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Abstract: With the increasing penetration of renewable energy generation, one of the major challenges
is the problem of how to express the stochastic process of wind power and photovoltaic output
as the exact probability density and distribution, in order to improve the security and accuracy
of unit commitment results, a distributed robust security-constrained optimization model based
on moment uncertainty is proposed, in which the uncertainty of wind and photovoltaic power
is captured by two uncertain sets of first- and second-order moments, respectively. The two sets
contain the probability distribution of the forecast error of the wind and photovoltaic power, and
in the model, the energy storage is considered. In order to solve the model effectively, firstly,
based on the traditional chance-constrained second-order cone transformation, according to the
first- and second-order moments polyhedron expression of the distribution set, a cutting plane
method is proposed to solve the distributed robust chance constraints. Secondly, the modified
IEEE-RTS 24 bus system is selected to establish a simulation example, an improved generalized
Benders decomposition algorithm is developed to solve the model to optimality. The results show
that the unit commitment results with different emphasis on economy and security can be obtained
by setting different conservative coefficients and confidence levels and, then, provide a reasonable
decision-making basis for dispatching operation.

Keywords: distributionally robust optimization; moment; AC power flow; unit commitment; gener-
alized benders decomposition

1. Introduction

In recent years, the rapid growth of renewable energy represented by wind and
photovoltaic power in the energy system has greatly reduced the consumption of fossil
fuels and greenhouse gas emissions [1]. However, its uncertainty and intermittence have
a great impact on the security and stable operation of the power system. Therefore, how
to solve the problem of unit commitment with large scale wind and photovoltaic power
uncertainty has become a research hotspot.

In many unit commitment (UC) models considering the uncertainty of renewable
generation, the traditional UC adopts a simple and feasible standby capacity method to
deal with the uncertainty of renewable generation. This method is simple and fast, but it is
blind and arbitrary. As a common method to deal with data uncertainty in optimization
problems, stochastic programming has been widely explored in the past decade [2–6]. It
mainly includes chance constraint and conditional risk method. This kind of method not
only has large calculation scale, but also needs to know the deterministic distribution of
random variables. Another tool for optimization against uncertainty is robust optimization.
This method seeks the optimal objective values of all possible worst-case scenarios in the
uncertainty set. In references [7–10], a robust optimization model for different objective
functions is proposed based on the modeling of uncertain load and renewable energy
through an adjustable robust optimization framework. However, in view of the fact
that the worst case involved does not always happen, the optimization results are too

Energies 2021, 14, 5618. https://doi.org/10.3390/en14185618 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en14185618
https://doi.org/10.3390/en14185618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14185618
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14185618?type=check_update&version=2


Energies 2021, 14, 5618 2 of 21

conservative or aggressive. As a compromise method, distributed robust optimization
can be used to solve the limitations of stochastic programming and robust optimization.
In reference [11], a moment-based distributed robust model for UC is established, and
the linear decision rule approximation method is applied to solve the model. However,
only the uncertainty of wind power is considered, the impact of energy storage is not
considered. In reference [12], the occurrence of accidents is regarded as a random event,
and the moment uncertainty robust optimization method of unit commitmentconstrained
by emergency accidents is studied without considering the uncertainty of renewable energy.
The distribution set of the first- and second-order moment of wind power forecast error
is given in reference [13], and the model is transformed into a bilinear matrix inequality
problem to solve. Reference [14] obtained the first- and second-order moment information
of wind power forecast error based on historical experience data and, then, transformed
the optimal power flow model into convex second-order cone programming to solve the
problem. In the above methods [11–14], DC power flow is used to replace AC power flow
approximately, without considering the influence of reactive power and node voltage on
the optimization results. The operation strategy obtained on this basis may lead to the risk
of under voltage or over voltage on some key buses of the system. Reference [15] proposes
a stochastic unit commitment (SUC) model to avoid the load loss risk caused by wind
power uncertainty. In reference [16], the uncertainty of wind power is represented by the
scenario tree model. Such a scenario tree is constructed by considering several stages, and
each time period has several hours. The uncertainty of wind power generation in each
cycle is represented by some discrete branches. This technology is suitable for modeling
the recourse behavior of generator and energy storage device when the system uncertainty
is realized successively. Reference [17] proposes a transmission capacity margin assessment
(TCMA) model. Using dual theory and linearization technology, the model is transformed
into mixed integer linear programming (MILP). In reference [18], the control characteristics
of wind power plants is summarized, and the ability of wind power plants to provide fast
regulation and frequency response services was determined.

Considering that the prediction accuracy of wind and photovoltaic power cannot
accurately describe its probability, stochastic or robust optimization, such as widely used ap-
proximate normal distribution [19], beta distribution [20], mixed Laplace distribution [21],
Cauchy distribution [22], α-steady-state distribution [23], etc., are essentially approximate
methods, which is difficult to maintain the effectiveness of decision making. Distributed
robust optimization combines robust optimization and stochastic optimization, two excel-
lent methods with risk decision making, to implement the scheduling strategy under the
probability distribution scenario of the worst uncertainty in the fuzzy set. For example,
distributed robust unit commitment decision [24,25], reserve scheduling [26], and optimal
power flow [27] can improve the effectiveness of decision making. The construction form
of fuzzy sets determines different conservatism and solution efficiency. At present, the
commonly used distribution robust optimization method based on probability density
function is based on the probability uncertainty of Monte Carlo sampling points [28], which
retains the characteristics that the probability density function of long-term fitting is similar
to that of short-term fitting. However, this method does not make full use of the moment of
random variables, and the variable scale is huge, it is difficult to obtain its dual problem. In
a long statistical period, the prediction error of wind and photovoltaic power follows a cer-
tain distribution [29,30]. However, in a short period of time, its distribution is similar to the
determined distribution, but it is not exactly the same, that is, the moment of the probability
distribution is also uncertain. The distributed robust optimization under moment uncer-
tainty (DRO-MU) method recently studied in the field of mathematics [31] can consider
the similar but different characteristics of long-term fitting of random variables [32].

