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Abstract: A microgrid is a small-scale energy system with its own generation and storage facilities
and energy management system, which includes shiftable and traditional loads. The purpose of this
research is to determine the size of the microgrid through (i) investigating the effect of a shiftable
demand response program (DRP) on sizing of an islanded microgrid and (ii) studying the uncertainty
of power output of renewable energy sources by applying the robust optimization (RO) method.
Since the RO method solves the problem for lower power outputs of renewable energy sources (RES)
than the predicted values, the results obtained are pessimistic and will increase the project cost. To
deal with the increment of project cost, the application of a load shifting DRP is proposed to reduce
the cost. In addition, DRPs are suitable means to reduce the effects of uncertain power sources.
Therefore, it is shown that a shiftable DRP is effective in reducing the overall project cost and the
dependency on energy storage systems by defining different scenarios and simulating them with
General Algebraic Modeling System (GAMS) software. Moreover, it is indicated that the shiftable
DRP and battery state of charge have correlations with solar irradiance and wind speed, respectively.

Keywords: demand response; uncertainty; robust optimization; microgrid sizing; renewable
energy sources

1. Introduction

Microgrid refers to a small-scale power system with independent energy management
process consisting of shiftable and conventional loads, energy sources, and energy storage
devices [1,2]. Since microgrids include shiftable loads, they have the potential to implement
demand response programs (DRPs) to balance the load of the system [3,4]. Diverse types
of DRPs are implemented on microgrids with the aim of peak shaving, load balancing,
matching load level with generation capacity, and cost optimization [5]. DRPs are defined
by the US Department of Energy as “a tariff or program established to motivate changes
in electric use by end-user consumers, in response to changes in the electricity price over
time, or to give incentive payments designed to induce lower electricity use at times
of high market prices or when grid reliability is jeopardized” [6]. Due to the flexibility
of microgrids to implement DRPs and variety of energy sources, the optimal allocation
and sizing problems are considered as the crucial challenges. In addition, the presence
of renewable energy sources (RESs) and following operational uncertainties have posed
sophisticated planning and sizing difficulties [7,8], which must be taken into account
at the design level; otherwise, the system will not operate properly. As a result, the
optimal sizing problem requires effective methods with the capability of administrating
the system’s uncertainty.
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This issue has been investigated in the literature, and different strategies have been
presented to determine the various aspects of the problem. First, several studies that have
presented new heuristic sizing methods are mentioned. In [9], a heuristic optimization
method called discrete harmony search algorithm was implemented to manage a hybrid
energy system consisting of photovoltaic panels (PV), wind turbines, batteries, and diesel
generators. Reference [10] utilized metaheuristic algorithms (simulated annealing (SA)
and Tabu search (TS)) for solving the optimal configuration problem. Another heuristic
algorithm named modified particle swarm optimization (MPSO) was implemented for
optimal sizing of the hybrid energy system [11]. In [12], the optimal allocation of a grid-
connected hybrid microgrid was considered and a new two stage constraint-based iterative
search algorithm implemented. In the first stage, the RESs optimization was performed,
and in the second stage the optimal battery capacity was obtained. Reference [13] im-
plemented the social network optimization (SNO) algorithm for the optimal training of
rule-based management strategies, to be implemented in the controller of hybrid off-grid
microgrids. A two-loop bi-level hybrid algorithm consisting of a combination of several
heuristic methods was implemented in [14], for optimal allocation of switch capacitors and
reactive power management of distribution networks and microgrids. In [15], a hybrid
PV/wind/diesel microgrid with the energy storage devices was optimally allocated by
using the multiobjective self-adaptive differential evolutionary algorithm. In addition, a
novel hybrid method with a combination of the wild goat algorithm (WGA) and exchange
market algorithm (EMA) for dynamic reconfiguration of networks and microgrids with
parallel processing capability was proposed in [16]. Reference [17] proposes a novel tech-
noeconomic multilevel optimization method and modern time varying price model for
sizing and planning of home microgrids in a coalition system, with the aim of minimizing
energy cost.

