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Abstract: This paper presents an end-to-end method to design passivity-based controllers (PBC)
for a class of input-affine nonlinear systems, named quasi-linear affine. The approach is developed
using Krasovskii’s method to design a Lyapunov function for studying the asymptotic stability, and
a sufficient condition to construct a storage function is given, along with a supply-rate function. The
linear fractional transformation interconnection between the nonlinear system and the Krasovskii
PBC (K-PBC) results in a system which manages to follow the provided input trajectory. However,
given that the input and output of the closed-loop system do not have the same physical significance,
a path planning is mandatory. For the path planning component, we propose a robust controller
designed using the µ-synthesis mixed-sensitivity loop-shaping for the linearized system around
a desired equilibrium point. As a case study, we present the proposed methodology for DC-DC
converters in a unified manner, giving sufficient conditions for such systems to be Krasovskii passive
in terms of Linear Matrix Inequalities (LMIs), along with the possibility to compute both the K-PBC
and robust controller alike.

Keywords: Krasovskii’s passivity; nonlinear systems; DC-DC converters; physical models; generated
Lyapunov functions; robust control; µ-synthesis; linear matrix inequalities

1. Introduction

In the recent years, passivity theory has gained renewed attention because of its
advantages and practicality in modelling of multi-domain systems and constructive control
techniques. Starting with the classical theory of dissipative systems of [1,2], the idea
of differential passivity based on the idea of variational systems was developed in [3,4].
The same authors extended in [5] the idea to the incremental passivity concept. More
recently, the idea of Krasovskii’s passivity was developed in [6]. This approach is based
on the construction of a storage function using Krasovskii’s method to design a Lyapunov
candidate function for stability as in [2]. Moreover, all these methods are useful for
designing a simpler and more robust passivity-based controller (PBC).

However, a PBC manages to guarantee the closed-loop stability and reference tracking
in terms of the command signal. But, in many cases, systems do not have the same physical
significance and relevance for both input and output signals and, as such, an additional
path planning procedure is necessary. For the purpose of this paper, we propose a robust
controller to play this role, because robustness represents a major problem studied in
Control Theory, with high impact in the literature, encompassing the sensitivity of a system
with respect to both internal and external disturbances. The classical solutions for robust
control problems usesH2 andH∞ norms as a performance measure. The most common
approaches to solve such problems are Algebraic Riccati Equations (AREs) [7] and Algebraic
Riccati Inequalities (ARIs) [8]. In order to solve AREs in a more numerically stable manner,
a solution using Popov triplets was presented in [9]. An open-source implementation
of the above method is presented in [10], along with an iterative refinement described
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in [11]. In order to overcome the limitations of the ARE-based solutions, consisting in the
impossibility of solving singular problems, a Linear Matrix Inequality (LMI) based solution
was developed in [12]. For solving robust and nonlinear control problems using LMIs,
an open-source implementation is described in [13]. Moreover, an open-source toolbox
for automatically modelling uncertainties as required in robust control problems using
MATLAB is presented in the paper [14].

Nowadays, renewable energy sources play an increasingly important role in the energy
conversion, due to the negative consequences of the global warming. DC-DC converters
have been found to be an adequate solution regarding renewable energy harvesting such
as for sustaining prescribed voltages for high-power loads and for maximum power
point tracking, as in [15–17], or in DC microgrids, as in [18]. An interior point method
for renewable energy management was introduced in [19], where the importance of the
good performance in the DC-DC converters control is underlined. For modelling DC-DC
converters, there are two major improvements: the averaging of ON and OFF state-space
models from [20], obtaining a nonlinear model, along with adding parasitic components in
the circuit model, such as series and parallel resistors in the switching elements and passive
components alike, as in [21]. The average model greatly simplifies the computations and
well approximates the physical switching system to a desired ripple tolerance, based on the
PWM period. Using these ideas, a technique which adds a damping injection term to reach
the passivity of the system was presented in [22], and was extended for the nonideal DC-
DC boost converter in [23]. A Krasovskii passive proportional-integral (PI) type controller
was designed for the ideal case of DC-DC converters in [6].

The main contributions of the current paper are: a mathematical framework for
studying the property of quasi-linear input-affine nonlinear systems to be passive, a method
to design a passivity-based controller for such a nonlinear systems, along with an entire
software mechanism which manages to compute both PBC and robust controllers. First,
we provide an extended set of sufficient conditions for a quasi-linear input-affine nonlinear
system to be Krasovskii passive, along with a set of necessary and sufficient conditions for
DC-DC buck, boost and single-ended primary inductor (SEPIC) converters to construct
an output such that the systems are Krasovskii passive. These extended methods can be
used even for nonideal converters, compared to the sufficient set of conditions presented
in [6]. Also, we present a method to design a Krasovskii passivity-based controller (K-PBC)
which, along with the output port variable of the DC-DC converter, manages to ensure the
closed-loop stability. This means that the lower linear fractional transformation between the
system and the controller is asymptotically stable and manages to track any provided input
trajectory. However, the input and the output signals are of different physical significance
and, as such, an input trajectory path planning is needed in order to ensure a desired set of
tracking performances. As a solution to this issue, we propose a robust controller designed
for a linearized system around a forced equilibrium point. All these steps are included in
an open-source toolbox which extends the initial iteration presented in [14].

The paper follows the structure: Section 2 describes the mathematical tools necessary
for Krasovskii passivity analysis and Krasovskii passivity-based controller (K-PBC) design,
along with a basic overview of Robust Control theory; Section 3 gives an extended set
of sufficient conditions for a quasi-linear input-affine nonlinear system to be Krasovskii
passive and presents the proposed structure for the decentralized controller, along with rel-
evant aspects and observations regarding the software implementation; Section 4 presents
the mathematical models of the nonideal DC-DC converters, the Krasovskii’s passivity
analysis of these systems and the K-PBC design manner; Section 5 provides comparative
simulations of the obtained closed-loop system obtained by numerical simulation obtained
using the proposed open-source toolbox; Section 6 illustrates the conclusions, along with
proposed improvements and future work completions.

Notation: For x ∈ Rn and Q = Q> ≥ 0 ∈ Rn×n, we denote by ||x||Q := (x>Qx)1/2.



Energies 2021, 14, 5571 3 of 24

2. Mathematical Background
2.1. Passivity-Based Control

The control method proposed in this paper is designed for a certain class of continuous
time input-affine nonlinear systems. First, we consider the general form of a finite-order
continuous time input-affine nonlinear system in order to describe and develop the main
mathematical background:

(Σ) : ẋ = f (x, u) := g0(x) +
m

∑
i=1

gi(x)ui, (1)

where x ∈ Rn is the state vector, u = [u1, . . . , um]> ∈ Rm is the input vector and the
functions gi : Rn → Rn are of class C1. Consider the set of forced equilibrium points:

E = {(x, u) ∈ Rn ×Rm : f (x, u) = 0}. (2)

We assume that the set E is nonempty. The notion of dissipative systems is presented
according to [2] in the following definition.