Given the context above, a robust optimization model of UC distribution with AC
power flow constraints based on uncertainty of wind and photovoltaic power forecast
error moment is proposed. Considering the network security constraints, the coupling
relationship among active power, reactive power, voltage, and phase angle is considered,
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and the collaborative optimization is carried out. By setting conservative coefficient and
confidence level, the optimal UC results with different emphasis on economy and security
can be obtained, which can provide reasonable decision-making basis for dispatching
operation. the main contributions of this paper are as follows: we develop a moment-
based distributionally robust chance-constrained unit commitment with N-1 security
and renewable generation model, while considering AC optimal power flow (OPF) and
energy storage constraints; by considering an ambiguity set including the first- and second-
order moment information obtained from empirical data, the wind and solar generation
uncertainties are properly modeled.

The remainder of this paper is structured as follows. Section 2 first provides pre-
liminaries on expansion time horizon and uncertainty modeling and, then, presents the
proposed distributionally robust chance-constrained unit commitment (DRCCUC) model.
Section 3 explains the solution methodology. Section 4 provides a comprehensive case
study based on the IEEE RTS-24 node test system. Section 5 concludes the paper.

2. Distributed Robust Unit Commitment Model
2.1. Wind and Photovoltaic Fluctuations

In this paper, the active power output of each wind farm and photovoltaic power
station is regarded as the sum of forecast value and forecast error value. The forecast value
is regarded as the determined variable, and the forecast error value is treated as a random
variable. It is assumed that the forecast error of all wind and photovoltaic power follow the
normal distribution with zero mean value and are independent of each other [14]. For each
wind farm, the hourly power is expressed as PW

b,t + ωW
b,t, where PW

b,t is the forecast active
power of wind farm at bus b at time t, and ωW

b,t is the forecast error of active power of wind
farm at bus b at time t. For each photovoltaic power station, the hourly output is expressed
as PPV

b,t + ωPV
b,t , where PPV

b,t is the forecast active power of photovoltaic power station at bus b
at time t, and ωPV

b,t is the forecast error of active power of photovoltaic power station at bus b
at time t. As the security operation of power system requires that the power generation and
power consumption should always be balanced, any deviation of wind and photovoltaic
power from the forecast value must be balanced through the adjustment of controllable
power generation. Since the power injection of each bus is fluctuating, a control scheme is
needed to ensure that the power generation is always equal to the demand within a given
time window. In this paper, it is assumed that all the generators participating in the control
respond in a proportional manner to the fluctuation of the generalized load (assuming the
forecast actual load minus the random wind and photovoltaic power), but the proportional
coefficients may be different. Therefore, we call it initial value joint result frequency control
and quadratic frequency control affine control. In this paper, the adjustment of wind and
photovoltaic power fluctuation is modeled as an affine control strategy, and the activation
of generation reserve is controlled by automatic generation control (AGC). The power
balance is established in tens of seconds by AGC as follows:

P̂i,t = Pi,t − αi,tΩt ∀t ∈ T, i ∈ G (1)

Ω t = ΩW
t + ΩPV

t ; ΩW
t =

W

∑
w=1

ωW
w,t; ΩPV

t =
PV

∑
pv=1

ωPV
pv,t (2)

where G is the number of generators; W is the number of wind farms; PV is the number of
photovoltaic power stations; T is the scheduling cycle and the time interval is 1 h; Pi,t is
active power of generator; αi,t is participation coefficient of AGC controlled generator; Ω t
is the sum of forecast errors of output power of all wind farms and photovoltaic power
stations; ΩW

t is all wind farm power forecast error; ΩPV
t is all power forecast error of photo-

voltaic power station. When αi,t is constant or equal in the scheduling period, the calculation
processability of the unit commitment model will be significantly improved. However,
it is taken as an optimization variable in this paper for economically advantageous. In
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practical application, because of the randomness and inaccuracy of wind speed, usually
only part of the probability distribution information can be obtained. Therefore, this paper
uses two uncertainty intervals to describe the uncertainty of wind and photovoltaic power
forecast error,

[
−µw

b , µw
b
]

and
[
−µ

pv
b , µ

pv
b

]
represent the mean change interval of wind and

photovoltaic power forecast error at the bus b, and
[
(σw

b )2 − (σw
b )

2, (σw
b )2 + (σw

b )
2
]

and[
(σ

pv
b )

2 − (σ
pv
b )

2
, (σpv

b )
2
+ (σ

pv
b )

2
]

represent the variance change interval of wind and
photovoltaic power forecast error at the bus and assume that the random variables of wind
and photovoltaic power forecast error are independent of each other. In fact, there are
several probability distribution functions whose mean value and variance are consistent
with these information, then the fluctuation range of mean value and variance of wind and
photovoltaic power is represented by polyhedron set as follows:

Uµ =


µ ∈ R|W+PV| :

∣∣∣µw
b + µ

pv
b

∣∣∣ ≤ µw
b + µ

pv
b

∑
b∈W+PV

|µw
b +µ

pv
b |

µw
b +µ

pv
b
≤ Γµ|W + PV|

 (3)

Uσ2 =



σ2 ∈ R|W+PV|∣∣∣(σw
b )2 + (σ

pv
b )

2
∣∣∣ ≤ (σw

b )
2 + (σ

pv
b )

2

∑
b∈W+PV

∣∣∣(σw
b )2+(σ

pv
b )

2
∣∣∣

(σw
b )2+(σ

pv
b )

2 ≤ Γσ |W + PV|


(4)

where µw
b and µ

pv
b are the mean variation of wind and photovoltaic power forecast error

at bus b, respectively; µw
b and µ

pv
b are the upper limit of mean value change in wind and

photovoltaic power forecast error at bus b, respectively; Γµ is the mean interval conservative
coefficient (the range limiting parameter of uncertainty set); σw

b and σ
pv
b are the upper limit

of forecast error variance of wind and photovoltaic power at bus b, respectively; Γσ is the
conservative coefficient of variance interval.