There are several software systems related to microgrids optimization and energy
management. HOMER (UL, Boulder, Colorado, USA) software is one of the main toolboxes
utilized to manage and optimize energy systems such as microgrids. This software was
used in [18] for optimal allocation and sizing of the microgrid equipment. In addition,
in [19] the technoeconomic optimal sizing of a standalone microgrid was performed by the
HOMER and GAMS software. Some studies implemented deterministic and mathematical
approaches instead of heuristic methods. In [20], a novel direct deterministic optimization
algorithm was utilized for optimal sizing a standalone hybrid wind/PV/diesel energy
system. The authors in [21] introduced an optimization approach for microgrid planning,
based on mixed-integer programming (MIP) to optimize the benefit of the microgrids while
minimizing the risk in profit. In [22], the optimal sizing of an autonomous hybrid PV/wind
system was determined by using a new deterministic approach based on the definition
of a levelized cost of energy and loss of power supply probability concept. A two-layer
predictive management strategy based on mixed integer linear programming (MILP) for
an off-grid hybrid microgrid was presented in [23]. In this study, the upper layer manages
the unit commitment, while the second layer regulates real-time operation.

Selecting the effective and appropriate objective function for the optimal sizing and
allocation of the microgrids is the other significant challenge that must be carefully con-
sidered. In [10], the objective function for the sizing problem is to minimize the total
energy costs of the microgrid. Minimization of the cost of energy and loss of power supply
probability and maximization of the RESs penetration are the objective functions of the
optimal allocation of hybrid microgrid [15]. In [22], the aim of microgrid sizing is to achieve
a minimum investment cost and to enumerate the reliability indices. A novel smart strategy
for energy trading and optimal sizing of islanded multi-microgrids was proposed in [24].
Fair profit allocation of microgrids owners and reliability enhancement of the whole system
are the objectives of this paper.

Micro-grid’s (MG’s) optimal sizing and allocation problem is sensible to several factors
such as DRP, energy storage systems, potential uncertainties, and environmental factors.
Some papers have investigated the effect of such factors on the microgrids optimal sizing
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problem. In [10], RESs uncertainty was assumed and the sensitivity analysis carried out
on various case studies. Reference [25] optimized a single objective function to determine
the size of components of the microgrid. In this study, the uncertain nature of RESs using
probability density functions was considered. In [26], the optimal placement and sizing
of the microgrid were performed by defining a deterministic set of uncertainties, instead
of probability distribution functions. A hybrid energy system was designed using a new
technoeconomic strategy [27]. In this study, a load shifting method was implemented
by classifying the demand to low and high priority loads, and its effect on the sizing
problem analyzed. In [19], the effect of DRPs was investigated in the sizing problem, and
the results showed that the implementation of DRPs could reduce the system’s costs and
improves the performance of sizing strategy. Reference [28] considered the effect of DRP
and environmental factors on the optimal size of microgrid conventional and renewable
sources. The main drawback of this paper is that the uncertainty of the RESs and load was
not considered, and only a 24-hour time interval was used as an annual sample for RESs
and load. The microgrids’ DGs combinations were analyzed by HOMER software with
and without considering energy storages in [18]. In addition, the environmental impacts
of the proposed plans such as greenhouse gas emissions were studied. Similarly, in [20],
the effect of energy storage systems on the sizing problem was addressed. It was shown
that the installation of a battery bank to an independent hybrid system would reduce the
investment costs.

This paper investigates the optimal sizing of an islanded microgrid (IMG) with
PV/wind/battery by considering the simultaneous implementation of shiftable DRP. The
uncertainties of RESs are applied with the robust optimal method. Most of the existing
literature has optimized the sizing problem without considering the uncertain nature of
RESs, and in the case of considering these uncertainties, the RO was not applied concurrent
with DRPs. Therefore, considering potential uncertainties along with implementing the RO
method is one of the main contributions of this research. In addition, applying shiftable
DRP and analyzing its effect on sizing problem makes this study more comprehensive
than previous works. The RO method increases the cost function, which is not desirable
for investors. Hence, an effective shiftable DRP is implemented for investor persuasion.
In this strategy, a fraction of demand on the defined hours of a day can be shifted to the
other hours of the same day. Furthermore, it is assumed that the IMG participants are
IMG investors. Therefore, the DRP implementation can reduce the cost function because of
investors’ participation, which can be considered as participants’ incentive. As a result, by
changing the robust budget of uncertainty and DRP participation factors, suitable tradeoff
scenarios can be generated in the IMG sizing problem. Thus, as another significant contri-
bution of paper, the potential uncertainties are considered by an accurate method without
decreasing cost function via shiftable DRP. A mathematical strategy is used to solve the
optimal sizing problem by utilizing the BARON solver in GAMS (GAMS Development
Corp., GAMS Software GmbH, Washington, DC, USA). The major contributions of this
study can be summarized as follows:

• Robust optimal sizing along with a novel shiftable DRP;
• Most of the existing literature optimized the sizing problem without considering the

uncertain nature of RESs, and the ones which have considered the uncertainties, have
not used the RO along with DRPs; in this research, the uncertainties are considered
using RO along with a shiftable DRP;

• Generating tradeoff scenarios by the robust optimal sizing method for simultane-
ous investor persuasion and covering the RESs uncertainty, as the main purpose of
DRP application;

• In addition to considering uncertainty along with a shiftable DRP, a novelty of this
work is investigating correlations between different sources.