Definition 1. The system (Σ) described in Equation (1) is said to be dissipative with respect to
the supply rate ω : Rn ×Rm → R if there exists a storage function S : Rn → R+ of class C1

such that:
∂S(x)

∂x
f (x, u) ≤ ω(x, u), ∀ (x, u) ∈ Rn ×Rm. (3)

We assume that the supply-rate can be written as ω(x, u) = u>h(x), where h : Rn →
Rm. In this case, vectors u and y = h(x) are called port variables.

The critical difficulty in order to prove the passivity is characterized by a suitable
choice of the storage function. A typical choice of the storage function is the total energy of
the system. Although these types of storage functions can be used to prove the passivity of
a system, this standard approach is not useful to design a passivity-based controller due to
the port variable. A solution with a damping injection term is presented by the authors
in [23]. In order to design a passivity based controller (PBC), the following extended system
can be considered, as in [24]:

(Σe) :

{
ẋ = f (x, u);
u̇ = ud,

(4)

where ud ∈ Rm is the new input vector and x̃ = [x> u>]>∈ Rn+m is the new state vector.
A new passivity concept was introduced by [6] using a storage function similar to the
Lyapunov candidate function constructed using Krasovskii’s method presented in [2].

Definition 2. Let hK : Rn ×Rm → Rm be the function which describes the output port variable.
The nonlinear system (Σ) is said to be Krasovskii passive if its extended system (Σe) is dissipative
with respect to the supply rate:

ωK(x̃, ud) = u>d hK(x̃),

with a storage function:

SK(x̃) =
1
2
|| f (x, u)||2Q, ∀ x̃ ≡ (x, u) ∈ Rn ×Rm

where Q = Q> ≥ 0.

A sufficient set of conditions for a system to be Krasovskii passive is presented in
the following theorem. For simplicity, for a symmetric and positive semidefinite matrix
Q ∈ Rn×n we use the following shorthand notation:

Qgk (x) = Q
∂gk(x)

∂x
+

∂g>k (x)
∂x

Q, k = 0, m. (5)
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Theorem 1. The system (Σ) is Krasovskii passive with the supply-rate ωK(x̃, ud) = u>d hK(x̃),
where the port variable hK can be expressed as:

hK(x, u) = [g>1 (x) . . . g>m(x)]Q f (x, u) (6)

and with the storage function:

SK(x̃) ≡ SK(x, u) =
1
2
|| f (x, u)||2Q, (7)

if there exists a matrix Q ∈ Rn×n, Q = Q> ≥ 0, that satisfies the following condition:

Q(x̃) ≡ Qg0(x) +
m

∑
k=1

Qgk (x)uk ≤ 0, (8)

for all x̃ ≡ (x, u) ∈ Rn ×Rm.

Proof. Taking the Lie derivative of SK along the vector field of (Σe):

∂SK(x̃)
∂x̃

fe(x̃, ud) = f>(x̃)Q(x̃) f (x̃) + u>d hK(x̃),

where

fe(x̃, ud) =

[
f (x, u)

ud

]
,

describes the system (Σe): ˙̃x = fe(x̃, ud).
From Q(x̃) ≤ 0 we obtain the inequality:

∂SK(x̃)
∂x̃

fe(x̃, ud) ≤ u>d hK(x, u) = ωK(x̃, ud),

which completes the proof.

The sufficient condition indicated in the theorem is an extension of the necessary
and sufficient set of conditions for a system to be differential passive, given in [4], which
assert that Qg0(x) ≤ 0 and Qgk (x) = 0, for each x ∈ Rn. These necessary and sufficient
conditions were extended in [6] to be sufficient conditions to Krasovskii passivity, but this
approach can also lead to a port variable unusable for controller design, as it will be shown
in Section 4.

Next, we want to prove that the classical interconnection between two Krasovskii
passive systems presented in Figure 1 forms also a Krasovskii passive systems. Consider
two such systems (Σ1) and (Σ2) given by:

(Σj) : ẋj = f (xj, uj), j ∈ {1, 2}, (9)

having the extended systems (Σe,1) and (Σe,2) with the states x̃j ≡ (xj, uj), which are
Krasovskii passive with respect to the supply rates ωK,j(x̃j, ud,j) = u>d,jhK,j(x̃j) and the
storage functions SK,j(x̃j). For the systems (Σe,j), the interconnection considered in Figure 1
can be written as:

(Σi) :
[

ud,1
ud,2

]
=

[
0 −1
1 0

][
hK,1
hK,2

]
+

[
ed1
ed2

]
, (10)

where e1, e2 ∈ Rm are external inputs and ed,j = ėj are their derivatives. The extended
system state can be expressed as

x̃ = [x̃>1 + [0n e>1 ] x̃2 + [0n e>2 ]]
>. (11)
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Figure 1. Passivity interconnection.

Lemma 1 ([6]). The resulting system (Σi) is Krasovskii passive with respect to the supply-rate

ωK,i(x̃, ed1 , ed2) = e>d1
hK,1(x̃1) + e>d2

hK,2(x̃2)

and the storage function
SK,i(x̃) = SK,1(x̃1) + SK,2(x̃2).

Proof. From the assumptions of the lemma it results that:

∂SK,j(x̃j)

∂x̃j
fe,j(x̃j, ud,j) ≤ u>d,jhK,j(x̃j), j ∈ {1, 2}.

Consider the Lie derivative of SK,i along the vector fields of (Σe,1) and (Σe,2) and using
the previous relations:

∂SK,i(x̃)
∂x̃

[
fe,1(x̃1, ud1)
fe,2(x̃2, ud2)

]
≤ u>d,1hK,1(x̃1) + u>d,2hK,2(x̃2) =

= e>d,1hK,1(x̃1) + e>d,2hK,2(x̃2) = ωK,i(x̃, ed1 , ed2),

which concludes the proof.

Now, we show a procedure to design a Krasovskii passivity-based controller (K-PBC).
Let us define:

(Σc) : yc(t) = ẋc(t) = K1(K2xc − uc(t)) ≡ fc(xc, uc), (12)

where xc ∈ Rnc is the state vector, uc and yc are the input vector and output vector,
respectively, while the matrices K1, K2 ∈ Rnc×nc must be symmetric and negative definite,
along with symmetric and positive definite, respectively.

Lemma 2 ([6]). The controller (Σc) is Krasovskii passive with respect to the supply-rate
ωK,c(yc, uc) = y>c uc and with the storage function SK,c =

1
2 ||xc||2K2

.

Proof. Consider the Lie derivative of the SK,c along the vector field of (Σc):

∂SK,c(xc)

∂xc
fc(xc, uc) = ẋ>c K2xc = ẋ>c (K

−1
1 ẋc + uc).

Using K1 < 0 and yc = ẋc, we obtain:

∂SK,c(xc)

∂xc
fc(xc, uc) ≤ ẋ>c uc = ωK,c(yc, uc),

and the proof is done.
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Now, consider the interconnection of the systems (Σe) and (Σc) given by:[
ud
uc

]
=

[
0 −1
1 0

][
hK
yc

]
+

[
0

u?

]
, (13)

where u? is the external input. The following theorem gives the sufficient condition for
which the interconnection described above is Krasovskii passive.

