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Abstract: With continued urbanization in China, the construction of urban gas pipelines is increasing,
and the safety of gas pipelines are also increasingly affected by urban development and the increased
scope of buildings and roads. Pipes with defects are more likely to fail under the surface loads. In this
study, uniaxial tensile tests of high-density polyethylene (HDPE) pipes were carried out to obtain the
real material parameters of pipe. A pipeline-soil interaction finite element model of HDPE pipeline
with defects under surface load was established. The failure mechanism of the urban gas pipeline
was studied and the influence of parameters such as internal pressure, defect position, defect depth
on the mechanical behavior, and failure of pipelines were analyzed. A failure criterion for HDPE
pipes with defects under surface load was proposed based on the limit-state curves obtained under
different working conditions. Furthermore, an accurate and efficient fitness-for-service assessment
procedure of pipes with defects under surface load was proposed. The results showed that maximum
Mises stress of the pipeline gradually increased with increasing surface load and the position of
maximum stress changed from the top and bottom of the pipe to the defect position and both sides
of the pipe. Finally, when Mises stress of the HDPE pipe exceeds the yield limit, failure will occur.
Internal pressure, defect location, and defect depth were found to influence the failure process and
critical surface load of the pipeline. Safety evaluation curves of the gas pipeline with defects under
surface load were obtained by calculating the critical failure load of the pipeline under various
working conditions. Finally, a nonlinear fitting method was used to derive a formula for calculating
the critical surface load under different defect parameters. The proposed method provides a useful
reference for urban gas pipeline safety management.

Keywords: surface load; polyethylene pipe; defect; failure load; safety evaluation curve

1. Introduction

Urban gas pipelines are often located in public areas and may be influenced by build-
ing load, vehicle load, and third-party excavation. Moreover, pipelines in unoccupied areas
may be vulnerable to be loaded from new buildings or roads as a result of urban construc-
tion projects, which threaten the safe operation of existing urban gas pipelines, as shown in
Figure 1. Foundation settlement and pipeline deformation caused by repeated loading not
only affects safe operation of oil and gas pipelines, but also creates the hidden danger of
serious accidents. Gas pipeline companies are unable to perform routine inspections and
maintenance on pipelines located on privately occupied land; therefore, hidden dangers
are not identified or dealt with in time. China national petroleum corporation (CNPC)
recently released statistics on existing pipelines in 22 regions, which showed that there
are 23,045 pipelines under illegal surface load since August 2004, among which 11,000 are
within 5 m of pipelines [1]. The pipelines in Sichuan province are exposed to more than
4000 surface load hazards, among which factories, residential buildings, and roads are
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most prominent [2]. In March 2013, an urban pipeline in the Xiaguan district of Nanjing
leaked due to the repeated heavy rolling loads of heavy construction vehicles, eventually
resulting in rupture of the gas pipeline [3].
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load. Shuai et al. [5] analyzed the stress and deformation of buried pipelines subjected to 
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theoretical method for calculating the shear force, deformation, and bending moment of 
pipelines adjacent to buildings on a Winkler elastic foundation according to short-beam 
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foundation system and analyzed the influence of surface load on stress-strain 
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Figure 1. Schematic illustration of urban gas pipeline under surface load.