The remainder of this paper is organized as follows. The model of MG is presented
in Section 2. Problem formulation includes objective function, model of load, DRP, and
equipment, which are explained in Section 3. Proposed sizing strategy is explained in
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Section 4. Case studies are described in Section 5. Simulations result and sensitivity analysis
are presented in Section 6. Finally, Section 7 explains the conclusions of the research.

2. Model of Studied IMG

Here, the proposed IMG is a renewable-based microgrid that includes photovoltaic
(PV) and wind energy generation sources; therefore, the energy storage system is used to
provide demand in the event of energy shortages. All the system components must be
in harmony to manage fluctuations and uncertainties. Therefore, an independent IMG
control center is suggested in the proposed model. One hypothesis for this IMG is that
all the infrastructures of smart grids are obligatory for installation, so IMG consumers
and control center operators can interact with each other. The scheme of IMG is shown
in Figure 1, which consists of a set of PV arrays, wind turbines, battery energy storage
system (BESS), loads, and a microgrid control center (MGCC). The responsibilities of the
MGCC are proper planning for supplying demand and sending control signals to the IMG
components [29]. The IMG demand consists of dump load and consumer demand. The
dump load, similar to [19], is suggested for balancing the consumption and generation. If
the extra power is available and the BESS charging is not an optimal choice, this power
should supply to the dump load. Since IMG demand consists of shiftable and conventional
loads, DRPs implementation is feasible for IMG. Here, a load shifting DRP is implemented
to bring the generation and consumption profiles close together [19,27,30]. According to
the definition of the US Department of Energy, each DRP requires a financial incentive
for implementation. Since in this research, the customers are supposed to be investors of
the microgrid, the financial incentives can reduce the project cost by implementing a load
shifting DRP.
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Figure 1. Structure of studied microgrid.

3. Sizing Problem Formulation

The desired microgrid consists of components including PV, wind turbines, and
battery energy storage system (BESS). In addition, DRP is used to decrease the total value
of objective function. Therefore, in this section, the general model of PV, wind turbines,
BESS, and DRP are first explained, and then the participation value of each component in
objective function is clarified.

3.1. Wind Turbine Model

The output power of the wind turbine is related to wind speed. In addition, depending
on the mounting height, wind speed is different compared to measuring point speed [31].



Energies 2021, 14, 5750 5 of 20

In this study, the height effect on the wind turbine installation site is ignored for simplicity.
Thus, given Equation (1), the output power can be obtained for wind turbines [27].

Pw(h) =


0, v ≤ vcut in OR v ≥ vcut out

Pr ×
(

v2−v2
cut in

v2
r−v2

cut in

)
, vcut in < v ≤ vr

Pr, vr < v ≤ vcut out

(1)

In the Equation (1), Pr is the rated wind turbine power; v and vr stand for wind speed
and rated wind turbine speed, respectively.

3.2. Solar Panel Model

The output of the solar PV panel is directly related to the solar radiation, absorption
capacity, and panel area. The cell temperature also affects the output power of PV panels
as follows [19,32]:

PPV(h) =
Gt(h)
1000

× Pnom × ηpv × [1− βT(TC − TC,STC)] (2)

TC = Tamb + (NOCT − 20)× Gt(t)
800

(3)

where Gt(t) is sun radiation in w/m2; ηpv, βT , and TC,STC are power reduction factor,
temperature coefficient, and cell STC temperature, respectively. Cell temperature (TC) is
also calculated by Equation (3). NOCT and Tamb are normal operation cell temperature
and ambient temperature.

3.3. BESS Model

In the IMG studied, due to the stochastic behavior of the RESs, there may be some
situations in which the solution is infeasible. In practice, there may also be times when
the generation is higher or lower than the consumption. In these instances, saving or
lending energy is the alternative solution. Therefore, BESS is used for these various
conditions. Equation (4) presents the BESS state of charge. In this equation, δ is the BESS
self-discharge coefficient [19].