Theorem 2 ([2]). Consider the extended system (Σe) which satisfies the conditions of Theorem 1
for a symmetric and positive definite matrix Q ∈ Rn×n with at least one equilibrium isolated
point (x, u). Also, consider the controller given by (Σc) with the states xc = u? − u and the
interconnection given by Equation (13). The closed-loop system is dissipative with respect to the
supply rate ωo(ud, u?) = u>d u? with the storage function:

So(x, u, xc) =
1
2
|| f (x, u)||2Q +

1
2
||xc||2K2

. (14)

Proof. Consider x̃o = [x̃> x>c ]>. The Lie derivative of the storage function So(x̃o) along
the closed-loop system trajectory respects the inequality from Lemma 1:

∂So(x̃o)

∂x̃o

[
fe(x̃, ud)
fc(xc, uc)

]
≤ (u?)> · yc.

All these results will be used to develop a unified approach to design K-PBC for a
class of input-affine nonlinear systems in Section 3, which will be particularized to the case
of DC-DC converters in Section 4 in a unified manner.

2.2. Robust Control

The proposed K-PBC will manage to ensure that the closed-loop system follows the
input trajectory u?, but in most applications, the desired trajectory is with regards to the
output signal, of different physical significance compared to the input signal. Therefore,
this command signal needs to be computed using a second controller. For the purpose
of this paper, we will use the Robust Control Framework in order to compute the input
trajectories. This framework is designed for the class of linear and time invariant systems
(LTI). The generalized plant used in the Robust Control Framework considering two types
of uncertainties is the following:

P∆ :


ẋ(t)

inev(t)
z(t)
y(t)

 =


A Bd Bw Bu

ineCv Dvd Dvw Dvu
Cz Dzd Dzw Dzu
Cy Dyd Dyw Dyu




x(t)
ined(t)

w(t)
u(t)

, (15)

where the vectors presented are: the disturbance input d ∈ Rnd , the exogenous input w ∈
Rnw , the control input u ∈ Rnu , the disturbance output v ∈ Rnv , the performance output
z ∈ Rnz and the measurement output y ∈ Rny . The disturbance vector d encompasses two
types of uncertainties: parametric and unstructured. These uncertainties are modelled
using the following set:

∆ =
{

∆ = diag
(

δ1 In1 , . . . , δs Ins , ∆1, . . . , ∆ f

)
|δk ∈ R, ∆j ∈ Rmj×mj , k = 1, s, j = 1, f

}
. (16)

The entire structure is presented in Figure 2. As observed in the figure, the generalized
plant has an upper linear fractional transformation (ULFT) with the uncertainty block ∆

and a lower linear fractional transformation (LLFT) with the controller K. The goal of the
Robust Controller is to ensure both robust stability and robust performance. In order to
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deal with uncertainties, the mathematical framework used for this is represented by the
structural singular value:

µ∆(LLFT(P, K)) = sup
ω∈R+

1
min
∆∈∆
{σ(∆)|det(I − LLFT(P, K)(jω)∆) = 0} . (17)

Figure 2. Generalized plant with uncertainties.

However, the structural singular values are hard to be explicitly computed, therefore
an upper bound can be used [25]:

µ∆(LLFT(P, K)(jω)) ≤ inf
D∈D

σ(D · LLFT(P, K)(jω) · D−1), (18)

where the set D is defined as:

D =
{

diag
(

D1, . . . , Ds, d1 Im1 , . . . , d f Im f

)
|Dk = D>k ∈ Rnk×nk , dj > 0, k = 1, s, j = 1, f

}
. (19)

Using the main loop theorem, the robust stability and robust performance can be
guaranteed by the small gain principle:

µ∆(LLFT(P, K)) < 1, (20)

which means that the robust control problem can be formulated in terms of optimization:

inf
K stab.

sup
ω∈R+

µ∆(LLFT(P, K)(jω)), (21)

and, using Equation (18), the following quasi-convex problem results:

inf
K stab.

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

. (22)

As detailed in [14,26], the µ-synthesis control problem can be solved using the so-called
D–K iteration procedure. This starts with an initial guess for D (usually the unitary matrix),
then the controller step, consisting in solving a H∞ control problem, and a scaling step,
consisting in solving several Parrot problems in a prescribed set of frequencies followed by
fitting a nonminimum-phase system using the obtained solutions, are executed in a loop
sequence until a stopping criterion is fulfilled.

The robust control problem used in this paper is the mixed sensitivity loop-shaping. In
this procedure, the LTI plant G is augmented using three weighting functions, one for each
specific function: sensitivity S, complementary sensitivity T and control effort KS. This
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controller design technique provides a good trade-off between stability and performance,
and can be expressed as:

inf
K stab.

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

,

such that
∥∥∥(WSS WTT WRR

)T
∥∥∥

∞
< 1,

(23)

where WS, WT and WKS are dynamic weighting functions for the closed-loop functions
mentioned above, selected in order to penalise certain frequencies in different amounts.

3. Krasoviskii Passivity-Based Controller Design with µ-Synthesis Path Planning
3.1. Proposed Method

For the purpose of this paper, we consider the following nonlinear input-affine sys-
tems in order to develop the proposed controller design technique. First, some initial
considerations should be made.

Definition 3. A nonlinear input-affine system is called quasi-linear affine if

(Σa) : ẋ = f (x, u) = g0(x) +
m

∑
k=1

gk(x)uk, (24)

where the nonlinear functions are affine, i.e., gk(x) = Akx+ bk, for each k = 0, m, with Ak ∈ Rn×n

and bk ∈ Rn.

Considering that:
∂gk(x)

∂x
= Ak, ∀k = 0, m, (25)

and using Theorem 1, the necessary and sufficient condition for a system (Σa) to be
Krasovskii passive can be written as:

QA0 + A>0 Q +
m

∑
i=1

(
QAi + A>i Q

)
ui ≤ 0, ∀u = [u1, u2, . . . , um]

> ∈ Rm. (26)

But, due to the physical constraints of the process, the command vector is bounded:
u ∈ [ul

1, uu
1 ]× [ul

2, uu
2 ]× · · · × [ul

m, uu
m]. Given that the space spanned by the values of the

command signal describes a polytope, Equation (26) can be formulated as a reunion of
LMI problems, one for each vertex of the polytope. Using this remark, the necessary and
sufficient conditions for a quasi-linear affine input-affine system (Σa) to be Krasovskii
passive are presented in the following theorem.

Theorem 3. The system (Σa) is Krasovskii passive with the supply-rate ωK(x, u) = u>hK(x),
where the port variable hK can be expressed as:

hK(x, u) = [x>A>1 + b>1 . . . x>A>m + b>m ] ·Q · ẋ, (27)

and with the storage function:

SK(x) =
1
2
‖ẋ‖2

Q (28)

if and only if there exists a symmetrical matrix Q = Q> ≥ 0 ∈ Rn×n which satisfies the
following conditions:

QA0 + A>0 Q +
m

∑
i=1

((
QAi + A>i Q

)
eiul

i +
(

QAi + A>i Q
)
(1− ei)uu

i

)
≤ 0, (29)
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for each binary word e =
(
e1 e2 . . . em

)> ∈ Zm
2 .

Proof. Taking the Lie derivative of SK along the vector field of (Σa):

∂SK(x)
∂x

f (x, u) = ẋ> ·
(

QA0 + A>0 Q +
m

∑
i=1

(
QAi + A>i Q

)
ui

)
· ẋ + u>hK(x).

