):

R2 =
ESS
TSS

(30)

RMSE can be interpreted as the average distance between the residuals and zero.

RMSE(X, h) =

√
1
m

m

∑
i=1

(
h
(
x(i)
)
− y(i)

)2 (31)

3. Problem Description

The Duvernay Formation, an Upper Devonian source rock, lies within Western Canada
Basin in Alberta, Canada. It is an organic-rich mudstones surrounded by Leduc reef
complexes [36]. Because of high formation pressure coefficient (1.7–2.0) and significant
degree of undersaturation, Duvernay formation is a tight liquid-rich reservoir. The phases
of hydrocarbon liquids vary from wet gas in southwest part of the reservoir to black oil
in the northeast portion due to various thermal maturity [37–40]. The depth of Duvernay
is 3000–4150 m deep, and the buried depth rises from southwest to northeast. The study
area is located in west shale basin, with an area of around 737.92 km2. The basic reservoir
parameters in study area are described in Table 1.

Table 1. Duvernay reservoir characteristics.

Reservoir Characteristics Value Range Units

Depth 3000–4150 m
Thickness 20–56 m

Total organic Carbon Content (TOC) 2–6 %
Porosity 1–8 %

Vitrinite Reflectance (Ro) 1.1–1.6 %
Clay minerals 10.9–56 %

Brittle minerals 44–89.1 %

The difference of well performance can be attributed to two factors, geological factors
and completion factors. Usually, geological factors include contents of brittle minerals,
formation pressure, porosity, permeability, reservoir thickness, TOC, thermal maturity,
natural fractures, gas content, condensate gas ratio, etc. Completion factors include total
horizontal lateral length, total fluid amount, total proppant amount, number of stages,
number of clusters, sand contents, cluster distance, stage distance, etc.
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Currently, there are 159 horizontal wells in the Duvernay Formation in the study area,
the whole wells have a production time of more than one year, 70 wells have a production
time of more than 5 years. In the study area, PNP (Plug & perf) segmented completion
technology is adopted, high-viscosity fracturing fluid and small particle size quartz sand
proppant are used in the hydraulic fracturing process, the clusters for each stage vary from
4 to 10 and the pump rate per stage varies from 10 m3/min to 14 m3/min. In the past
8 years, the stage spacing has decreased from 90 m to 50 m and the proppant intensity has
increased from 1 t/m to 4 t/m. In this study, 11 variables contained geological information
and completion parameters are collected from 159 shale gas wells in Duvernay Formation
according the data availability and statistical efficiency. As the hydrocarbon phase in study
area is gas condensate, the responses are divided into condensate production and gas
production. A list of the whole variables is illustrated in Table 2.

Table 2. List of variables in the study area.

Type Variable Description

Response M6COND Cumulative oil production within 1st 6 producing months (t)
M6GAS Cumulative gas production within 1st 6 producing months (104 m3)

Predictor Fluid Total fluid amount for hydraulic fracturing (m3)
PROP Total proppant amount (t)

Clusters Number of frac clusters
Stages Number of frac stages

Lateral Length Total horizontal lateral length (m)
Thickness Formation total thickness (m)

POR Porosity (%)
PERM Permeability (mD)

Sg Gas saturation (%)
TOC Total organic Carbon Content (%)
CGR Condensate gas ratio (t/104 m3)

4. Feature Selection

In grey relation analysis, two responses M6COND and M6GAS are defined as the
reference series, and the comparison series are defined as 11 geological and completion
predictors. Normally, the smaller the grey relation degree (GRD), the higher the difference
is between the comparison series and the reference series. Table 3 shows GRD and rank
between responses and predictors, and the influencing parameters with GRD bigger than
0.69 are selected. The geological factors include CGR, TOC, Sg, the completion factors
contain Fluid, PROP, Clusters, Stages, Lateral length.

Table 3. The correlation between responses and predictors.

Rank

The Correlation between M6GAS
and Input Feature

The Correlation between
M6COND and Input Feature

Indicator Coefficient of
Association Indicator Coefficient of

Association

1 PROP 0.791 Stages 0.780
2 Stages 0.791 PROP 0.776
3 Clusters 0.767 Fluid 0.763
4 Lateral Length 0.744 Lateral Length 0.759
5 Fluid 0.735 Clusters 0.749
6 CGR 0.697 TOC 0.708
7 TOC 0.694 Sg 0.690
8 Sg 0.691 CGR 0.690
9 Thickness 0.656 Thickness 0.679
10 POR 0.640 POR 0.621
11 PERM 0.628 PERM 0.615
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Figure 3 illustrates Pearson correlation degree (PCD) between responses and inputs,
PCD bigger than 0.2 are selected. The result is the same as grey relation analysis, PCD
between Thickness, POR, PERM and two responses are all less than 0.2, which means there
is a weak correlation between them. Therefore, Thickness, POR and PERM are eliminated
from the dataset.

Figure 3. Correlation matrix (Green: positive correlation, Red: negative correlation, the darker the color, the stronger
the correlation).