SOC(h) = SOC(h− 1)× (1− δ) + Pch(h)× ηBAT −
Pdis(h)

η BAT
(4)

Equations (5) and (6) are used to limit the BESS charge and discharge rate, and
Equation (7) is used to handle charging and discharge simultaneously [19].

Pch(h) ≤ Ich(h)× RBAT × NBAT (5)

Pdis(h) ≤ Idis(h)× RBAT × NBAT (6)

Idis(h) + Ich(h) ≤ 1 (7)

In these equations, Ich(h) and Idis(h) are charge and discharge binary variables, re-
spectively, and RBAT is the maximum charge or discharge rate of BESS.

The BESS state of charge is also between certain minimum and maximum values,
which is formulated as follows [19]:

Emax = (1− DOD)× Erated (8)

NBAT × Emin ≤ SOC(h) ≤ NBAT × Emax (9)

where Erated and Emax are the rated and maximum capacity of BESS, which are equal in
this case. Emin and DOD are also the BESS minimum permitted remaining charge and the
BESS depth of discharge.
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3.4. Demand Model

The supposed annual demand curve is composed of three types of demands: residen-
tial, commercial, and industrial. Considering Equation (10), this demand curve consists
of a fixed and a random part. The indicators CSeason, type(h), Dc, and Ptype are the seasonal
effect, the demand, and peak demand coefficients, respectively. In this equation, the RF
parameter is also the constant fraction of demand in every hour. Furthermore, (1− RF) is
multiplied by the rand function and presents the randomness of demand as Equation (10)
in line with coefficients of Table 1.

D(h) = ∑
type

CSeason, type(h)× Ptype × (RF + (1− RF)× rand)× Dc(h); ∀h (10)

Table 1. Demand model coefficients.

Type Ptype
CSeason, type

(1−RF)
Winter Spring Summer Autumn

Industrial 5 1.1 1 1.1 1

0.25Commercial 2 1.1 1 1.1 1

Residential 7.5 1.3 1 1.3 1

3.5. The Proposed DRP Model

Here, the DRP is incentive-based because consumers are considered as microgrid
investors. Therefore, any saving in project costs is attractive to consumers. In this study, the
DRP leads to the optimal shift in consumption from low generation and high consumption
periods to other periods. The proposed DRP for this problem follows:

Pshi f t−in(h) ≤ PP× D(h) (11)

Pshi f t−out(h) ≤ PP× D(h) (12)

DDR(h) ≤ (1 + PP)× D(h) (13)

DDR(h) = D(h) + Pshi f t−in(h)− Pshi f t−out(h) (14)

∑
h∈ Tout

Pshi f t−out(h) = ∑
h∈ Tin

Pshi f t−in(h) (15)

where D and DDR are respective indicators of the IMG demand before and after implemen-
tation of DRP. In addition, PP is a fraction of demand that is expected to participate in the
proposed shiftable DRP.

In addition, Equations (11)–(13) are used to limit the amount of shifted-in and shifted-
out demand for a specific percentage of DRP participation (PP). Equation (14) presents the
modified demand profile after DRP implementation, and Equation (15) indicates that the
total demand transferred from Tout to Tin should be equal in every 24 h interval.

3.6. Power Balance

The imbalance between generation and consumption leads to the infeasibility of the
problem and in practice causes the system to be unstable. Equation (16) presents the
balancing constraint for the sizing problem. Equations (17) and (18) are related to PVs and
wind turbines which limit the output power of these components.

Ppv(h) + Pw(h) + Pdischarge(h) = DDR(h) + Pcharge(h) (16)

Ppv(h) ≤ Npv × ppv(h) (17)

Pw(h) ≤ Nw × pw(h) (18)
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In these equations, pv and w are indices that stand for PV panels and wind turbines.

3.7. Objective Function

The Mixed integer nonlinear programming (MINLP) form of optimal sizing problem is
introduced. Minimizing project cost is the main goal of this problem. To compare the project
cost of different scenarios, the net present cost (NPC) concept is used, which is calculated
by converting the future value of all input and output capitals to the present time [33]. For
the system components, there are costs and values over the lifetime of the project. The
operation and maintenance (O&M) cost, which presented by Equation (19), is annually
for all the components [33]. In addition, Equations (20) and (21) present replacement cost
and the residual value of components considered when their lifetime is finished [33]. In
other words, the authors of the paper have considered all aspects, including operation
and maintenance cost, replacement cost, and residual cost, which are the capital costs and
profits in the microgrid structure. Equations (19)–(21) are the famous formulas in economics
that are used to convert the different costs and profits to the first year for complementary
investigations, which follow:

O&Mt =
N

∑
n=1

O&Mn
1

(1 + i)n (19)

Rept =
(N−M0)/M0

∑
n=2

Repn
1

(1 + i)n×M0
(20)

Rest =
N/M0

∑
n=2

Resn
1

(1 + i)n×M0
(21)

where M0 and N are the lifetime of each component and total project lifetime, respectively,
and i is the discount rate in these formulas.