Trenchless pipe laying technology has become increasingly popular for gas pipelines.
During construction, the pipeline is towed through a hole in the soil to complete the
pipe-laying process. During the towing process, the walls of polyethylene pipelines are
susceptible to scratch defects, as shown in Figure 2. In addition, weld quality may be
inconsistent along the weld seam of pipes due to errors in the welding process, resulting
in weld defects [4]. When the surface load acts on a pipeline with defect, the presence of
defects increases the risk of pipeline failure. Therefore, studies on the failure mechanism
and influencing factors of gas pipelines with defects under surface load are much needed
to provide a reference for urban gas pipeline safety management.
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Many scholars have investigated the mechanical behavior of pipelines under surface
load. Shuai et al. [5] analyzed the stress and deformation of buried pipelines subjected
to surface loads using the finite element analysis software ABAQUS. Sun [6] proposed
a theoretical method for calculating the shear force, deformation, and bending moment
of pipelines adjacent to buildings on a Winkler elastic foundation according to short-
beam theory. Han et al. [7] built a three-dimensional (3D) numerical model of a pipeline-
foundation system and analyzed the influence of surface load on stress-strain characteristics
of pipelines buried in hard rock regions. Zhang et al. [8] investigated pipeline deformation
and stress-strain characteristics caused by rock fall impact. Zheng et al. [9] established
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a finite element model based on a constitutive model of PE and studied the influence of
surface load parameters on a buried PE pipeline.

Yang [10] analyzed the mechanical characteristics of buried pipelines under long-term
evenly distributed loads and impulsive loads. Ma et al. [11] established a 3D numerical
model of a pipeline subjected to various loads to study the deformation and mechanical
behavior of the pipeline. Han et al. [12] presented a 3D numerical model of pipeline-soil
interaction. The influence of surface load, load action area, pipeline inner pressure, and
elastic modulus of backfill soil on the stress and strain distributions in the pipeline were
analyzed. Noor et al. [13] established a finite element model of a buried pipeline under
vertical surface load in ANSYS. Trickey et al. Ref. [14] studied the impact of periodic
ground loads on pipelines using the 3D finite element method. The impact of ground loads
on pipelines of various material stiffness and buried depths were analyzed. Xiao et al. [15]
established a stress model of a beam on an elastic foundation under random traffic loads to
analytically determine the displacement response of a pipeline.

Recent research in this area has been mainly focused on intact pipelines, whereas few
studies have investigated the mechanical behavior of pipelines with defects under surface
load. Moreover, most studies have mainly considered metal pipelines, while studies on HDPE
pipelines with defects are lacking. Gas pipelines are susceptible to defects during laying,
installation, and welding processes; therefore, it is necessary to study the potential failure
mechanism and limit states of HDPE pipelines with defects under surface load. The fitness-
for-service assessment of defective pipelines is a quantitative evaluation of whether the
defective pipelines are suitable for continuous use and how to continue to use. The failure
behavior of HDPE pipelines with defects under surface load were investigated in this paper.
The influence of various pipeline defect parameters on the failure load were analyzed. In
addition, safety evaluation curves for pipelines under surface load were obtained. This paper
provides an important reference for urban gas pipeline safety management.

2. Numerical Model of Pipe with Defect under Surface Load

During service, the buried pipelines not only bear the weight of overlying soil, but also
additional loads, such as buildings and vehicles acting on the ground. These additional
loads can lead to uneven radial deformation of the pipeline. Defects in pipelines can result
in stress concentrations at the defect position, which can easily lead to failure or rupture of
the pipeline.

In order to accurately characterize the behavior of urban gas pipelines, a 3D pipe-soil
interaction model of the HDPE pipeline with defects under surface load was established by
finite element method, as shown in Figure 3. The model is comprised of two separate parts,
the pipeline and the soil. A uniformly distributed static load was applied the ground and
acted on the pipe through the foundation soil. Only half of the foundation structure was
considered by assuming symmetry of the applied load. A rectangular area of 1.6 m × 2 m
was calculated as the surface load range of the model (red area in Figure 3). The dimensions
of the finite element model were 10 m × 4 m × 2.4 m (length × width × height) and the
buried depth of the pipeline was 0.8 m.
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2.1. HDPE Pipe and Soil Properties

The material properties test was carried out using an electronic universal testing machine.
The tensile test specimens were directly cut from the HDPE pipeline according to standard
ISO527-2012 [16], the size of test specimens are shown as Figure 4. Tensile tests were performed
by controlling the displacement, and the loading rate was 50 mm/min, as shown in Figure 5.
The load-displacement relationship of HDPE can be recorded by test machine.
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Figure 5. Image of tensile test apparatus.