2.2. DRCCUC Model

The objective function of DRCCUC minimizes the operation cost of generator, in-
cluding no-load cost, start-up cost, shutdown cost, fuel cost, spinning reserve cost, and
emergency reserve cost.

min
G
∑

i=1

T
∑

t=1

{
c0

i · xi,t + ∑
k∈K

ck
i · Pk

i,t + CU
i,t+CD

i,t+

[cr
i · (R+

i,t + R−i,t) + c∗i · R∗i,t] +
W
∑

w=1

T
∑

t=1
CW

w,t +
PV
∑

pv=1

T
∑

t=1
CPV

pv,t

} (5)

where c0
i is no load cost of generator; xi,t is the binary variable of generator start and stop

state; ck
i is the section k (k = 1, 2, 3) rate for the unit fuel cost function; Pk

i,t is the active power
of section k for the fuel cost function of generator; CU

i,t is the cost of generator start-up; CD
i,t

is the cost of generator shutdown; cr
i is the spinning reserve cost for generators; R+

i,t is the
positive spinning reserve of generator; R−i,t is the negative spinning reserve of generator;
c∗i is the contingency spinning reserve cost for generator accident; R∗i,t is the contingency
spinning reserve of generator. CW

w,t is the penalty cost of wind power spillage; CPV
pv,t is

the penalty cost of photovoltaic power spillage. The main constraints are formulated
as follows:

yi,t − zi,t = xi,t − xi,t−1 ∀t ∈ T, i ∈ G (6)

yi,t + zi,t ≤ 1 ∀t ∈ T, i ∈ G (7)
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CU
i,t ≥ CU

i · (xi,t − xi,t−1) and CU
i,t ≥ 0 ∀t ∈ T, i ∈ G (8)

CD
i,t ≥ CD

i · (xi,t−1 − xi,t) and CD
i,t ≥ 0 ∀t ∈ T, i ∈ G (9)

Pi,t − R−i,t ≥ Pmin
i · xi,t ∀t ∈ T, i ∈ G (10)

Pi,t + R+
i,t + R∗i,t ≤ Pmax

i · xi,t ∀t ∈ T, i ∈ G (11)

G

∑
i=1

αi,t = 1, 0 ≤ αi,t ≤ xi,t ∀i ∈ G, t ∈ T (12)

∑
i=Gr

αi,t = δr,t = θr,t = 0 ∀t ∈ T (13)

∑
b′ ∈ B
b′ 6= r

Yb,b′ · δb′ ,t = ∑
i∈Gb

αi,t ∀b ∈ B, t ∈ T (14)

Pgc
i,t = Pi,t + P̂gc

i,t ∀t ∈ T, i, gc ∈ G (15)

P̂gc
i,t ≤ R∗i,t,

G

∑
i=1

P̂gc
i,t = 0, P̂gc

gc,t = −Pgc,t ∀t ∈ T; i, gc ∈ G (16)

Pr
W,PV∼U(µ,σ2)

(
R−i,t ≥ Ωtα

t
i

)
≤ 1− εG

i ∀µ ∈ Uµ, σ2 ∈ Uσ2 (17)

Pr
W,PV∼U(µ,σ2)

(
R+

i,t ≥ −Ωtα
t
i

)
≤ 1− εG

i ∀µ ∈ Uµ, σ2 ∈ Uσ2 (18)

where yi,t is the binary variable of generator starting state; zi,t is a binary variable of
generator shutdown state; CU

i is the cost of generator start-up; CD
i is the Cost of generator

shutdown; Constraint (6) according to the start-up and stop state between t hour and t −
1 determines whether the generator is in the start-up or stop state at t hour; Constraint
(7) ensures that start-up and shut-down of any generator will not occur at the same time.
Pmin

i and Pmax
i are the minimum and maximum active power of generator, respectively;

θr,t is the reference bus voltage phase angle; δr,t is an auxiliary variable; P̂gc
i,t is the increased

active power of generator in case of generator fault. In order to ensure the power balance,
Constraint (16) forces the generator to stop unexpectedly, and the power output change
is equal to its pre accident power output; Pr() represents the probability of occurrence of
random events; εG

i indicates the probability of insufficient reserve capacity of generator;
Constraints (10) and (11) constrain the positive and negative rotating reserve and emergency
reserve capacity of the generator; Constraints (17) and (18) ensure that the generator
emergency reserve capacity is greater than the expected reserve activation. The combination
of Constraints (11) and (16) can ensure that the total accident reserve is sufficient to cover
any generator shutdown. Constraints (17) and (18) are robust chance constraints on the
distribution of generator reserve capacity. Constraint (12) limits the number of generators
participating in the automatic generation control based on the on–off state.

xi,t ≤ xi,0 ∀t ≤ ton
i + toff

i , i ∈ G (19)

t

∑
t=t

yi,t ≤ xi,t ∀t ≥ ton
i , t = t− tminon

i + 1, i ∈ G (20)

t

∑
t=t

zi,t ≤ 1− xi,t ∀t ≥ toff
i , t = t− tminoff

i + 1, i ∈ G (21)

Pdown
i ≥ Pi,t−1 − Pi,t ∀t ∈ T, i ∈ G (22)

Pup
i ≥ Pi,t − Pi,t−1 ∀t ∈ T, i ∈ G (23)
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Constraints (19)–(23) are the minimum start-up and shutdown time and climbing
constraints of the generator, where ton

i is the accumulated running time of the generator
from t = 0; toff

i is the accumulated shutdown time of generator from t = 0; tminon
i is the

minimum allowable operation time of generator; tminoff
i is the minimum allowable shut-

down time of generator; Pup
i is the generator active output rise rate limit; Pdown

i is the
generator active power output reduction rate limit. Equation (19) constrains the switching
state of the generator under initial conditions; Equations (20) and (21) are the constraints of
minimum starting time and minimum stopping time of generator; Equations (22) and (23)
are generator ramp constraints.

Fm,n,t = βm,n · (θm,t − θn,t),
∣∣Fm,n,t

∣∣ ≤ FMAX
m,n ∀{m, n} ∈ L (24)

∑
b′∈B

Yb,b′ ·θb′ ,t = ∑
i∈Gb

Pi,t + PW
b,t + ωw

b,t + PPV
b,t +

ω
pv
b,t − PD

b,t + PDIS
b,t − PCH

b,t ∀b ∈ B, t ∈ T
(25)

Pr
W,PV∼U(µ,σ2)

(Fm,n,t + βm,n ·Ωt · (δn,t − δm,t)+

βm,n · ω̂W
t · (πm,t − πn,t) + βm,n · ω̂PV

t · (πm,t − πn,t)
≤ FMAX

m,n ) ≥ 1− εL
l ∀{m, n} ∈ L, µ ∈ Uµ, σ2 ∈ Uσ2

(26)

Pr
W,PV∼U(µ,σ2)

(Fm,n,t + βm,n ·Ωt · (δn,t − δm,t)+

βm,n · ω̂W
t · (πm,t − πn,t) + βm,n · ω̂PV

t · (πm,t − πn,t)
≥ −FMAX

m,n ) ≥ 1− εL
l ∀{m, n} ∈ L, µ ∈ Uµ, σ2 ∈ Uσ2

(27)

Equations (24)–(27) are DC power flow constraints under N state, where Fm,n,t is
the active power flow of transmission line; βm,n is the susceptance of the line; FMAX

m,n is
the maximum active power flow of transmission line; PDIS

b,t is the active power of energy
storage discharge; PCH

b,t is the charging active power for energy storage; πm,t is the mth
row of the inverse of the admittance matrix; εL

l is the probability of power overrun in
normal operation.