The next step is the construction of the cost function for each component. Equation (22)
gives the total NPC for each system component [33]. In this equation, IC is the investment
cost considered once and for the first year of the project.

NPC = IC + O&Mt + Rept − Rest (22)

The final step is aggregating all components in the uniform function as an objec-
tive function. Equation (23) is the objective function of the sizing problem [33]. In the
present study, the lifetime of each component is constant, and the problem is optimized
for the project lifetime with a fixed electric demand pattern considering equality and
inequality constraints.

Minimize OF = ∑
k={PV,WT,BAT}

Nk × NPCk (23)

In this equation, Nk is an integer number for the optimal installation number of
each component.

4. RO Method

Information and real-world data are often uncertain. These existing uncertainties
may be inherent or due to measurement errors and predictions. In [33], it was shown
that ignoring uncertainties in the process of solving optimization problems with uncertain
data, could lead to a non-optimal or infeasible solution. Therefore, the uncertainties must
be taken into account. There are several methods to handle the uncertainties, such as
sensitivity analysis [34], fuzzy programming [35], random programming [36], and the
RO method [37]. Among them, the RO method can solve the optimization problem for
the worst-case scenario considering all possible scenarios. The term worst-case means
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that, when the IMG is sized for the worst case, the results will be robust against the
appearance of other probable causes. In other words, the sizing of this method guarantees
its results to work well in all other probable cases [38]. In the RO method, there is no need
for probability density functions of uncertain variables, and it uses uncertainty sets of
data [39,40]. Due to the worst-case approach of the RO method, its simplicity, and needless
use of probability density functions to consider uncertainties, this method is selected as the
problem-solving method.

4.1. General Form of RO

The RO method was first introduced in 1973. Soyster suggested a linear optimization
model that is robust against uncertainty, but he did not succeed because of excessive
conservatism [37,41]. In recent years, modifications have been made to this method to
remove the problem of excess conservatism by defining uncertain data sets [42].

To obtain the general form of the RO method, the general form of the MILP problem
must first be introduced [42]:

min ∑
m

cmxm + ∑
k

dkyk

subject to (s.t) : ∑
m

ãimxm + ∑
k

b̃ikyk ≤ p̃i ∀i
(24)

In this optimization problem, x and y are the integer and continuous variables multiplied
by c, d coefficients. In addition, ãim, b̃ik, and p̃i are the matrices for uncertain parameters.

In Equations (25) and (26), uncertain set models for uncertain parameters are presented.
By applying these models to the MILP general form and considering the worst-case concept,
the general form of the RO method is derived and presented in Equation (28) [42].

ãim = aim + εim âim (25)

b̃ik = bik + εik b̂ik (26)

p̃i = pi + εi0 p̂i (27)

min ∑
m

cmxm + ∑
k

dkyk

s.t : ∑
m

aimxm + ∑
k

bikyk + max
ε∈U
{−εi0 p̂i + ∑

mεMi

εim âimxim + ∑
kεKi

εik b̂ikyik} ≤ pi ∀i (28)

4.2. Robust Form of IMG Sizing Problem

In the RO method, every uncertain parameter must be defined by an uncertain set.
Similar to [43–45], the uncertain parameters are the output power of the PV panels and
wind turbines, which their uncertain sets are modeled as follows:

P̃pv(h) = Ppv(h) + ∆Ppv(h)× zpv(h) + ∆Ppv(h)× zpv(h); ∀ h (29)

P̃w(h) = Pw(h) + ∆Pw(h)× zw(h) + ∆Pw(h)× zw(h); ∀ h (30)

In these equations, ∆Ppv(h), ∆Pw(h) are for upper bounds of RESs (PVs and wind
turbines) and ∆Ppv(h), ∆Pw(h) are for lower bounds of RESs. In addition, zpv(h), zw(h) are
uncertainty decision variables for lower bounds of RESs, and zpv(h), zw(h) are uncertainty
decision variables for upper bounds of RESs.
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By replacing Equations (29) and (30) in the balance constraint of the problem instead of
the deterministic form of the RESs, an optimization subproblem will appear in the balance
constraint, which is a part of balance constraint as follows [43–45]:

max PWC(h) =
[

∆Ppv(h) ∆Ppv(h) ∆Pw(h) ∆Pw(h)
]

zpv(h)
zpv(h)
zw(h)
zw(h)



s.t :