Finally, combined with Pearson correlations and grey relation analysis method, predic-
tors selected as key factors to build statistical models are as follows: Fluid, PROP, Clusters,
Stages, Lateral Length, Sg, TOC, CGR. The histogram plots of all selected variables are
demonstrated in Figure 4. Table 4 shows the results of Kolmogorov-Smirnov (K-S) test.
The results illustrate that the significance of all variables (except for Lateral Length) is less
than 0.05, meaning that Fluid, PROP, Clusters, Stages, Sg, TOC, CGR are not normally
distributed. Therefore, a normal score method (a method which can return a normal
distribution dataset) is applied to transform those non-normal distribution variables.
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Figure 4. Histogram plots of all variables.
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Table 4. The results of Kolmogorov-Smirnov Test.

Fluid PROP Clusters Stages Lateral
Length Sg TOC CGR

Statistic 0.089 0.131 0.290 0.195 0.056 0.075 0.139 0.182
Sig. 0.004 0.000 0.000 0.000 0.200 0.030 0.000 0.000

5. Model Development

In this study, Matlab 2019 was used to build the model. To avoid overfitting, the total
data was separated into a training set, and a testing set. A total of 129 samples were used
as the training set and the remaining 30 samples were used to test the effectiveness of
three machine learning models. Training set are performed a 4-fold cross-validation. In
this method, the dataset is partitioned into 4 disjoint sets or folds. For each fold, the model
is trained using the out-of-fold data and model performance is assessed using in-fold data.
Finally, calculate the average test error over all folds. This method performs an excellent
estimate of the predictive accuracy and makes full use of all the training data, it works
quite well for small data sets. The most difficult part for GPR model and SVR model
is parameter optimization. To solve this problem, a Bayesian optimization was applied.
Bayesian optimization internally maintains a Gaussian process model of the objective
function, and uses objective function evaluations to train the model. After optimization,
the hyperparameters of SVR and GPR were demonstrated in Tables 5 and 6:

Table 5. Hyperparameters for SVR model.

Kernel Function Kernel Scale Box Constraint Epsilon-Insensitive Band

M6GAS Gaussian 2.4 747.96 74.8
M6COND Gaussian 2.8 7620 762.07

Table 6. Hyperparameters for GPR model.

Kernel Function Kernel Scale Sigma

M6GAS Exponential 5346.3319 0.56
M6COND Exponential 3653.12 0.0001

Tables 7 and 8 illustrate the model performance for the prediction of M6GAS and
M6COND respectively. The model performance for training set and testing set is compared
in Figure 5. As for M6GAS prediction, the root mean squared errors (RMSE) of the testing
set are found to be 280.54 × 104 m3 for GPR, 366.25 × 104 m3 for SVR, 377.72 × 104 m3 for
MLR. GPR model shows the highest R2 and the lowest RMSE in both training set and testing
set. Especially in testing set, GPR model shows R2 at 0.8 and RMSE at 280.54 × 104 m3, it
means that the model is able to explain 80% of the gas production variance in the study
area and on average there is around 280.54 × 104 m3 uncertainty in the prediction of gas
production within 1st 6 producing months for each well. It is found that GPR model shows
the best performance for forecasting the gas production. It should be noted that SVR
method performs a comparable prediction accuracy in training set compared with GPR.
However, the differences of RMSE and R2 between training set and testing set are very
large, indicating that SVR undergoes overfitting problems.

Table 7. Model results for M6GAS.

Training Testing

GPR SVR MLR GPR SVR MLR

R2 0.81 0.78 0.66 0.8 0.67 0.65
RMSE (104 m3) 277.73 296.04 371.27 280.54 366.25 377.72
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Table 8. Model results for M6COND.

Training Testing

GPR SVR MLR GPR SVR MLR

R2 0.78 0.73 0.59 0.83 0.8 0.67
RMSE (t) 2246.2 2477.3 3936.9 1884.3 1903.7 2544.5

Figure 5. Comparison of prediction performance of the GPR, SVR, and MLR algorithms: (a)prediction performance about
M6GAS (b) prediction performance about M6COND.

As for M6COND prediction, the result is the same as M6GAS prediction, the root
mean squared errors (RMSE) of the testing set are found to be 1884.3 t for GPR, 1903.7 t
for SVR, 2544.5 t for MLR. GPR model demonstrates the highest R2 at 0.83 and the lowest
RMSE at 1884.3 t in the testing set, it also means that on average there is around 1884.3 t
uncertainty in the prediction of M6COND for each well and the model can illustrate 83%
of the oil production variance in Duvernay formation. In addition, as for GPR model,
the differences of RMSE and R2 between training set and testing set are relatively small,
indicating that GPR doesn’t undergo overfitting or underfitting problems.

Considering that the R-squared value of most machine learning based model varied
from 0.5–0.8 (Luo et al. [41], Kong et al. [9], Wang et al. [15]), the GPR models built in this
study are able to provide relative high accuracy for production prediction. Compared with
MLR and SVR, GPR has better performance for the prediction of M6COND and M6GAS.
Therefore, GPR method is selected to apply sensitivity analysis.