Fc
m,n,t = βm,n · (θc

m,t − θc
n,t) ∀{m, n} ∈ L (28)

∑
b′∈B

Yc
b,b′ ·θ

c
b′ ,t = ∑

i∈Gb

(Pi,t + δc
i,t) + PW

b,t + ωw
b,t + PPV

b,t +

ω
pv
b,t − PD

b,t + PDIS
b,t − PCH

b,t ∀b ∈ B, t ∈ T
(29)

Pr
W,PV∼U(µ,σ2)

(Fc
m,n,t ≤ FMAX

m,n ) ≥ 1− εLC
l

∀{m, n} ∈ L, µ ∈ Uµ, σ2 ∈ Uσ2

(30)

Pr
W,PV∼U(µ,σ2)

(Fc
m,n,t ≥ −FMAX

m,n ) ≥ 1− εLC
l

∀{m, n} ∈ L, µ ∈ Uµ, σ2 ∈ Uσ2

(31)

Equations (28)–(31) are DC power flow constraints under N-1 state of generator and
transmission line, where Fc

m,n,t is the active power flow of transmission line in case of
accident; θc

m,t is the bus phase angle in case of accident; εLC
l is the probability of power

overrun of transmission line in case of accident. Equations (26), (27), (30), and (31), respec-
tively, represent the robust chance constraints of line power flow distribution under normal
operation and accident conditions.

PG
b,t + PW

b,t + PPV
b,t + PDIS

b,t − PCH
b,t − PD

b,t =

∑
b′∈b

Vb,tVb′ ,t
(
Gbb′ cos θbb′ ,t + Bbb′ sin θbb′ ,t

)
∀b, b′ ∈ B (32)
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QG
b,t + QW

b,t + QPV
b,t −QD

b,t =

∑
b′∈b

Vb,tVb′ ,t
(
Gbb′ sin θbb′ ,t − Bbb′ cos θbb′ ,t

)
∀b, b′ ∈ B (33)

VMIN
b ≤ Vb,t ≤ VMAX

b ∀b ∈ B, t ∈ T (34)

QMIN
i ≤ Qi,t ≤ QMAX

i ∀i ∈ G, t ∈ T (35)(
FP

m,n,t

)2
+
(

FQ
m,n,t

)2
≤
(

FS
m,n,t

)2
∀{m, n} ∈ L, t ∈ T (36)

where QG
b,t is the reactive power of thermal power unit; QW

b,t is the reactive power of wind
power; QV

b,t is the photovoltaic reactive power; QD
b,t is the reactive power of the load; Vb,t

is the node voltage amplitude; Gbb′ is the real part of the bus admittance matrix; Bbb′ is
the imaginary part of node admittance matrix; Vmax

b is the upper limit of node voltage
amplitude; Vmin

b is the lower limit of node voltage amplitude; Qi,t is the reactive power
output of thermal power units; Qmax

i is the upper limit of reactive power of thermal power
unit; Qmin

i is the lower limits of reactive power of thermal power units; FP
m,n,t and FQ

m,n,t are
the line active and reactive power; FS

m,n,t is the line apparent power.

SCH
es,t + SDIS

es,t ≤ 1 ∀es ∈ ES, t ∈ T (37)

Ees,t = Ees,t−1 + PCH
es,t η + PDIS

es,t /η ∀t ∈ T, es ∈ ES (38)

0 ≤ ηPCH
es,t ≤ PMAX

es SCH
es,t ∀t ∈ T, es ∈ ES (39)

0 ≤ PDIS
es,t /η ≤ PMAX

es

(
1− SCH

es,t

)
∀t ∈ T, es ∈ ES (40)

0.1EMAX
es ≤ Ees,t ≤ 0.9EMAX

es ∀t ∈ T, es ∈ ES (41)

where SCH
es,t is the binary variable of energy storage charging state; SDIS

es,t is the binary
variable of energy storage discharge state; Ees,t is the charge capacity of energy storage;
PCH

es,t and PDIS
es,t are energy storage charging and discharging power, respectively; η is the

conversion efficiency of charging and discharging for energy storage; PMAX
es and EMAX

es are
the maximum rated power and capacity of energy storage, respectively; Equation (37) is
used to restrict the charging and discharging state of energy storage, Equation (38) is used
to calculate the charging quantity of energy storage, Equations (39) and (40) restrict whether
the energy storage can be charged and discharged at the same time, and Equation (41)
restricts the upper and lower limits of charging quantity of energy storage.

3. Solution Methodology

Due to the nonconvex of distributed robust chance constraints and the strong nonlin-
earity of AC power flow equations, the large-scale mixed integer nonlinear programming
(MINLP) model established in the previous section is difficult to solve directly by using
existing commercial solvers. Among many UC solving algorithms, the general Benders
decomposition (GBD) algorithm is widely used to solve MINLP problems. In order to
improve the efficiency of traditional GBD, according to the basic idea of variable separation
in reference [33], this paper proposes an improved GBD algorithm. Compared with tradi-
tional GBD, it is mainly reflected in the following two aspects: (1) an improved cut plane
method for solving distributed robust chance constraints is proposed, which reduces the
number of unnecessary iterations; (2) a network security constraint reduction method is
proposed. Through a large number of simulation calculations, it is known that even if there
are power flow violations of security constraints in N and N-1 states, it is not necessary
to add them to the model, but only a small number of security constraints need to be
added to the model. Once these key security constraints are satisfied, the network security
constraints can be reduced; then, a large number of other network security constraints will
be automatically satisfied.
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3.1. Distributed Robust Chance Constraint