In contrast to metal, HDPE is a nonlinear viscoelastic material that is more sensitive to
strain rate and its material properties are highly influenced by loading rate [17]. The surface
load acting on the pipe is equivalent to a quasi-static load, and the stress-strain curve of
HDPE pipe was obtained by material uniaxial static tensile tests as shown in Figure 6.
A hyperbolic constitutive model was used to simulate the material properties of the
HDPE pipeline. By fitting Equation (1) to the real stress-strain curve, the parameters of
the equation were obtained as 0.00089 and 0.057. According to ISO527-2012, the elastic
modulus measured by uniaxial tensile test is the slope of the stress-strain curve in the strain
range of 0.05% and 0.25%. The HDPE parameters are listed in Table 1.

σ =
ε

a + bε
(1)
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Here σ is the true stress, MPa; ε is the true strain; a and b are parameters of Equation (1)
fitted true stress-strain curve.

Energies 2021, 14, x FOR PEER REVIEW 5 of 22 
 

 

Figure 5. Image of tensile test apparatus. 

In contrast to metal, HDPE is a nonlinear viscoelastic material that is more sensitive 
to strain rate and its material properties are highly influenced by loading rate [17]. The 
surface load acting on the pipe is equivalent to a quasi-static load, and the stress-strain 
curve of HDPE pipe was obtained by material uniaxial static tensile tests as shown in 
Figure 6. A hyperbolic constitutive model was used to simulate the material properties of 
the HDPE pipeline. By fitting Equation (1) to the real stress-strain curve, the parameters 
of the equation were obtained as 0.00089 and 0.057. According to ISO527-2012, the elastic 
modulus measured by uniaxial tensile test is the slope of the stress-strain curve in the 
strain range of 0.05% and 0.25%. The HDPE parameters are listed in Table 1. 

εσ
εa b

=
+  (1)

Here σ  is the true stress, MPa; ε  is the true strain; a  and b  are parameters of 
Equation (1) fitted true stress-strain curve.  

 
Figure 6. Stress-Strain curve of HDPE pipe. 

Table 1. Material parameters of HDPE pipe. 

Poisson Ratio 
λ  

Density 
3/ kg mρ −⋅  

Elastic Modulus 
E/ MPa 

Yield Stress 
/ MPasσ   

0.45 951 1115 14.5 

Considering the small deformation of soil, an elastoplastic constitutive model was 
adopted. Soil behaves according to the Mohr-Coulomb model, which is used in 
geotechnical engineering for materials under monotone loading [18]. The soil parameters 
are listed in Table 2. 

Table 2. Parameters of Mohr-Coulomb model of small soil deformation. 

Poisson Ratio 
λ  

Density 
3/ kg mρ −⋅  

Elastic 
Modulus 

E/MPa 

Soil Cohesion 
C /kPa 

Internal Friction 
Angle 
β /° 

Dilatancy Angle 
ψ /° 

0.4 1867.3 20 29.3 28.7 0 
  

Figure 6. Stress-Strain curve of HDPE pipe.

Table 1. Material parameters of HDPE pipe.

Poisson Ratio
λ

Density
ρ/kg·m−3

Elastic Modulus
E/MPa

Yield Stress
σs/MPa

0.45 951 1115 14.5

Considering the small deformation of soil, an elastoplastic constitutive model was
adopted. Soil behaves according to the Mohr-Coulomb model, which is used in geotechnical
engineering for materials under monotone loading [18]. The soil parameters are listed
in Table 2.

Table 2. Parameters of Mohr-Coulomb model of small soil deformation.