Now, in order to impose the desired behaviour, we need the inequality:

∂SK(x)
∂x

f (x, u) ≤ u>hK(x)

to be true for each state trajectory x ∈ Rn and for each input trajectory u ∈ Rm, which is
equivalent with the following LMIs:

QA0 + A>0 Q +
m

∑
i=1

(
QAi + A>i Q

)
ui ≤ 0

to have a common solution for each command signal u ∈ [ul
1, uu

1 ] × [ul
2, uu

2 ] × · · · ×
[ul

m, uu
m], which is a polytope problem and can be solved in its vertices only, and the proof

is complete.

After the output port-variable is computed as in the previous theorem, a K-PBC,
having Equation (12), is computed such that the closed-loop system is Krasosvkii passive.
This property ensures asymptotic stability. As such, the closed-loop system manages to
follow the input trajectory u?. However, in order to give a trajectory according to the
desired reference for the output y?, another component, i.e., trajectory path planning, is
needed. For this component we use a robust controller Krob, obtaining the cascade structure
presented in Figure 3.

Figure 3. Proposed closed-loop control structure, comprised in extended affine plant Σe, Krasovskii
passivity-based controller KK−PBC for nonlinear asymptotic stability and loop-shaping controller
Krob for robust performance.

The robust controller which computes the input trajectory for the K-PBC is designed
for a linearized model of the system around a forced equilibrium point x̃ = (x u). The
LTI model of the linearized plant of the input-affine quasi-linear system (Σa) can be
computed as:

A =
∂ f (x, u)

∂x

∣∣∣∣
x̃=x̃

= A0 +
m

∑
k=1

Aiui; B =
∂ f (x, u)

∂u

∣∣∣∣
x̃=x̃

=
m

∑
k=1

(Aix + bi), (30)
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followed by a similar extension to the output matrices C and D by replacing the state
equation function f with the output function, usually denoted by h. Now, the linearized
plant can be represented as:

(Σa,lin) :

{
∆̇x(t) = A∆x(t) + B∆u(t);
∆y(t) = C∆x(t) + D∆u(t),

(31)

and now all the procedures described in the paper [14] can be applied in order to obtain the
uncertainty block ∆, the augmented plant and, thus, to prepare the augmented plant for
synthesizing the robust controller. Figure 4 encompasses all these steps. After the mixed
sensitivity loop-shaping µ-synthesis control Equation (23) is solved, the order reduction
for the resulting high-order controller is applied. All these details are underlined in the
previously mentioned paper and are summarily described in next subsection, where the
software integration of the new features is presented.

Figure 4. Robust controller synthesis diagram for the plant G, with the uncertainty set ∆, linearized
at the operating point (u0, x0, y0); by convention, control inputs ∆uc of the linearized plant G are
indexed after disturbance inputs ∆d.

3.2. Software Implementation

The software framework developed and implemented in [14] contains two main
original functionalities, which are also extended in the present paper: the former regarding
model-in-the-loop (MiL) simulations for a wide range of system configurations in a unified
manner, while the latter allows automatic computation of uncertain plant sets near an
operating point as required for robust control synthesis, in the sense of Figure 4.

Starting from said framework, an extension of the class diagram previously-published
is illustrated in Figure 5. The building block for all provided system configurations starts
from the abstract class System, which provides an interface for finite order, possibly time-
varying dynamical systems, with a state and output equation, respectively:{

ẋ(t) = f (x(t), u(t), t);
y(t) = h(x(t), u(t), t),

(32)

with the vector-valued maps f : Rn+m ×R+ → Rn and h : Rn+m ×R+ → Rp representing
multivariable Lipschitz functions. In general, the input u(t) size is denoted by m, state
signal x(t) has dimension n, while the output signal y(t) has size p. The system initial con-
ditions are denoted x(0) = x0 ∈ Rn. Using this interface, linear and time-invariant systems
were supported, along with affine LTI systems and system interconnections, such as series,
parallel, LLFT and ULFT, respectively. Another means of branching the provided System
class for switching systems and other hybrid-driven behaviour is through the abstract
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class HybridSystem, which also provides the previously-mentioned interconnections. The
abstract class UncertainPlantFactory provides means for specifying and instantiating
System objects based on a family of uncertain plant dynamics. It provides two interface
methods to return such systems through getNominalPlant and getRandomPlant. Based
on the considered nominal plant, by convention, it also automatically generates uncertainty
models using the standard models considered in the literature, such as input/output
multiplicative, additive and inverse additive uncertainties and so on. Additionally, the
class ExtendedDcDcConverter implements the input-affine systems of Equation (4), ex-
tended with the port variable hK(x, u) from Equation (6). In a similar manner, the class
KrasovskiiPassivityBasedController implements the K-PBC system as described in
Equation (12). An intermediary class which provides an interface between the plant (Σe)
with K-PBC KK−PBC in Equation (13) and the robust controller Krob is implemented in
KPBCWrapper, as in the left part of Figure 3.

Figure 5. Class diagram for general-purpose system implementations, i.e., nonlinear, LTI, linearized, hybrid, along with the uncertain
plant factory class, system interconnections, extended Krasovskii passivity framework and associated functionalities.

The K-PBC and µ-synthesis controllers are decoupled, can be used individually to
control the quasi-linear affine plant, but are used to gather the benefits of both approaches,
as the K-PBC assures asymptotic stability of the nonlinear plant, while the µ-synthesis
controller is used for robust stability and performance around the operating point. A final
LLFT connection, implemented by means of class LLFTConnection, as in Figure 3, gives
the proposed closed-loop system.

For the MiL component of the toolbox, closed-loop simulations will be conducted
through the high-level interface of the abstract class System which links all system state and
output equation definitions with the ordinary differential equation ode solver framework,
inherited through the many subclasses from Figure 5 and, also mentioned in the previous
paragraph. An auxiliary functionality was created in order to specify various input signals,
such as combinations of steps, ramps, sine waves and interpolated lookup tables, on
desired input channels, as necessary for MISO and MIMO systems, based on function
handles, cell arrays and flexible low-level signal definitions.

The software structure and workflow for the automatic uncertainty set computation
for a family of plants can be described in the following manner: the toolbox user must
inherit the abstract UncertainPlantFactory class and adapt it with means of returning a
nominal plant System object through the method getNominalPlant(), along with means
of returning a random plant System object from the considered uncertainty set through
the method getRandomPlant(). This interface allows encapsulating the main required
functionalities of the class, without restricting the plant structure and definition, allowing
the support for parametric uncertainties, unstructured uncertainties, or both. After this



Energies 2021, 14, 5571 12 of 24

definition, a Monte Carlo simulation is conducted based on the nominal and randomized
instances of the nonlinear plant, followed by a linearization procedure around each partic-
ular instance’s adapted operating point using the System routine linearize, resulting in a
family of models of Equation (31). Finally, an uncertainty model ∆ of given structure is
fitted, as needed for the µ-synthesis procedure. All these steps are computed automatically
based on a set of specifications encompassing the desired operating point, the relevant fre-
quency domain of the plant, number of randomized instances, uncertainty type (additive,
inverse additive, input multiplicative, inverse input multiplicative and so on), order and
structure of the transfer functions involved in the optimization.