The processing and solving of robust chance constraints of nonconvex distribution
is the key to the effective solution of the model. The traditional fixed distribution chance
constraints can finally be transformed into convex second-order cone (SOC) constraints,
which can be solved by commercial solvers. The specific conversion process can be referred
to [34]. In the traditional chance-constrained reconstruction process, firstly, the wind power
forecast error assumption is required to obey the normal distribution with known mean
and variance; secondly, the existing commercial solvers are time consuming and inefficient
for solving models with a large number of SOC constraints. For the distributed robust
chance constraint in the form of Equation (42), it is required to keep a high probability in all
possible distribution sets U. That is to say, for each distribution in a polyhedral uncertainty
sets, there is a single convex constraint in the form of traditional chance constraint, so
(42) represents a set of potential infinite convex constraint sets, and there is no known
deterministic reconstruction expression, which leads to the existing commercial solvers
cannot solve directly. Therefore, based on reference [35], this paper proposes an improved
cutting-plane approach to deal with large-scale chance constraint cases. The specific
solving steps are as follows: (1) to solve the linear relaxation Formula (43) of constraint
Formula (42), whether the constraint is satisfied must be confirmed in each iteration; (2) by
solving Equation (43), we can judge whether Equation (42) is satisfied, that is, there is a
linear objective for each fixed and all internal maximization problems. Therefore, we can
judge whether a given constraint (42) is satisfied by calculating a linear optimization. If
the result of Equation (44) shows that Equation (43) is true, the algorithm will terminate.
Otherwise, we can obtain the mean and variance sets that make Equation (43) not true. The
formative Equation (44) linearizes the constraint and returns to the first iteration.

Prz∼N(u,τ)

(
yTz ≤ d

)
≥ 1− ε ∀(u, τ) ∈ U (42)

maxµ∈Uu

(
yTu

)
+ maxτ∈Uτ

(√
yTτy

)
Φ−1(1− ε) ≤ d (43)

yTu∗ + Φ−1(1− ε)
√
(y∗)TΣ∗y∗+(

Φ−1(1−ε)√
(y∗)Tτ∗y∗

)
(y∗)Tτ∗(y− y∗) ≤ d

(44)

3.2. Model Decomposition Strategy

Model decomposition strategy: firstly, the model is relaxed to obtain the relaxed model
without (26), (27), (30), and (31) stochastic power flow security constraints. Then, according
to the main idea that discrete variables and complex continuous variables are treated
separately by GBD algorithm, the relaxed model is decomposed into a main problem
and two sub-problems, in which sub-problem one is used to verify AC power flow. The
second sub problem is used to check the generator N-1 fault. After solving the relaxed
main problem and obtaining the unit commitment decision, the main problem solution
is usually not feasible because the main problem does not consider the constraints of
power flow, reactive power, and network security. At this time, it needs to be brought into
the sub-problem for AC power flow and generator N-1 verification, and the verification
results are modified in the form of benders cut. After the iteration of the main sub-problem
is completed, whether the stochastic power flow of the transmission line fully meets
the security constraints is checked. If there is any unsatisfied situation, the unsatisfied
stochastic power flow constraints of the transmission line are added to the relaxed main
problem, and the above solving process is repeated until all the constraints are met and the
optimization results are output.
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The Models (1)–(41) are decomposed into the following main unit commitment prob-
lems and sub-problems. Formula (45) is the main problem. For the sake of simplicity, the
constraint conditions are all replaced by formula numbers.

obj.

min
G
∑

i=1

T
∑

t=1

{
c0

i · xi,t + ∑
k∈K

ck
i · Pk

i,t + CU
i,t+CD

i,t+

[cr
i · (R+

i,t + R−i,t)] +
W
∑

w=1

T
∑

t=1
CW

w,t +
PV
∑

pv=1

T
∑

t=1
CPV

pv,t

}
+ ψt

s.t.
(1)− (4), (6)− (10), (12)− (14), (17)− (25),

(37)− (41)

(45)

It can be seen from Equation (45) that the decomposed main problem contains all
binary variables, and the constraints are linear or can be converted to SOC, so it is a typical
MISOC programming problem. The last two terms of its objective function are obtained
from benders cut set. Because there are two sub-problems in the proposed decomposition
strategy, two alternative variables are set.

obj.

min
B
∑

b=1

(
∆P+

b,t + ∆P−b,t + ∆Q+
b,t + ∆Q−b,t

)
s.t.

PG
b,t + PW

b,t + PPV
b,t + PDIS

b,t − PCH
b,t − PD

b,t

+∆P+
b,t − ∆P−b,t = Pb(•)

QG
b,t + QW

b,t + QV
b,t −QD

b,t + ∆Q+
b,t − ∆Q−b,t = Qb(•)

Pi,t = P(k)
i,t

xi,t = x(k)i,t

(32)− (36)

∆P+
b,t ≥ 0, ∆P−b,t ≥ 0, ∆Q+

b,t, ∆Q−b,t ≥ 0

(46)

The first subproblem is shown in Equation (46), where Pb(•) and Qb(•) are the sim-
plified form of power flow; P(k)

i,t and x(k)i,t are the solution of the main problem of the kth
iteration, which is treated as a constant in this paper. ∆P+

b,t, ∆P−b,t, ∆Q+
b,t, and ∆Q−b,t are the

active and reactive relaxation variables introduced for bus b to ensure that the sub-problem
always has a solution. It can be seen that the power flow constraint sub-problem has no
coupling constraints such as climbing, so it can be directly decomposed into T smaller
nonlinear programming sub-problems. Each sub-problem can be solved independently
to improve the computational efficiency of the original problem. Take the sub-problem
corresponding to time period t as an example to analyze: when the objective function value
of the sub-problem is less than a certain threshold, for example 10−4, the solution of the
main problem is considered to meet the power flow and other operation constraints under
time period t, the sub-problem is said to be feasible; otherwise, it is called infeasible. For
the infeasible sub-problem, it is necessary to feed back the constraint information to the
main problem in order to modify the solution of the main problem in the corresponding
period. The key to the correction is benders cut.