1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




zpv(h)
zpv(h)
zw(h)
zw(h)

 ≤


Γ(h)
1
1
1
1




zpv(h)
zpv(h)
zw(h)
zw(h)

 ≥ 0

(31)

In Equation (31), PWC(h) is a part of the balancing constraint, which is the sum of the
output power of the worst-case scenario; zRES(h) and zRES(h) are decision variables for
considering worst-case uncertainty; and Γ(h) is the uncertainty budget factor, which the
problem can be solved by setting its value for the most pessimistic and optimistic state. This
parameter can contain values between zero (i.e., the deterministic or optimistic state) and
the number of uncertain parameters (i.e., the pessimistic state). The number of uncertain
parameters is two in this condition because of the existence of PV and wind turbine.

As a result, a maximization optimization subproblem appears in the investment cost
minimization main problem. Therefore, the subproblem needs to change to a minimization
problem. By using duality concept, this goal can be obtained [38,46]:

minzp = cTx maxzD = bTy
s.tAx ≥ b⇔ s.tATy ≤ c

x ≥ 0 y ≥ 0
(32)

For converting the subproblem obtained to a minimization problem in the first step,
subproblem terms of Equation (31) must be rewritten as Equation (32) matrices [43–45].

bT =
[

∆Ppv(h) ∆Ppv(h) ∆Pw(h) ∆Pw(h)
]

(33)

AT =


1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (34)

c =


Γ
1
1
1
1

 (35)

y =


zpv(h)
zpv(h)
zw(h)
zw(h)

 (36)
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After replacing these matrices in duality formula, the minimization subproblem can
be derived as follows [38,46]:

minzp =


Γ
1
1
1
1


T

x

s.t :
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

x ≥


∆Ppv(h)
∆Ppv(h)
∆Pw(h)
∆Pw(h)


x ≥ 0

(37)

By placing the Equation (38) (i.e., duality variables) into Equation (37), the final form
of the subproblem can be obtained as follows:

x =


ζ(h)

λpv(h)
λpv(h)
λw(h)
λw(h)

 (38)

min

ζ(h)Γ(h) + ∑
RDG∈{pv,w}

λRDG(h) + λRDG(h)

 (39)

ζ(h) + λRDG(h) ≥ ∆PRDG(h); ∀ RDG, h (40)

ζ(h) + λRDG(h) ≥ ∆PRDG(h); ∀ RDG, h (41)

ζ(h) , λRDG(h) , λRDG(h) ≥ 0; ∀ RDG, h (42)

Therefore, by adding Equation (39) to the left side of Equation (16), the final balancing
constraint is obtained for the RO-sizing problem as follows:

Ppv(h) + Pw(h) + Pdis(h) + ζ(h)Γ(h)
+ ∑

RES∈{pv,w}
λRES(h) + λRES(h) = DDR(h) + Pch(h) (43)

Finally, the ultimate form of RO sizing problem uses Equations (1)–(19), and (40)–(43)
to obtain optimal decision of the IMG considering the uncertain parameters.

5. Case Study

In this section, the meteorological data and economic parameters related to the project
components are given. The meteorological data including wind speed and sun irradiation
belong to Ardabil City in Iran (Latitude = 38.250◦, Longitude = 48.300◦), which is obtained
through Meteonorm software [42]. Figures 2 and 3 are the wind speed and solar radiation
figures for 1248 h of a one-year period, where each 24 h is representative of a week.
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Figure 3. Average sun radiation annual data.

Figure 4 presents daily data for three types of demand [47] and Figure 5 indicates
the statistical dispersion of hourly demand after applying seasonal and random daily
coefficients to it, which is described in Section 3.4 and 3.5. In the Figure 5, the meaning of
numbers related to the hours is the number of hours which the related demand is in that
range. For example, demand range (3, 5) with 335 h means that 335 h of total hours are in
range of (3, 5) kW.
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Figure 4. Daily data for three types of demand [47].
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The components of the microgrid and project specifications are also given in Table 2.

Table 2. Project and components specifications [19,48,49].