The µ-synthesis controller can then be computed using the results obtained in the
previous paragraph, after augmenting the uncertain LTI plant family using the well-known
closed-loop-shaping method, by weighting the sensitivity, complementary sensitivity and
control effort functions, respectively, based on the optimization Equation (23). Additionally,
an order reduction step may be performed on the resulting controller.

4. Case Study: DC-DC Converter Control—An Unified Approach

A relevant class of quasi-linear affine systems with respect to the command signal is
that of DC-DC converter circuits. In the first subsection, we will provide a mathematical
framework applicable to all DC-DC converter topologies, followed by three illustrations of
the framework’s flexibility on buck, boost and SEPIC converters alike.

4.1. Mathematical Models

A nonideal DC-DC converter has a set of switching elements Si, i ≥ 2, with at
least one of them being a transistor and, otherwise, represented by other transistors with
synchronized or complementary switching, or directly diodes. Among the advantages of
using multiple transistors, one can recall their smaller voltage drops, along with ease of
manufacturing. The components of such a converter are:

• Li: converter inductors, i = 1, k1;
• rLi : resistances associated with the inductors, i = 1, k1;
• Cj: converter capacitors, j = 1, k2;
• rCj : resistances associated with the output capacitors, j = 1, k2;
• R: variable output load resistor;
• E: source voltage;
• rDSi : parasitic resistances associated with the ON state of the switching elements;
• VFi : constant voltage drops associated with the ON state of the switching elements;
• µ: normalized duty cycle of the main switching device, i.e., µ ∈ [0, 1].

The previously-mentioned components and notations are illustrated in Figure 6 for
the three classic circuit topologies studied in this section.

The mathematical modelling of the converter circuits is made using Kirchhoff’s laws.
As such, the state variable vector will be defined as:

x(t) =
[

xL(t)
xC(t)

]
=
[
iL1(t) . . . iLk1

(t) uC1(t) . . . uCk2
(t)
]>

, (33)

storing the inductor currents iLi , i = 1, k1 and capacitor voltages uCj , j = 1, k2 alike. Having
the structure of a commutation system. dependent on at least one switching element,
two different LTI state-space models are implied. As such, the ON and OFF states of the
transistor provide the state-space models:

ẋ(t) = fON(x(t), u(t)); ẋ(t) = fOFF(x(t), u(t)). (34)
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Figure 6. Nonideal DC-DC converters electrical circuits [14].

Using the duty cycle command signal in a convex combination of the two previous
state-space models, a practical nonlinear approximation of the switching system follows:

ẋ(t) = µ(t) · fON(x(t), u(t)) + (1− µ(t)) · fOFF(x(t), u(t)). (35)

Replacing the vector maps fON and fOFF with their actual expressions returns the
averaged state-space model, which well approximates the physical switching system to a
desired voltage and current ripple tolerance, based on the PWM frequency.

The average model of each DC-DC converter circuit can be written as:

(Σ) : ẋ = g0(x) + g1(x)µ ≡ f (x, µ), (36)

where the functions gi : Rn → Rn can be expressed as gi(x) = Aix + bi. Next, we will
provide the matrices which describe three topologies: Buck, Boost and SEPIC.

4.2. Buck Converter

The electrical scheme of nonideal DC-DC buck converter is presented in Figure 6, with
the electrical components described above. The vector of state variables is:

x(t) =
[

xL(t)
xC(t)

]
=

[
iL(t)
uC(t)

]
. (37)

The input-affine quasi-linear model of the system can be written as:

(Σbuck) : ẋ = A0x + b0 + A1xµ + b1µ ≡ fbuck(x, µ), (38)

with the components being:

A0 =

[
− 1

L (rL + R||rc − rDS) − 1
L

R
R+rC

1
C

R
R+rC

− 1
C(R+rC)

]
; (39a)

A1 =

[
− 2

L rDS 0
0 0

]
; b0 =

[
−VF

L
0

]
; b1 =

[ E
L
0

]
, (39b)

with rC || R denoting the parallel connection of the resistors rC and R.
The system (Σbuck) is Krasovskii passive if the following LMI problem has a feasible

solution Q = Q> ≥ 0: {
QA0 + A>0 Q ≤ 0;
QA0 + A>0 Q + QA1 + A>1 Q ≤ 0.

(40)
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However, the matrix A0 depends on the value of the resistance R, which is an exoge-
nous input for the system. Therefore, the fist LMI condition can be replaced with:

A0 =

[
− 1

L (rL − rDS1 − rC) − 1
L

1
C 0

]
︸ ︷︷ ︸

A01

+
1

rC + R

[
− r2

C
L

rC
L

− rC
C − 1

C

]
︸ ︷︷ ︸

A02

. (41)

Now, considering a lower and an upper bound for this exogenous input, we can
express the passivity of the buck converter using the following claim.

Claim 1. The DC-DC buck converter system (Σbuck) is Krasovskii passive for each R ∈ [Rmin,
Rmax] if and only of the following LMI problem has a solution Q = Q> ≥ 0:

QA01 + A>01Q + 1
rC+Rmin

(
QA02 + A>02Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmax

(
QA02 + A>02Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmin

(
QA02 + A>02Q

)
+ QA1 + A>1 Q ≤ 0;

QA01 + A>01Q + 1
rC+Rmax

(
QA02 + A>02Q

)
+ QA1 + A>1 Q ≤ 0.

(42)

The supply-rate is ωK(x, µ) = µ · hK(x), having the output port-variable:

hK(x) =
(

x>A>1 + b>1
)
·Q · ẋ, (43)

with the storage function given by:
SK(x) = ‖ẋ‖2

Q. (44)

Remark 1. The passivity analysis using the classical storage function:

S(x) =
1
2

(
Li2L + Cu2

C

)
(45)

does not lead to a possible PBC, because the Lie derivative of this storage function along the state
trajectory x follows:

∂S(x)
∂x

fbuck(x, µ) ≤ (µE−VF)iL, (46)

which means that the system is passive with respect to the voltage source E, voltage drop VF and the
inductor current iL, where the voltage source and the voltage drop cannot be controlled.

Remark 2. The Krasovskii passivity analysis of the nonideal DC-DC buck converter performed
using the techniques presented in [6] also leads to the impossibility of constructing a PBC, because
by solving the system: {

QA0 + A>0 Q ≤ 0;
QA1 + A>1 Q = 0,

⇒ Q =

[
0 0
0 q

]
, q > 0, (47)

having the output port-variable hK(x) ≡ 0, thus, a K-PBC cannot be constructed.

4.3. Boost Converter

The electrical circuit of the nonideal DC-DC boost topology is presented in Figure 6,
with the electrical components described above. The state variable vector is:

x(t) =
[

xL(t)
xC(t)

]
=

[
iL(t)
uC(t)

]
. (48)
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The input-affine nonlinear model of the system is:

(Σboost) : ẋ = A0x + b0 + A1xµ + b1µ, (49)

where the components are:

A0 =

[
− 1

L (rL + R||rc + rDS) − 1
L

R
R+rC

1
C

R
R+rC

− 1
C(R+rC)

]
; (50a)

A1 =

[
1
L rC||R R

L(rC+R)
− R

C(rC+R) 0

]
; b0 =

[ E−VF
L
0

]
; b1 =

[
0
0

]
, (50b)

with rC || R denoting the parallel connection of the resistors rC and R.
The system (Σboost) is Krasovskii passive if the following LMI problem has a feasible

solution Q = Q> ≥ 0: {
QA0 + A>0 Q ≤ 0;
QA0 + A>0 Q + QA1 + A>1 Q ≤ 0.