6. Sensitivity Analysis

Figure 6 is a Tornado Plot that describes the sensitivity of 8 geological and completion
factors on M6GAS. In the process of sensitivity analysis, the factors are set based on the
statistical distribution of input features used in machine learning model, which is shown
in Figure 6. The base case used the average value of each input feature. The sensitivity
values are calculated by setting each interested factor to its maximum and minimum values
one-factor-at-a-time as shown in Table 9, while the other factors are set to their base values.
The red bars in Figure 6 equal to a sensitivity measure (compared with a base example)
when a factor is designed to its maximum value and the green bars in Figure 6 equal to
a sensitivity measure (compared with a base example) when a factor is designed to its
minimum values. It can be observed from Figure 6 that Fluid, Stages and TOC are regarded
as the most significant factors. It is followed by CGR, Clusters and Lateral Length. Sg and
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PROP shows the least effect on M6GAS. It can be inferred that these least important factors
could have an unimportant important on M6GAS.

Figure 6. Tornado plot illustrating the most and the least important factors for M6GAS. Each red
bar equals to a sensitivity measure (compared with a base example) when a factor is designed to its
upper bound. The green bars indicate the lower-bound case. The blue line in the middle means the
base case. Factors are arranged by descending order from top to bottom.

Table 9. Summary of geological and engineering factors for sensitivity analysis.

Type Factor Unit Range Base Case

Geology
Sg 95%, 96%, 97%, 98% 97%

TOC 2%, 2.5%, 3%, 3.5%, 4% 3%
CGR t/104 m3 2, 6, 10, 14, 18 10

Completion

Fluid m3 20,000, 30,000, 40,000, 50,000, 60,000 40,000
PROP t 2000, 3500, 5000, 6500, 8000 5000

Clusters 80, 140, 200, 260, 320 200
Stages 20, 35, 50, 65, 80 50

Lateral Length m 1600, 2000, 2400, 2800, 3200 2400

Figure 7 is a Tornado Plot that indicates the sensitivity of 8 geological and completion
factors on M6COND. It is clear that CGR, Fluid and TOC are the most important factors.
The following factors are Stages, Clusters, and Sg. The effect of Sg and PROP is marginal.
In the study area, the production of condensate leads to higher economic efficiency, so
it is significant to drill wells in high CGR areas as CGR plays the most important role in
condensate production. Furthermore, a more progressive completion treatment (such more
fluid volume) is required to get more production.
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Figure 7. Tornado plot illustrating the most and the least important factors for M6COND. Each red
bar equals to a sensitivity measure (compared with a base example) when a factor is designed to its
upper bound. The green bars indicate the lower-bound case. The blue line in the middle means the
base case. Factors are arranged by descending order from top to bottom.

It is significant to note that this model may provide some suggestions for the study
area in Duvernay Formation, it is not applicable to apply this model in a completely
different reservoir. Moreover, the model doesn’t take parent and child well interference
into consideration, which may limit the model prediction accuracy for new offset wells.

7. Conclusions

In this study, grey relation analysis and Pearson Correlation analysis were applied to
demonstrate how to select significant geologic and completion factors. Then, MLR, SVR,
and GPR were used to predict cumulative production with selected factors. At last, the
best performance model was used to conduct sensitivity analysis.

Based on data-driven methodology presented in this paper, it is concluded that:
Based on grey relation analysis and Pearson Correlation analysis, 8 parameters are

selected as input in predictive model, they are Fluid, PROP, Clusters, Stages, Lateral Length,
Sg, TOC, CGR.

GPR model has the best performance among three predictive models, it results in
highest R-squared and lowest RMSE. In the testing set, the model shows a R-squared of 0.8
with a RMSE of 280.54 × 104 m3 in predicting M6GAS and gives an R-squared of 0.83 with
a RMSE of 1884.3 t in predicting M6COND.

Using GPR model, sensitivity analysis indicates that Fluid, Stages and TOC are the
most important features for M6GAS. As for M6COND, CGR, Fluid, and TOC are the most
important features.

The approach includes feature selection, model development, and sensitivity analysis.
The results and technique may provide some advice in making development decisions in
Duvernay formation. The method may apply to different shale reservoirs

Author Contributions: Data curation, L.S. and Y.J.; supervision, H.W.; validation, X.K.; writing–
review and editing, Z.G. All authors have read and agreed to the published version of the manuscript.



Energies 2021, 14, 5509 15 of 17

Funding: This research was funded by the National Science and Technology Major Project of China,
grant number 2016ZX05029-005.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Cov(x,y) Covariance between x and y
Var(x) The variance of x
GRD grey relation degree
PCD Pearson correlation degree
MLR Multiple linear regression
SVR Support Vector Regression
GPR Gaussian progress regression
DCA Decline curve analysis
RMSE Root mean squared errors
M6COND Cumulative oil production within 1st 6 producing months
M6GAS Cumulative gas production within 1st 6 producing months
PROP Total proppant amount
POR Porosity (%)
PERM Permeability (mD)
Sg Gas saturation (%)
TOC Total organic Carbon Content (%)
CGR Condensate gas ratio (t/104 m3)
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