∑
b∈B

(
∆P+

b,t + ∆P−b,t + ∆Q+
b,t + ∆Q−b,t

)(k)
+

∑
i∈G

λ
1(k)
i,t

(
Pi,t − P(k)

i,t

)
+ ∑

i∈G
λ

2(k)
i,t

(
xi,t − x(k)i,t

)
≤ 0

(47)
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where λ1
i,t and λ2

i,t are Lagrange multipliers with k marked equality constraints in Equa-
tion (46), and Equation (47) is benders cut of infeasible sub-problem for time period t. The
expression contains the information of constraint overrun and Lagrange multiplier, which
can be regarded as the linear approximation of the sub-problem at the solution of the main
problem. If it is brought into the constraint set of Equation (45), the solution of the main
problem can be modified [36].

The second sub-problem is composed of the unit commitment decision and the gen-
erator output level solution obtained from the optimization of the main problem, which
is responsible for calculating the new generation level for any generator outage. Each
time period has a sub-problem. The objective of each sub-problem is to minimize the total
reserve cost of all generator accidents.

obj.

min
G
∑

i=1
m2

i · R∗i,t
s.t.
(11), (15), (16), (28), (29)

(48)

For the convenience of explanation and explanation, only the variables of the main
problem are reserved on the right side of the sub-problem constraint. After the values of
Pi,t, xi,t, and R+

i,t are obtained from the iterative solution of the main problem. According to
the result of the sub-problem solution, the feasible cut or the optimal cut are generated,
respectively. These cutting planes are added to the main problem, and then the main
problem is solved again. The objective value of the main problem provides a lower bound,
and the upper bound is calculated by using the solution of the sub-problem. When the
difference between the upper and lower limits is within the set threshold, the inner loop of
the algorithm is terminated.

3.3. Algorithm

The flow chart of the algorithm is shown in Figure 1, the main steps are as follows:

1. The algorithm parameters are initialized, the number of iterations is set to zero, the
upper bound (UB) and the lower bound (LB) are set to positive and negative infinity,
respectively;

2. The main problem (45) is solved with the sum of substitution variables being zero and
benders optimal cut set and feasible cut set being empty, and the results of generator
start-up, stop, active power and rotating reserve power, energy storage charging and
discharging state and charging and discharging power, and wind power photovoltaic
active power output are obtained;

3. The first sub-problem is solved with the data stream obtained from the main problem.
If the optimization result is feasible, benders optimal cut is generated according
to Equation (47); if the optimization result is not feasible, benders feasibility cut is
generated according to Equation (48);

4. The second sub-problem is solved by the data stream obtained from the main problem.
If the optimization result is not feasible, benders feasibility cut is generated according
to the formula; if the optimization result is feasible, benders optimal cut is generated
according to the formula;

5. If all the first and second sub-problems in the scheduling cycle are feasible, then go to
the next step, otherwise go to the seventh step;

6. Calculate the value of the dual gap and judge whether it meets the threshold of the
end of the algorithm iteration. If it meets, go to step 8. If not, go to the next step;

7. Add the optimal cut set and feasible cut set to the main problem to get the new data
stream and, then, go to the third step.

8. Calculate whether the network security constraints satisfy the constraints (26), (27),
(30), and (31) in N and N-1 states. If all the constraints are satisfied, the optimization
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results are output and the algorithm ends. Otherwise, the unsatisfied constraints are
added to the main problem, and the second step is to solve it again.

Figure 1. Flow chart of the proposed algorithm.

4. Numerical Case Studies

In order to verify the correctness and feasibility of the above model and algorithm,
IEEE RTS-24 system [37] is selected for test. The total installed capacity of this system is
3405 MW. All thermal generator parameters contained in the test system are shown in
Table 1. In addition, six wind farms with a capacity of 260 MW are connected to buses 2, 3, 5,
8, 17, and 21 of the system, three photovoltaic power stations with capacity of 400 MW are
connected to buses 6, 16, and 23, and six sodium flow battery energy storage power stations
with rated capacity of 100 MW are connected to buses 1, 2, 3, 5, 6, and 10. See Figure 2
for the schematic diagram of the grid placement of the power units. Nuclear power units
participate in peak load regulation operation of power grid according to G mode “15-1-7-1”
and maximum 50% [38]. The peak time electricity price of the system is 125 USD/MWh;
the average electricity price is 78 USD/MWh; the valley time tariff is 31 USD/MWh; the
energy storage conversion efficiency is 80%, and the complete charge/discharge time is 8
h; the penalty cost of wind/photovoltaic is 40 USD/MWh; let mean interval conservative
coefficient be equal to variance interval conservative coefficient; the confidence level of
each robust chance constraint is equal. Julia0.6 is selected as the programming language,
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CPLEX12.7 is used as the main problem solver, and Ipopt3.1 is used to solve the nonlinear
AC sub-problems. All the calculations are completed on a computer equipped with Intel
Core i5-2310 2.9GHz.

Table 1. Summary of all thermal power units contained in the test system.

Unit Node Technology Pmax
i

(MW)
Pmin

i
(MW)

Pup
i

(MW/h)
Pdown

i
(MW/h)

UT
(h)

DT
(h)

Noload Costs
(USD)

c1
i

(USD/MW)
c2

i
(USD/MW)

c3
i

(USD/MW)

1–2 1 OCGT 20 8 90 100 2 1 454.6 28.97 29.24 29.70
3–4 1 CCGT 76 40 120 120 3 2 263.4 18.42 19.23 20.11
5–6 2 OCGT 20 8 90 100 2 1 454.6 28.97 29.24 29.70
7–8 2 CCGT 76 40 120 120 3 2 263.4 18.42 19.23 20.11
9–11 7 CCGT 100 10 420 420 4 2 306.6 17.59 18.28 18.96

12–14 13 CCGT 197 104 310 310 4 3 482.9 17.21 17.71 18.23
15–19 15 OCGT 12 5.4 60 70 2 1 365.5 29.46 30.13 30.86

20 15 IGCC 155 54.24 70 80 24 16 415.5 23.81 24.52 25.25
21 16 IGCC 155 54.24 70 80 24 16 415.5 23.81 24.52 25.25
22 18 Nuclear 400 100 280 280 168 24 188.3 6.96 7.23 7.50
23 21 Nuclear 400 100 280 280 168 24 188.3 6.96 7.23 7.50

24–29 22 CCGT 50 26 120 120 2 1 626.1 28.31 29.25 30.49
30–31 23 IGCC 155 54.24 70 80 24 16 415.5 23.81 24.52 25.25

32 23 Coal 350 140 140 140 8 5 303.8 26.21 26.71 27.20

Figure 2. Schematic diagram of the grid.