(51)

However, the matrices A0 and A1 depend on the value of the resistance R, which is an
exogenous input for the system. Therefore, these matrices can be rewritten as:

A0 =
[
− 1

L (rL + rDS + rC)− 1
L ; 1

C 0
]︸ ︷︷ ︸

A01

+
1

rC + R

[
r2

C
L

rC
L

− rC
C − 1

C

]
︸ ︷︷ ︸

A02

; (52a)

A1 =
R

rC + R

[ rC
L

1
L

− 1
C 0

]
︸ ︷︷ ︸

A10

. (52b)

Now, considering a lower and an upper bound for this exogenous input, we can
express the passivity of the boost converter using the following claim.

Claim 2. The DC-DC boost converter system (Σboost) is Krasovskii passive for each R ∈ [Rmin,
Rmax] if and only of the following LMI problem has a solution Q = Q> ≥ 0:

QA01 + A>01Q + 1
rC+Rmin

(
QA02 + A>02Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmax

(
QA02 + A>02Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmin

(
QA02 + A>02Q

)
+ Rmin

rC+Rmax

(
QA10 + A>10Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmin

(
QA02 + A>02Q

)
+ Rmax

rC+Rmin

(
QA10 + A>10Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmax

(
QA02 + A>02Q

)
+ Rmin

rC+Rmax

(
QA10 + A>10Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmax

(
QA02 + A>02Q

)
+ Rmax

rC+Rmin

(
QA10 + A>10Q

)
≤ 0.

(53)

The supply-rate is ωK(x, µ) = µ · hK(x), having the output port-variable:

hK(x) =
(

x>A>1 + b>1
)
·Q · ẋ, (54)

with the storage function given by:
SK(x) = ‖ẋ‖2

Q. (55)
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4.4. SEPIC Converter

The electrical schematic of the nonideal DC-DC SEPIC topology is provided in
Figure 6, with the electrical components as described above. The state variable vector is:

x(t) =
[

xL(t)
xC(t)

]
=
[
uCin(t) iL1(t) uC1(t) iL2(t) uC2(t)

]>. (56)

The input-affine nonlinear model of the system is:

(Σsepic) : ẋ = A0x + b0 + A1xµ + b1µ, (57)

where the components are:

A0 =



− 1
rCinCin

0 0 0 0
1
L1

− rCin
+rL1+rC1

+rDS1
+rC2

L1
− 1

L1

rDS+rC2
L1

− 1
L1

0 1
C1

0 0 0

0
rDS2+rC2

L2
0 − rDS2+rL2+rC2

L2
1
L2

0 R
C2(R+rC2 )

0 − R
C2(R+rC2 )

− 1
C2(R+rC2 )


; b0 =



E
rCin

Cin

−VF
L1

0
VF
L2
0

; (58a)

A1 =



0 0 0 0 0
0

rC1
+rC2
L1

1
L1

− rC2
L1

1
L1

0 − 1
C1

0 1
C1

0

0 − rC2+rDS1
+rDS2

L2
− 1

L2

rC2−rC1
+rDS2−rDS1
L2

− 1
L2

0 − R
C2(R+rC2 )

0 R
C2(R+rC2 )

0

; b1 =


0

− 1
L1
(VF1 −VF2)

0
1
L2
(VF1 −VF2)

0

, (58b)

with rC2 || R being the parallel connection of the resistors rC and R.
The system (Σsepic) is Krasovskii passive if the following LMI problem has a feasible

solution Q = Q> ≥ 0: {
QA0 + A>0 Q ≤ 0;
QA0 + A>0 Q + QA1 + A>1 Q ≤ 0.

(59)

However, the matrices A0 and A1 depend on the value of the resistance R, which is an
exogenous input for the system. Therefore, these matrices can be rewritten as:

A0 =



− 1
rCin

Cin
0 0 0 0

1
L1

− rCin
+rL1+rC1

+rDS1
+rC2

L1
− 1

L1

rDS2+rC2
L1

− 1
L1

0 1
C1

0 0 0

0
rDS2+rC2

L2
0 − rDS+rL2+rC2

L2
1
L2

0 1
C2

0 − 1
C2

0


︸ ︷︷ ︸

A01

+
1

rC2 + R


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 − rC2

C2
0

rC2
C2

− 1
C2


︸ ︷︷ ︸

A02

; (60a)

A1 =


0 0 0 0 0
0

rC1
+rC2
L1

1
L1

− rC2
L1

1
L1

0 − 1
C1

0 1
C1

0

0 − rC2+rDS1
+rDS2

L2
− 1

L2

rC2−rC1
+rDS2−rDS1
L2

1
L2

0 0 0 0 0


︸ ︷︷ ︸

A10

+
R

rC + R


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 − 1

C2
0 1

C2
0


︸ ︷︷ ︸

A11

. (60b)

Now, considering a lower and an upper bound for this exogenous input, we can
express the passivity of the SEPIC converter using the following claim.
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Claim 3. The DC-DC SEPIC converter system (Σboost) is Krasovskii passive for each R ∈
[Rmin, Rmax] if and only of the following LMI problem has a solution Q = Q> ≥ 0:

QA01 + A>01Q + 1
rC+Rmin

(
QA02 + A>02Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmax

(
QA02 + A>02Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmin

(
QA02 + A>02Q

)
+ QA10 + A>10Q + Rmin

rC+Rmax

(
QA11 + A>11Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmin

(
QA02 + A>02Q

)
+ QA10 + A>10Q + Rmax

rC+Rmin

(
QA11 + A>11Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmax

(
QA02 + A>02Q

)
+ QA10 + A>10Q + Rmin

rC+Rmax

(
QA11 + A>11Q

)
≤ 0;

QA01 + A>01Q + 1
rC+Rmax

(
QA02 + A>02Q

)
+ QA10 + A>10Q + Rmax

rC+Rmin

(
QA11 + A>11Q

)
≤ 0.

(61)

The supply-rate is ωK(x, µ) = µ · hK(x), having the output port-variable:

hK(x) =
(

x>A>1 + b>1
)
·Q · ẋ, (62)

with the storage function given by:
SK(x) = ‖ẋ‖2

Q. (63)

5. Numerical Results

In this section we present detailed design and analysis steps of the proposed method
and toolbox workflow only for the single-ended primary-inductor converter (SEPIC),
for brevity. The nominal values of the SEPIC converter parameters used for this set of
numerical simulations are presented in Table 1, along with their tolerances.

Table 1. SEPIC topology parameters, values, along with corresponding tolerances.

Param. Val. Tol. Param. Val. Tol.