Poisson Ratio
λ

Density
ρ/kg ·m−3

Elastic Modulus
E/MPa

Soil Cohesion
C/kPa

Internal Friction
Angle

β/◦

Dilatancy
Angle

ψ/◦

0.4 1867.3 20 29.3 28.7 0

2.2. Mesh and Boundary Conditions of Finite Element Model

To accurately simulate pipe-soil interaction, a solid model of the pipeline with defects
under surface load was established. The pipe is made of HDPE with a diameter of 110 mm,
a wall thickness of 10 mm, and an internal pressure of 0.2 MPa. The pipe defect was
modeled as an axial groove and the position, depth, width, and length of the defect were
varied [19]. Eight-node hexahedral elements SOILD45 were used to simulate the pipeline,
as shown as Figure 7. TARGE170 element and CONTACT173 element were selected to
analyze the pipeline-soil deformation process. The penalty function was used to calculate
and analyze the friction between pipeline and soil. The penalty stiffness was 0.1. In our
previous work, a series of mesh convergence studies were performed to determine a
suitable mesh with an appropriate balance between accuracy and computational time.
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Dimensionless parameters can be introduced to simulate the defect size parameters,
including defect length L(mm), width W(mm), and depth D(mm) [20]. The three parameters
can be determined as follows: 

L =
√

nDt

W = 2D sin θ
2

D = µt

(2)

where D is the outer diameter of the pipe, mm; t is the pipe wall thickness, mm; n is order
of magnitude of the defect length, θ is the defect circumferential angle, and µ is the ratio of
defect depth to wall thickness.

2.3. Failure Criterion of HDPE Pipeline

Typical failure modes of buried pipelines include strength failure, buckling, and
excessive deformation. The failure modes of HDPE pipelines with defects under surface
load are mainly related to excessive stress [21]. Failure of the pipeline occurs when the
equivalent stress of the pipeline reaches the yield limit. Here, the fourth strength theory
was used to calculate the equivalent stress. Then the critical state of the HDPE pipeline can
be obtained as:

σs =

√
1
2

[
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2
]

(3)

where σs is the maximum von Mises stress in the pipe, MPa; σ1, σ2, and σ3 are the three
principal stresses, MPa.

3. Validation of the Finite Element Model

Scholars have previously studied the mechanical behavior of intact HDPE pipes
under surface load. To verify the proposed method and the accuracy of the finite element
model, an analysis model of an intact HDPE pipe with no defect under surface load was
established. The simulation results were compared with Zheng’s previously published
results [16]. The variation of maximum Mises stress of the arch camber line of the pipe with
surface load was analyzed, as shown in Figures 8 and 9. The results of the present study
were consistent with those of previously published works, thus verifying the rationality of
the model.

An axial groove defect was added to the intact pipe model in order to analyze the
same HDPE pipe with a defect under surface load. The defect can be described using four
geometric parameters: location µ, depth D, length L, and width W. The failure mechanism
of the pipe was analyzed by varying the geometric parameters of the defect.
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4. Analysis of Finite Element Simulation Results
4.1. Failure Mechanism of Pipe with Defect under Surface Load

In the practical engineering application, various types of defects can be found in
pipelines [22]. The influence of geometric parameters of the defect on the failure process
of HDPE pipelines was studied using the proposed finite element model. The geometric
parameters were varied while other parameters were kept constant. The internal pressure
was 0.2 MPa, the axial length of the defect was 50 mm, the defect width was 15 mm, and
the defect depth was 4 mm.

Figure 10 shows the variation of Mises stress and stress distribution during the failure
process of the HDPE pipeline when the position of defect is 90◦. The maximum Mises
stress of the pipeline gradually increases with increasing surface load, the curve begins to
flatten when the surface load becomes large. This is mainly because the bearing capacity of
the pipe begins to decrease once the material enters the plastic deformation state; therefore,
stress in the pipe will no longer significantly increase as the load increases. Moreover, the
position of maximum Mises stress is not constant during the loading process, but gradually
transfers from the top and bottom of pipeline to the defect position and the left and right
sides of the pipeline. Finally, when the surface load is 2.2 MPa, the maximum Mises stress
at the defect site and the arch line of the pipeline exceeds the yield limit and the pipe
fails. This is because the stiffness of the pipeline is not sufficient to support the load as the
compressive load increases. During deformation, stress concentrations are generated at the
defect position and the arch line, resulting in failure of the pipeline.
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4.2. Parameter Analysis
4.2.1. Defect Location