4.1. The Results of This Model

Using this method to simulate the test system, the confidence level is 0.992, and the
conservative coefficient is 0.6. The results of the next day 24-hour conventional unit start-up
and shutdown are shown in Figure 3. It is easy to see that two nuclear power units, 22
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and 23, and three large capacity thermal power units, 20, 21, and 30, start-up at all times to
provide extra base load. Other thermal power units with smaller capacity start and stop
according to the changes in load and wind and photovoltaic power output.

Figure 3. On and off status of thermal power units.

The hourly online generator capacity (OGC), wind, and photovoltaic power output,
energy storage charge and discharge power, and spinning reserve power are shown in
Figure 4. It can be seen that the energy storage charge is concentrated in the valley
period, and the energy storage discharge is concentrated in the peak period, indicating the
feasibility of the decision results. Furthermore, by changing the parameters of the model,
sensitivity analysis was used to detect the influence of the parameters on the UC results.

Figure 4. Status of source and load and storage.
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4.2. Influence of Conservative Coefficient on Objection

The fixed confidence level is 0.99. When the conservative coefficient changes from
0.001 to 1.0, the change details of the total generation cost of the test system are shown in
Table 2. In order to compare the influence of AC and DC power flow on UC results, the
table also gives the UC optimization results based on DC.

Table 2. Object value of different conservative coefficients.

Γσ ,Γµ Power Flow Reserve
Cost/USD

Penalty
Cost/USD

Fuel
Cost/USD Objection/USD

0.001

AC

91,968 13,595 572,691 627,738
0.2 119,377 44,340 593,714 710,645
0.4 130,961 62,423 623,802 767,520
0.6 134,236 66,844 629,503 780,846
0.8 137,466 75,979 638,049 802,159
1 138,750 84,398 640,529 814,397

0

DC

91,968 13,223 568,113 625,064
0.2 119,377 43,340 592,763 708,703
0.4 130,961 59,610 620,243 760,830
0.6 134,236 63,431 626,464 774,388
0.8 137,466 73,222 633,233 798,928
1 138,750 80,420 639,155 809,511

It can be seen from the Table 2 that with the gradual increase in the conservative
coefficient, the spinning reserve cost, the penalty cost, and the total power generation
cost of the system gradually increase, resulting in the gradual increase in the objection
value. The change trend of them with the conservative coefficient is shown in Figure 5. It
can be seen that when the conservative coefficient increases from 0.001 to 1, the spinning
reserve power increases significantly synchronously, with a cumulative increase of 50%;
the active power of the generator increases slowly with a cumulative increase of 6%; the
active power output of wind and photovoltaic decreased slowly with the increase in
conservative coefficient, with a cumulative decrease of 9%. The reduction in wind and
photovoltaic power output indicates that the proportion of wind and photovoltaic energy
consumption is reduced, and the abandoned wind and photovoltaic power is increased.
The reason is that the increase in the conservative coefficient means that the fluctuation
range of the forecast error becomes larger, which indicates that the accuracy of the wind
and photovoltaic power output forecast decreases. At this time, in order to cope with
the uncertainty of the continuous increase in wind and photovoltaic power and meet the
safety requirements of power system operation as far as possible, more spinning reserve
capacity is bound to be reserved, which leads to the increase in the generation cost of
conventional units. In addition, the accuracy of wind and photovoltaic output forecast is
reduced, which will increase the power of abandoned wind and solar power and, then,
increase the cost of abandoned wind and solar power. These two reasons lead to the
increase in the objection value.
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Figure 5. Variation of generator and wind power with different conservative coefficient.

4.3. Influence of Confidence Level on Objection

The change in the objection value when the confidence level changes from 0.98 to
0.998 is shown in Table 3. As a comparison, the optimization results considering only DC
power flow are given.

Table 3. Object value of different confidence levels.

εG
i , εL

l Power Flow Reserve
COST/USD

Penalty
Cost/USD

Fuel
Cost/USD Objection/USD

0.02

AC

120,974 54,096 599,869 723,844
0.01 134,236 66,844 629,503 780,846

0.008 138,253 78,032 634,329 802,046
0.006 143,275 89,658 642,196 826,545
0.004 150,083 105,532 657,015 865,024
0.002 161,082 135,132 677,079 929,561

0.02

DC

120,974 48,721 598,148 720,156
0.01 134,236 63,431 626,464 774,388

0.008 138,253 74,450 630,581 794,805
0.006 143,275 87,215 640,130 822,573
0.004 150,083 105,532 657,015 865,024
0.002 161,082 135,132 677,079 929,561

It can be seen from Table 3 that with the gradual increase in the confidence level, the
spinning reserve cost, abandonment cost, and fuel cost of the system gradually increase,
resulting in the gradual increase in the objection value. The change trend of them with
the confidence level is shown in Figure 6. It can be seen that when the confidence level
gradually increases from 0.98 to 0.998, the synchronous increase in spinning reserve is
obvious, and the cumulative increase is 33%; the active power of the generator increases
slowly with a cumulative increase of 7%; the output power of wind and photovoltaic
decreased slowly with the increase in conservative coefficient, with a cumulative decrease
of 10%. The increase in confidence level means the increase in risk level of generator output
and line power flow out of limit. When the chance constraint meets higher constraint
probability, its corresponding feasible region is narrowed, and the optimization in the
smaller feasible region must be at the expense of certain economic objection value.
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Figure 6. Variation of generator and wind power with different confidence level.

4.4. Influence of AC Power Flow on Optimization Results

Compared with the optimization results without considering AC power flow in
Tables 2 and 3, when the parameters are consistent, the UC objection value, fuel cost, and
abandoned wind and solar energy cost increase slightly with considering AC power flow,
and the target value in Table 2 increases by 0.27–0.88%; the increase in fuel cost is between
0.16% and 0.81%, and the increase in abandoned wind and solar energy cost is between
2.3% and 5.4%. In Table 3, the objection value increases between 0% and 0.9%; the increase
in fuel cost is between 0% and 0.59%, and the increase in abandoned wind and solar energy
cost is between 0% and 11%.