L1 2.57 [mH] ±20% L2 1.71 [mH] ±20%
rL1 130 [mΩ] ±10% rL2 110 [mΩ] ±10%

rDS1 0.01 [Ω] ±10% rDS2 80 [mΩ] ±10%
C1 4.7 [µF] ±20% C2 3.57 [µF] ±20%
rC1 270 [mΩ] ±10% rC2 350 [mΩ] ±10%
Cin 3.57 [µF] ±20% rCin 270 [mΩ] ±10%
VF1 0.2 [V] ±10% VF2 0.62 [V] ±10%

Firstly, we proceed to obtain the robust controller used for path planning, using
the methodology presented in [14]. As such, we need to linearize the quasi-linear input-
affine nonlinear system (Σsepic) from Equation (57) according to Equation (30). This high-
power configuration of the converter is targeted for renewable energy sources, with the
desired input/state/output operating specifications being: output voltage y0(t) = uR(t) =
400 [V], with a nominal external voltage source E0 = 300 [V] and load input resistance
R0 = 80 [Ω]. An initial guess for the state vector equilibrium point values was x̃0 =
[300, 10, 300,−10, 400], followed by µ̃0 = 0.55 for the duty cycle command. Through
numeric computation, the nominal nonlinear plant equilibrium point follows:

(u0, x0, y0) = ([300, 80, 0.5788], [300, 6.8711, 297.722,−5, 400], 400). (64)

After calling the System.linearize() routine for the LTI plant model, the uncer-
tainty model needs to be computed. For modelling the uncertainty of the electrical
components and external influences, an input multiplicative model was considered, i.e.,
G(s) = Gn(s)[1 + ∆(s)Wunc(s)], with ||∆||∞ ≤ 1. This model has been numerically
computed in an automatic manner from the interface of input u3(t) ≡ µ(t) to output
y1(t) ≡ uR(t), with the additional tolerances E ∈ [290, 310] [V] and R ∈ [75, 85] [Ω], based
on N = 1000 Monte Carlo simulations. A comprehensive frequency range for this SEPIC
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configuration is
[
ω = 10−2, ω = 108], with 300 equally distributed samples in logarithmic

domain. For the particle swarm optimization algorithm used for computing the uncer-
tainty bounds, a successful set of hyperparameters consists in the swarm size of 1500, initial
swarm span of 103, minimum neighbors fraction of 0.85, and inertia range of [0.15, 1.15],
for a complex pole and zero pair transfer function, resulting in:

Wunc(s) = K
s2 + 2ζzωnz s + ω2

nz

s2 + 2ζpωnp s + ω2
np

= 0.53201 · s2 + 1289s + 4.623e+5
s2 + 158.6s + 6.286e+7

. (65)

This procedure and its validation is portrayed in Figure 7.

Figure 7. Computation procedure of the SEPIC input multiplicative uncertainty set, along with open
loop responses for the equilibrium point having E = 300 [V], R = 80 [Ω], UR = 400 [V]: magnitude
fitting procedure and cost functional values, along with set of Monte Carlo simulations by sampling
plant models starting from the initial nonlinear uncertainty set.

In minimal form, the linearized SEPIC plant family is spanned by fourth-order stable
and proper systems, with four zeros, three of which are of nonminimum phase, from the
control path to the load resistor voltage output. The nominal MISO transfer matrix model
from u(t) ≡ [∆R(t), ∆E(t), ∆µ(t)]T to y(t) ≡ ∆uR(t) is:

Gn(s) =
s + 8.003e+5

α(s)


5.925e+7(s2 + 162.5s + 7.202e+7)

0.021779(s + 346.5)(s2 + 179.7s + 5.637e+7)

4.1368(−s + 2.304e+4)(s2 − 717.4s + 5.145e+7)

, (66)

where α(s) = (s2 + 2673s + 3.749e+7)(s2 + 1339s + 6.493e+7).
Besides the classical scope of obtaining good transient and steady-state responses,

another main purpose for the controller synthesis was to penalize near-resonance control
effort, as the obtained controllers would otherwise be difficult to implement in practice,
requiring small sampling periods, i.e., Ts < 50 [µs]. As such, the sensitivity, complementary
sensitivity and control effort loop-shaping filters are:

WS(s) =
0.5s + 200

s + 2
, WT(s) =

s2 + 4000s + 4e+6
1e-4s2 + 56.57s + 8e+6

, WKS(s) =
100s + 346.5

s + 346.5
, (67)

with an imposed sensitivity bandwidth of at least ωB = 200 [rad/s], admissible steady-state
error of maximum A = 10−2, allowed sensitivity peak at M = 2. Lower bandwidth was
imposed for damping the frequency response resonance and, also, to move away from
the physical limitations of the multiple nonminimum phase zeros. The complementary
sensitivity bandwidth must be faster than ωBT = 2000 [rad/s], forcing a high frequency
attenuation of at least AT = 10−4 with a roll-off order n = 2, with an allowed peak of
MT = 2. The dynamic control effort weighting function imposes all frequencies with
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magnitude less than 1, with a further penalization of maximum 0.1 above ω ≈ 1000 [rad/s],
due to the resonant peak centered at ω ≈ 9000 [rad/s].

From the direct application of the µ-synthesis procedure for the augmented plant with
uncertainties, a controller of order n = 19 is obtained. This procedure is followed by a
balanced order reduction operation, with the smallest-order controller which manages
to ensure all imposed performance specifications, with a peak value µ∆(LLFT(P, K)) ≤
0.901513 < 1, being of order n = 3:

KSEPIC
rob =


−1.997 3.257 −3.706 0.5324
−3.257 −2294 6474 0.434
−3.702 −6474 −1.539e+04 0.4941

ine0.5324 −0.434 0.4941 0

. (68)

The robust path-planning design of the weighting filters, along with frequency re-
sponse closed-loop performance plots with the reduced-order controller for the uncertain
SEPIC converter plant set are illustrated in Figures 8 and 9. The closed-loop control system
presents itself with large stability margins, with a phase margin γk ≈ 80[◦] and gain margin
of mdB

k ≈ 19 [dB]. Additionally, as specified by the parameters n = 2 and AT = 10−4 of
WT(s), the closed-loop control system practically nullifies stochastic sensor noise signals
spanning from ωBT > 2000 [rad/s], using an initial roll-off of −40 [dB/dec], followed by
an attenuation of at least four orders of magnitude. In practice, the attenuation continues
with a further −20 [dB/dec] roll-off afterwards.

Figure 8. Open-loop SEPIC converter models, along with the S, T, KS functions using the reduced-
order robust controller, which ensures imposed specifications, provides high stability margins and
guarantees closed-loop response practically similar to a first-order low-pass filter’s response.

From the frequency response of Figure 8, the bandwidth is measured at
ωB ≈ 390 [rad/s], resulting in an equivalent rise time less than tr ≈ 2.5 [ms], with a
negligible steady-state error εss ≈10−2 × (yss − y0) = 0.2 [V], where yss represents the
steady-state value, relative to the desired equilibrium output y0 = 400 [V]. Additionally,
the system presents no overshoot in the vicinity of the operating point, as it was designed
to behave similar to a first-order low-pass filter.
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Figure 9. SEPIC averaged state-space closed-loop simulations using the robust controller Krob with
the structure from Figure 4 vs. the proposed control structure from Figure 3: subplot 1—time-varying
disturbance inputs E(t) and R(t); subplot 2—output voltages uR(t); subplot 3—inductor currents
iL1 (t) and iL2 (t); subplot 4—command signals µ(t).