To analyze the influence of defect location on the pipeline failure process, defects at 0◦,
30◦, 45◦, 60◦, and 90◦ on the pipeline were selected. Figure 11 shows the failure processes of
the HDPE pipeline with defects at different positions. The maximum von Mises stress was
obtained for a defect at 0◦ and the minimum von Mises stress for a defect at 30◦. The von
Mises stresses were approximately equal at symmetrical defect positions with respect to
the symmetric axis. When the defect position was between 30◦ and 60◦, the distribution of
von Mises stresses in the pipeline were almost consistent.
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The critical failure surface load and failure position of the HDPE pipeline were ex-
tracted for different defect positions, as shown in Figure 12. When the defect was at 0◦,
the critical failure load was smallest, with a value of 1.8 MPa. When the defect position
was 30◦, the critical failure load was 2.84 MPa. Moreover, when the defect position was
between 0◦ and 60◦, the pipe failed at the arch line. When the defect position was between
60◦ and 90◦ (including 60◦), the pipe failed at the defect and at the arch line. When the
defect position is 0◦, the pipeline was likely to fail under the surface load; therefore, all
defects in the subsequent analysis were located at 0◦.
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4.2.2. Internal Pressure Load

Urban gas pipelines typically operate at medium to sub-high pressures (0.2–0.7 MPa).
To analyze the influence of internal pressure on the failure behavior of the HDPE pipeline
with defects under surface load, the mechanical performance of the pipeline with a defect
depth of 4 mm was analyzed under various internal pressures, as shown in Figure 13.
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Figure 13. Maximum von Mises stress in HDPE pipe under different internal pressure loads.

Under small surface load, the pressure in the pipe had a major influence on the
mechanical behavior of the pipe. When the surface load was less than 0.5 MPa, the
maximum von Mises stress increased as the internal pressure load increased. When the
surface load was large, the defect parameters had a more dominant influence on the
mechanical properties of the pipe. The maximum von Mises stress of the pipe decreased
as the internal pressure load increased. Once the maximum von Mises stress in the pipe
exceeds the yield limit and expires, pressure in the pipe will have very little impact on the
mechanical behavior of the pipe.

Figure 14 shows the distribution of the pipeline failure locations with internal pressure
load. When the internal pressure of the pipeline is small, failure occurs on the inner wall
of the arch camber line on both sides of the pipeline. When the internal pressure load
is greater than 0.3 MPa, only the inner wall of the pipeline at the defect will fail and the
failure area of the pipeline will decrease with increasing internal pressure load. When the
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internal pressure is 0.7 MPa, the pipeline failure area is concentrated along the inner wall
of the defect.
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4.2.3. Defect Depth

Defects in HDPE pipes may have different depths. To study the influence of defect
depth on the pipeline failure process, defect depth was varied and all other geometric
parameters were kept unchanged. Figure 15 shows the failure process of the HDPE
pipeline with various defect depths. The maximum von Mises stress in the HDPE pipeline
gradually increased with increasing defect depth, and the variation trend was similar.
The critical failure load was extracted for different defect depths, as shown in Figure 16.
The relationship between defect depth and critical failure load was approximately linear.
As the defect depth increased, the critical failure load of the pipeline gradually decreased.
This is mainly because stress concentrations at the defect in the pipeline are more obvious
as the defect depth increases; therefore, failure is more likely to occur.
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Figure 16. Critical failure load of HDPE pipeline for various defect depths.