PV Panels Specifications Wind Turbine Specifications BESS Specifications

Rated Power 1 kW Rated power (Pr) 3 kW Rated Capacity (Erated) 1 kW
ηpv 85% v rated 9 m/s ηBAT 80%
- - vcut out 20 m/s Investment Cost (IC) 494 USD

Lifetime (M0) 20 years vcut in 2.1 m/s Depth of Discharge
(DOD)

80%

Investment Cost (IC) 2500 USD Lifetime (M0) 20 years Self-Discharge (σ) 0.002
- - Investment Cost (IC) 3900 USD Lifetime (M0) 5 years

Project General Specifications

Interest rate (i) 6% Replacement Cost (Rep) 90% IC Residual Value (Res) 10% IC
O&M 5% IC Project Horizon (N) 20 years - -

6. Simulations and Sensitivity Analysis

In this section, the introduced optimal sizing problem is simulated using GAMS
version 24.2.1 software. In addition, the internal solver of the GAMS software, which is
used in this paper, is BARON [50,51].

For validating the results and proposing tradeoff scenarios for investors, the sensitivity
analysis is applied. The parameters considered for the sensitivity analysis are the Γ and PP
factors. According to Table 3, there are 27 scenarios (by removing similar scenarios) for
different values of the mentioned parameters. The base scenario (BS) is the scenario with
Γ = 0 and PP = 0% that is considered as the optimistic scenario and the other scenarios
will be evaluated concerning this scenario. Scenarios 20 and 25 are also selected as problem
tradeoff and worst scenarios to perform further comparisons, respectively.

The simulation results are listed in Table 3. Scenarios with Γ = 0 and Γ = 2 are the de-
terministic optimization problems with 0% and 100% uncertainty, respectively. According
to the simulation results, it can be seen that an increase in the uncertainty set, bound and
RO budget would increase the NPC, together with an increase in the DRP participation
factor (PP), would decrease the NPC.

In this paper, our main purpose is to propose an optimization model that can be
robust against uncertain parameters or uncertainty sets. For this reason, we used GAMS
as a solver, which can solve problems with algebraic modeling. Because of complexity of
formulation (number of variables is high), the best tool for finding optimum points for
this paper is GAMS software. In spite of this fact, there are other methods for finding the
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optimum points of the parameters, such as heuristic methods which are useful, but have
some major problems. These methods are not suitable for the problems that have a high
number of variables and usually become stuck at the local optimal points or cannot find
the optimal solutions. Therefore, we used the GAMS software, which is potent in solving
these types of problems.

Table 3. Parameter values for sensitivity analysis.

Scenario Uncertainty Set Γ PP NPC (USD)

1 (BS) - 0 0% 437,386.5 (BS)
2 - 0 20% 420,729.8
3 - 0 40% 407,675.6
4 %(90–110) 0.5 0% 451,116.7
5 %(90–110) 0.5 20% 433,455.8
6 %(90–110) 0.5 40% 426,338.4
7 %(90–110) 1 0% 462,118.4
8 %(90–110) 1 20% 442,623.4
9 %(90–110) 1 40% 432,407.5
10 %(90–110) 1.5 0% 466,571.3
11 %(90–110) 1.5 20% 443,911.6
12 %(90–110) 1.5 40% 434,896.2
13 %(90–110) 2 0% 468,295.6
14 %(90–110) 2 20% 455,480.1
15 %(90–110) 2 40% 438,584.7

16 %(80–120) 0.5 0% 462,118.4
17 %(80–120) 0.5 20% 441,183.1
18 %(80–120) 0.5 40% 432,407.5
19 %(80–120) 1 0% 488,574.7

20 (TS) %(80–120) 1 20% 470,913.8 (TS)
21 %(80–120) 1 40% 460,502.1
22 %(80–120) 1.5 0% 495,756
23 %(80–120) 1.5 20% 478,095.1
24 %(80–120) 1.5 40% 466,373.2

25 (WS) %(80–120) 2 0% 508,918.2 (WS)
26 %(80–120) 2 20% 488,004.9
27 %(80–120) 2 40% 474,012.8

However, there are many mathematical methods that can be used in GAMS and each
uses a unique path to solve the problem. For comparing GAMS solvers and using best
solver for this paper, we used the base scenario for testing and ran our model considering
different GAMS solvers. The comparison result is given in Table 4, which proves the
efficiency of the method used.

Table 4. Cost function value for different solvers in GAMS software.