The UC model based on DC does not consider the influence of reactive power and
node voltage on the optimization results, which may lead to reactive power imbalance, and
then, cause the risk of under voltage or over voltage on some buses. From the optimization
results in Tables 2 and 3, it can be seen that only when the confidence level is greater than
or equal to 0.996, the optimization results meet the reactive power balance. All bus node
voltages are within the allowable fluctuation range. In order to investigate the influence of
AC on start-up, shutdown, and node voltage in detail, the conservative coefficient of 0.6
and confidence level of 0.992 are selected to optimize the calculation and track the iterative
process. The results of the first solution of the main problem are substituted into the AC
check sub-problem, and all bus node voltages are shown in Figure 7.
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Figure 7. First iteration bus voltage.

It is easy to see that there are three times of node voltage overrun in the sixth period,
in which the lower limit of bus 7 is 1.74%, the lower limit of bus 8 is 0.22%, and the higher
limit of bus 13 is 0.21%. In the 12th period, there were three instances of node voltage
overrun, in which the lower limit of bus 1 was 0.37%, the lower limit of bus 2 was 0.56%,
and the lower limit of bus 5 was 0.95%. In the 13th period, there were three instances of
node voltage overrun, in which the lower limit of bus 1 was 0.53%, the lower limit of bus
2 was 0.67%, and the lower limit of bus 5 was 1.2%. In the 14th period, there were three
instances of node voltage overrun, in which the lower limit of bus 1 was 0.78%, the lower
limit of bus 2 was 0.99%, and the lower limit of bus 5 was 1.5%. It is easy to see that most
of the voltage overruns are that the node voltage is less than the minimum limit, and the
maximum overrun of 1.74% occurs at bus 7 of period 6. Usually, the node voltage is too
low because of the lack of reactive power supply, which indicates that it is necessary to
increase the number of generators started in these periods when the AC power flow is not
feasible to increase the reactive power supply. According to the generated benders cut, it is
returned to the main problem for the second solution. The comparison of unit startup and
shutdown obtained from the two main problems is shown in Figure 8.
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Figure 8. On and off status of generator.

Through the comparison, it can be found that the main changes are in six periods,
11 units are added, nine units are added in 12 and 13 periods, and two units are added in
14 periods. Because these units are added with reactive power, the voltage of out-of-limit
node returns to the limit range. Finally, after 14 iterations, the voltage of all nodes in the
whole scheduling cycle is within the limit. It can be seen that UC considering AC power
flow constraints can comprehensively consider the impact of reactive power and node
voltage on system power generation capacity and line power flow when making a unit
start-up and shutdown plan and ensure node voltage safety by coordinating and adjusting
the unit start-up and shutdown status and output in advance.

4.5. Comparison with Stochastic Unit Commitment Model

In order to investigate the feasibility and calculation efficiency of the proposed model,
the chance-constrained unit commitment [39] is selected and compared with the proposed
model. In order to make the comparison more real and effective, the AC verification
sub-problem is added to the CCUC model. The calculation objection value of the model is
shown in Figure 9. It can be seen from the figure that the conservative coefficient is infinitely
close to 0 regardless of the confidence level. It means that the fluctuation range of mean and
variance is infinitesimal and close to 0. At this time, the mean and variance are close to a
fixed value. The model in this paper is similar to the traditional chance-constrained model.
From the calculation results of the two models, it can be seen that the results calculated by
this method are very close to the results obtained by traditional chance-constrained SOC
transformation, and the error is between 0.027% and 0.58%. It is shown that the proposed
cut algorithm has high accuracy.
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Figure 9. Comparison of model calculation results.

The iteration and calculation time of the main and subproblem of the model in this
paper are shown in Table 4.The results show that under different confidence levels, the
number of iterations of the main sub-problem is slightly larger than that of the CCUC,
and the solving time of the sub-problem is consistent with that of CCUC, but the total
computing time is significantly lower than that of CCUC, After analysis, it is considered
that this is mainly because the cutting plane algorithm proposed for distributed robust
chance constraints greatly reduces the complexity of the main problem model and the
solution time of the main problem. Furthermore, it shows that this algorithm has high
computational efficiency and can meet the requirements of the actual system.

Table 4. Algorithm calculation efficiency comparison.

εG
i , εL

l Algorithm Iterations Master Problem/s Subproblem/s Total/s

0.02

DRSCUC

7 120 20 980
0.01 5 135 20 775

0.008 4 150 20 680
0.006 6 165 20 1110
0.004 5 180 20 1000
0.002 5 210 20 1150

0.02

CCSCUC

5 300 20 1600
0.01 3 330 20 1050

0.008 2 380 20 800
0.006 4 440 20 1840
0.004 3 520 20 1620
0.002 4 600 20 2480

5. Conclusions

In order to solve the problem of insufficient historical data and unknown real probabil-
ity distribution of wind and photovoltaic power output, this paper improves the traditional
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chance-constrained unit commitment model. Firstly, the general moment uncertainty
distribution set of wind and photovoltaic power forecast error is selected, its polyhedral
expression is given, and an improved cut plane algorithm is proposed; secondly, the AC
power flow model, which truly reflects the physical law of power grid operation, is adopted
to ensure the node voltage security and improve the accuracy of UC results. Through
comparative analysis of simulation examples, the following conclusions are obtained.

(1) In this model, the uncertainty of renewable energy output of UC is transformed
into a conservative coefficient, and the risk of generator output and line power flow out
of limit is transformed into the confidence level. After selecting reasonable conservative
coefficient and confidence level, the UC optimization results of this model can achieve the
decision goal of minimizing operation cost under certain risk.

(2) Under the premise that the objection value of UC based on AC is less than 1.0%, the
safety margin of bus voltage is significantly improved, and the risk of bus voltage overrun
is reduced, so as to improve the safety of system operation.

(3) The simulation results show that the larger the range of uncertainty set, the greater
the total scheduling cost of the system. Under different confidence levels, the optimal
scheduling results focusing on economy or security are different. Compared with the
chance-constrained method with specific distribution, the results show that the moment
uncertain distribution robust optimization method has good computational accuracy and
higher computational efficiency.
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