Figure 17 shows the distribution of the position of pipeline failure with different defect
depths. The positions of pipeline failure are located on the inner wall of the arch camber
line on both sides. With increasing defect depth, the failure area of the inner wall at the
defect location increases. When the defect depth is 5 mm, half of the remaining thickness
of the pipe defect location will fail and when the defect depth is increased to 7 mm, the
remaining thickness of the pipe defect location will fail basically.
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Figure 17. Location of HDPE pipeline failures with various defect depths.

4.2.4. Defect Length

The influence of defect length on the pipeline failure process was investigated. Figure 18
shows the HDPE pipeline failure process with different defect lengths. The maximum von
Mises stress in the pipeline gradually increased with increasing defect length. When the de-
fect length reached 30 mm, the maximum Mises stress had almost no effect on the von Mises
stress in the pipeline. The critical failure load of the pipeline with different defect lengths is
shown in Figure 19. When the order of magnitude of the axial length of the pipeline was
greater than 2, the critical failure load of the pipeline tended to remain unchanged.
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Figure 20 shows the distribution of failure locations with defect length. Failures
occurred on the inner walls of the arch camber lines on both sides of the pipe. Defect length
had a relatively small impact on the location of pipeline failure.
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4.2.5. Defect Width

Defect width is another important factor affecting the pipeline failure process. The max-
imum von Mises stress of the pipe with different defect widths was extracted, as shown
in Figure 21. The von Mises stress in the HDPE pipe gradually decreased with increasing
defect width. Critical failure loads of the pipeline with different defect widths are shown
in Figure 22.
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Figure 22. Critical failure load of HDPE pipe with various defect widths.

Figure 23 shows the distribution of pipeline failure position with defect width.
The pipeline failure positions are located on the inner wall of the arch camber line on
both sides of the pipe. As the defect width increased, the failure area on the inner wall of
the pipeline at the defect position gradually increased.
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5. Fitness-for-Service Assessment Model Based on Failure Assessment Curves

To obtain the ultimate load of the HDPE pipe with different defect depths, curves of
defect depth versus critical surface load under different internal pressures were produced
for defects at 0–30◦, as shown in Figure 24. Internal pressure will affect the critical load of the
pipe. The ultimate load increases with increasing pipeline internal pressure. Furthermore,
the ultimate load decreases with increasing defect depth and the curve tends to flatten
when defect depth µ is greater than 0.5. Defect depth has a more obvious influence on the
limit surface load when defect depth µ is less than 0.5.
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Formulae for the ultimate surface load, defect depth, and internal pressure of the pipeline
when a defect is located at 0–30◦ of the pipeline can be obtained. The R-squared of the
correlation coefficient is 0.990, which indicates that the fitting formula reflects the data well.

SL0∼30◦ = (a1µ3 + a2µ2 + a3µ + a4) · (a5Pa6 + a7) (4)

Here SL0∼30◦ represents critical surface load when the defect is located at 0–30◦, MPa;
µ represents the defect depth; P represents internal pressure, MPa; a1, a2, a3, a4, a5, a6, and
a7 are the coefficients of the equation, as listed in Table 3.

Table 3. Coefficient of the fitting formula (0–30◦).

a1 a2 a3 a4 a5 a6 a7

−2.005 3.960 −2.782 1.858 0.309 1.233 1.353
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A comparison between the predicted results and simulation results with defects at
0–30◦ is presented in Figure 25. The percentage difference was less than 10%.
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When the defect was located at 30–60◦, an equivalent analysis was carried out by the
result of the defect located at 45◦. The limit state of the pipeline is shown in Figure 26. When
the defect was located at 30–60◦, the critical failure load of the pipeline was significantly
greater than those of pipelines with defects located at 0◦ and 90◦. When the defect depth is
greater than 0.4, defect depth will have a more significant impact on the critical failure load.
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Figure 26. Defect depth-critical surface load curves under various internal pressure loads (30~60◦).