The SEPIC converter is a highly-nonlinear plant with respect to the command signal
µ(t), and there are use cases where the operating point may be dynamic, along with being
generally affected by a diverse set of perturbations. Besides the previously-mentioned
advantages of the already designed robust controller, it will be used as an auxiliary path
planning component along with the K-PBC controller used to guarantee asymptotic stability
for the entire domain of operation for the converter.

In order to design the K-PBC controller, we need to construct the output port-variable
hK(x, u) such that the SEPIC converter is Krasovskii passive. The LMI problem presented
in Claim 3, having the bounds of the load resistance R ∈ [10, 1000] [Ω], has been solved
using the method described in [13], with a possible solution from the feasibility cone:

Q = 1e-03 ·


0.000714 0 0 0 0

0 0.514 0 0 0
0 0 0.00094 0 0
0 0 0 0.342 0
0 0 0 0 0.000714

, (69)

from which the output port-variable have the form presented in Claim 3, as well.
After this extra output is designed, the K-PBC having the form:

(ΣK−PBC) :

{
ẋc = K1(K2(xc − µ?)− hK(x))
yc = xc

, (70)

having two inputs: the output port-variable hK(x) of the extended (Σsepic) and the desired
input trajectory µ?, while the output is the actual value of the duty-cycle µ(t) ≡ yc(t). The
parameters of the controller (Equation (70)) are K1 = 3× 10−5 and K2 = 108.

Figures 9 and 10 illustrate time domain simulations of the SEPIC converter in closed-
loop configuration using the proposed control structure of cascaded K-PBC with µ-synthesis
path planning Krob at various operating points, as in Figure 3, along with different types of
disturbances applied, in comparison to using the same robust controller-only approach,
using the structure from Figure 4. The former compares the response of the proposed
closed-loop system by comparison with the robust controller only counterpart, while the
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latter figure illustrates the robust stability and robust performance of the proposed method
for a set of 50 Monte Carlo simulations sampled from the tolerance set of Table 1.

Both experiments start from null initial conditions applied to all state variables, in or-
der to emphasize the behaviour to sudden jumps in the dynamics, followed by a succession
of disturbances applied at the converter inputs, such as:

• a sequence of load resistance steps:

– from R(t−1 = 0.035−) = 80 [Ω] to R(t+1 = 0.035+) = 160 [Ω];
– from R(t−2 = 0.065+) = 160 [Ω] to R(t+2 = 0.065+) = 60 [Ω];
– from R(t−3 = 0.115+) = 60 [Ω] to R(t+3 = 0.115+) = 260 [Ω].

• a ramp disturbance on the external source voltage from E(t < 0.090) ≡ 300 [V],
starting at t4 = 0.090 [s] with an increasing slope of 500 and saturated at 50 [V];

• a sequence of output reference steps:

– from u∗R(t
−
5 = 0.025−) = 400 [V] to u∗R(t

+
5 = 0.025+) = 550 [V];

– from u∗R(t
−
6 = 0.050−) = 550 [V] to u∗R(t

+
6 = 0.050+) = 250 [V];

– from u∗R(t
−
7 = 0.075−) = 250 [V] to u∗R(t

+
7 = 0.075+) = 550 [V];

– from u∗R(t
−
8 = 0.135−) = 550 [V] to u∗R(t

+
8 = 0.135+) = 450 [V].

Figure 10. SEPIC-averaged state-space closed-loop simulations using the proposed control structure
from Figure 3, illustrating 50 Monte Carlo simulations by sampling plant models from the tolerance
set of Table 1: subplot 1—time-varying disturbance inputs E(t) and R(t); subplot 2—output voltages
uR(t); subplot 3—command signals µ(t).

As noticeable in Figure 9, the proposed method not only tracks the desired voltage
reference at all operating points, but it also considerably improves transients caused by
changes in the disturbance signals compared to using Krob only, such as for the moments
t = 0, t1, t2, t3, with smaller overshoots and more damped oscillations. A small compromise
is that it adds insignificant overshoots when reference changes occur, such as at time t6.
The steady-state performance is not affected by the addition of the K-PBC.

In addition to the previous results, Figure 10 shows the robustness of the method
when subjected to the parametric uncertainties inherent to the SEPIC converter circuit,
in which all the dynamic and steady-state performance indicators remain fundamentally
unchanged even after ±20% variations of the circuit’s main component values.

6. Conclusions

The current paper presents a mathematical framework which allows to construct an
output vector such that an input-affine nonlinear system is Krasovskii passive. Moreover,
Theorem 3, which is a convex particularization of Theorem 1, without any dependency on
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the state variable x, provides the set of necessary and sufficient conditions for a quasi-linear
affine system to be Krasovskii passive in terms of LMIs. To illustrate the flexibility and
usefulness of the method, as a case study, a unified treatment for DC-DC converters is
presented. After this interface is set for such a system, a method to construct a K-PBC is
presented. The LLFT interconnection between the nonlinear system and K-PBC ensures the
asymptotic stability, which means that the closed-loop system manages to follow the given
input trajectory. However, the input trajectory has the same physical significance as the
input of the nonlinear system, which, in general, differs from that of the output. As such,
another component, called path planner, is mandatory in order to obtained the desired
tracking performance. The proposed method includes a dynamical path planning as a
robust controller computed for the linearized plant around the desired equilibrium point by
solving the mixed-sensitivity µ-synthesis loop-shaping problem. In brief, the decentralized
controller manages to ensure the asymptotic stability due to the K-PBC component, while
the robust controller manages to compute the input trajectory such that the closed-loop
system fulfills the robust performance.

Although Section 4 presents the possibility to compute the output port-variable such
that various DC-DC converter topologies are Krasovskii passive, in Section 5 we present
the SEPIC converter as a case study, due to its highly-nonlinear behaviour. As shown in
the previous section, there are some important improvements if we compare the results
obtained with the proposed method against the results obtained with the robust controller
only. Moreover, the robustness of the proposed method has been proved using Monte
Carlo simulations in time domain.

In this paper we managed to develop the mathematical background, which was
successfully implemented in a second version of our toolbox, initially presented in [14].
However, in this current iteration we assume that all signals required for the output port-
variable construction are available. But, in practice, an estimator will be necessary. As
such, one possible extension for practical implementation could consist in (1) considering a
high-gain observer for quasi-linear affine systems. Additionally, (2) there are three degrees
of freedom for the K-PBC controller—the matrices Q, K1 and K2—which may also be
introduced in the optimization problem when computing the robust controller. Finally,
(3) the implementation of the proposed method on microcontroller units will be studied,
by also taking into consideration quantization effects.
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Abbreviations
The following abbreviations are used in this manuscript:

ARE Algebraic Riccati Equation
ARI Algebraic Riccati Inequality
DC-DC Direct Current to Direct Current
K-PBC Krasovskii Passivity-Based Controller
LLFT Lower Linear Fractional Transformation
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LMI Linear Matrix Inequality
LTI Linear Time-Invariant
MiL Model-in-the-Loop
MIMO Multiple Input and Multiple Output
MISO Multiple Input and Single Output
PBC Passivity-Based Controller
PID Proportional Integral Derivative
PWM Pulse-Width Modulation
SEPIC Single-Ended Primary Inductor Converter
SIMO Single Input and Multiple Output
SISO Single Input and Single Output
ULFT Upper Linear Fractional Transformation
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