Formulae for the ultimate surface load, defect depth, and internal pressure of the
pipeline when the defect is located at 30–60◦ were obtained according to the failure evalua-
tion curves. The R-squared of the correlation coefficient is 0.990.

SL30∼60◦ = (a1µ3 + a2µ2 + a3µ + a4) · (a5Pa6 + a7) (5)

Here SL30∼60◦ represents the critical surface load when the defect is located at 30–60◦,
MPa; µ represents the defect depth; P is internal pressure, MPa; a1, a2, a3, a4, a5, a6, and a7
are the coefficients of the equation, as listed in Table 4.
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Table 4. Coefficient of the fitting formula (30–60◦).

a1 a2 a3 a4 a5 a6 a7

−1.116 −0.349 −0.115 2.850 0.163 0.710 0.931

A comparison between the predicted and simulation results when the defect was
located at 30–60◦ is shown in Figure 27. The error of the formula was less than 10%.
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Figure 27. Comparison between predicted and calculated values (30~60◦).

For a defect located at 60–90◦, the safety assessment curves of the HDPE pipeline are
shown in Figure 28. When the defect depth was small, the failure load of the pipeline
changed more gently; when the defect depth was more than 3 mm, the rate of change
began to increase, and when the defect depth was large, the variation was smooth. This is
because when the defect was located at 90◦, the maximum von Mises stress of the pipeline
appeared on the left and right sides of the pipeline when the defect depth was relatively
shallow. As the defect depth increased, the stress concentration at the defect became more
obvious and the maximum Mises stress finally occurred at the defect site.
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Figure 28. Defect depth-critical surface load curves for different internal pressure loads (60–90◦).

Formulae for the ultimate surface load, defect depth, and internal pressure of the
pipeline when the defect was located at 60–90◦ can be obtained according to the failure
evaluation curves. The R-squared value of the correlation coefficient is 0.942.

SL60∼90◦ = (a1µ3 + a2µ2 + a3µ + a4) · (a5Pa6 + a7) (6)
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Here SL60∼90◦ represents the critical surface load when the defect located at 60–90◦,
MPa; µ represents the defect depth; P is internal pressure, MPa; a1, a2, a3, a4, a5, a6 and a7
are the coefficients of the equation, as listed in Table 5.

Table 5. Coefficient of the fitting formula (60–90◦).

a1 a2 a3 a4 a5 a6 a7

4.845 −4.871 −0.040 2.292 0.614 0.566 0.919

A comparison between predicted results and simulation results with a defect at 60–90◦

as shown in Figure 29. The percentage difference between the results was less than 10%.
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6. Engineering Applications

A safety evaluation method for gas pipelines with defects is proposed based on
the safety evaluation curves and critical surface load calculation, which can be directly
referenced in engineering practice, as shown as Figure 30. The steps are as follows:

1. Determine the operating pressure of the gas pipeline with defects.
2. Determine the pipeline defect depth using detection and excavation measures and

calculate the ratio of wall thickness to defect depth.
3. According to the location of the defect, select the appropriate pipeline safety assess-

ment curve for defects located in the ranges [0◦, 30◦], [30◦, 60◦] and [60◦, 90◦] and
evaluate the safety state of the gas pipeline according to the surface load at the upper
end of the pipeline.

4. Repair dangerous sections of the gas pipeline. The proposed safety evaluation method
can guide safety management of gas pipelines.
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Figure 30. Fitness-for-service assessment method for pipes with defects.

A medium-pressure gas pipeline (PE110) in Zhongmensigou, Yuyuan District, and
Mentougou District in Beijing City, which was supplied by the Beijing Huayou United Gas
Development Co., Ltd., was damaged by the construction team of Jinhe Water Construction
Company, as shown as Figure 31. This gas pipeline was selected to demonstrate a real-
world application of the proposed safety evaluation method. The construction process
produced a volume defect in the pipeline.
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Figure 31. Buried gas pipeline in the city.

The construction process can cause volume defects in the pipeline as illustrated in
Figure 32. The pipe diameter was 110 mm, the wall thickness was 10 mm, and the internal
pressure was 0.4 MPa. The defect depth was measured on site as 5.6 mm.
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Figure 32. Defect in HDPE pipe.

For defects located at 60–90◦, the critical surface load can be calculated using the
following formula:

SL60∼90◦ = (4.845µ3 − 4.871µ2 − 0.04µ + 2.292) · (0.614P0.566 + 0.919)
=
(
4.845× 0.563 − 4.871× 0.562 − 0.04× 0.56 + 2.292

)
· (0.614× 0.40.566 + 0.919)

= 2.046 MPa
(7)

The critical surface load of pipe is 2.046 MPa. The surface load is determined by
measuring the pressure around the pipeline. Thus, the pipeline can operate safely in its
current state.

7. Conclusions

In this study, the mechanical properties and failure characteristics of pipes with defects
under surface load were investigated using the finite element method. The influence of
defect position, pipeline internal pressure, defect depth, and defect width parameters on
the stress response of the pipe were analyzed. The HDPE pipeline safety evaluation curves
were obtained for various working conditions. The main conclusions of this work can be
summarized as follows:

1. A solid model of a HDPE pipe with defects under surface load was established.
The model considers nonlinearity of the pipe material and soil, nonlinear contact
between the pipe and soil, and geometric nonlinearity of pipe deformation. Further-
more, the rationality of the model was verified by comparing the simulation results
with previously published results for a pipe with no defects.

2. As the surface load increases, the maximum von Mises stress in the HDPE pipe with
defects gradually increases and the position of maximum stress shifts from the top
and bottom of the pipe to the defect position and the arch line of the pipe. When
the von Mises stress exceeds the yield limit, the pipe fails. The load also leads to the
pipeline in the pressure area of the large vertical settlement; therefore, the pipeline is
more prone to failure.

3. The defect location will affect the failure process of the HDPE pipeline. When the
defect is located was 0◦, the critical failure load of the pipeline was smallest. The von
Mises stress in the pipeline was lowest and the critical failure load was highest when
the defect was located at 30◦. Under a small surface load, the pressure in the pipe will
have the largest influence on the mechanical behavior of the pipeline with defects.
In addition, the maximum von Mises stress in the pipe varies with the variation in
internal pressure load with increasing surface load. When the maximum von Mises
stress in the pipe exceeds the yield limit and expires, the pipe internal pressure will
have a minimal impact on the mechanical properties of the pipe.
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4. As the depth of the defect increases, the maximum von Mises stress of the HDPE pipe
also gradually increases and the relationship between defect depth and critical failure
load decreases linearly. With increasing defect length, the maximum von Mises stress
of the pipe gradually increases; however, the length of the defect will have very little
effect once the length exceeds 30 mm. The maximum von Mises stress decreases with
increasing defect width.

5. Failure assessment curves of the HDPE pipeline were obtained for various surface
loads, internal pressure loads, and defect depths. The formula for calculating the
critical surface load according to defect parameters was obtained with nonlinear
fitting. The proposed assessment method can be used as part of the safety evaluation
of HDPE pipes with defects. The results of this study provide important reference for
preventing gas pipeline accidents.
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Nomenclature

σ true stress (MPa)
ε true strain
λ Poisson ratio
ρ Density (kg ·m−3)
E Elastic modulus (MPa)
σs Yield Stress (MPa)
C soil cohesion (kPa)
β internal friction angle (◦)
ψ dilatancy angle of soil (◦)
L defect length (m)
t pipe wall thickness (m)
n order of magnitude of the defect length
θ defect circumferential angle (◦)
µ ratio of defect depth to wall thickness
σ1 principal stresses 1 (MPa)
σ2 principal stresses 2 (MPa)
σ3 principal stresses 3 (MPa)
ai coefficients of the equation
P internal pressure (MPa)
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