GAMS Solver BARON ALPHAECP LINDOGLOBAL SCIP

Base Scenario’s
Investment Cost (USD) 437,386.5 441,381.1 444,283.8 442,123.3

Next, we want to point to the high comprehensiveness of our method and investigate
the robustness of our method against the changing variables. According to Table 3, we
investigated different scenarios and conditions to prove the performance of our method.
According to Table 3, we consider all possible modes for uncertainty sets, Γ, and PP. We
investigated the different modes (including the worst-case scenario), but we eliminated
some same modes and presented 27 potent modes in Table 3. According to Table 3, our
method can consider all plausible modes for different modes of uncertainties and it can also
reduce the cost by applying the demand–respond program. For example, in scenarios 4–6,
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we keep constant the uncertainty sets and Γ parameters and vary the PP to investigate the
effect of demand response program on cost; in scenarios 4 and 7, we keep constant the
uncertainty sets and PP to investigate the effect of Γ on our survey; in scenarios 4 and 16,
we keep constant the PP and Γ parameters to investigate the effect of uncertainty sets on
our planning. Therefore, our method is very robust, comprehensive, and economic.

Our general purpose in this paper is planning for the desired microgrid. In other
words, this paper is a very good reference for the owners who want to invest in microgrids.
Because our desired microgrid do not have reliable sources such as CHP or diesel generator
(due to investigating worst modes or high-bound uncertainties), the owner is wary about
uncertainties of RESs; therefore, the owner wants to ensure robustness of the designed
microgrid. We present a method which assures the owner of the uncertainties (even for
the worst case) and by considering the DRP, the owner has an opportunity to reduce the
costs. Therefore, we cannot eliminate the investment and operation costs because our
general intention is planning for the designed microgrid and investigating the different
modes in it. According to Table 5, for comparing scenarios from a financial perspective,
we chose three scenarios from the results of the Table 3. The first is the base scenario that
is labeled as scenario number 1. This scenario is the simplest, having no robust model
and DRP participation. The second is labeled as scenario number 26 with a 20 percent
uncertainty set and 20 percent DRP participation. The third is the worst-case scenario,
labeled as scenario number 25, with a 20 percent uncertainty set and 0 percent DRP. By
comparing these scenario values, it can be inferred that considering 20% uncertainty set
without DRP can increase investment cost by 16%. In addition, it can be seen in scenario 26
using 20 percent DRP, that the scenario decreases investment cost by 4 percent.

Table 5. Cost function value for different scenarios for investigating the investment cost.

Scenario Uncertainty Set Γ PP NPC (USD)

1 (BS) - 0 0% 437,386.5 (BS)
25 (WS) %(80–120) 2 0% 508,918.2 (WS)

26 %(80–120) 2 20% 488,004.9

According to Figure 6, by comparing NPC. for each scenario, it would be stated that
the simultaneous implementation of the DRP and RO method creates tradeoff scenarios.
For example, in this figure, the scenario with RB = 1 and PP = 20% is a good choice
for investment.
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Figure 6. NPC for simulation with a 10% uncertainty set.

The calculated capacity of the RESs and the BESS are shown in Figure 7, considering
10% of uncertainty bound. By comparing these figures in the first step, it is obvious that
the consideration of uncertainty for RESs increases the size of system components and
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in the second step, it can be noted that the DRP implementation increases the calculated
capacity of RESs and decreases the calculated capacity of the BESS. This means that DRP
implementation can decrease the dependency on BESS and increase the dependency on
real-time generation.
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Figure 7. The calculated capacity of microgrid components with a 10% uncertainty set bound.

Figure 8 shows the demand intervals for one year after the DRP implementation
with PP = 20%, Γ= 1, and 10% uncertainty set-bound. By comparing this scenario with
base demand, and considering Figure 9, it can be noted that the demand in specified
hours has often been shifted to the hours with more generated output power. As a result,
uniform distribution for generation and demand is obtained. In addition, by computing
the annual cumulative shifted demand per hour of the 24 h profile, as shown in Figure 9, it
can be realized that the shifted demand is mostly transferred to the 8 a.m.–4 p.m. period.
Considering the daily generation of solar power, it has a dependency on the daily solar
power generation pattern. During other hours, such as hours without solar power generation,
the wind energy would match between generation and consumption. This is the reason for
the increase in installed capacity of RESs and the decrease in the reliance on BESS.
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Figure 9. Total shifted cumulative demand versus average power output of a PV module for a
one-year horizon.

Finally, considering Figure 10, which is the comparative figure for BESS state of charge
and wind speed, it is obvious that BESS state of charge is highly dependent on wind speed.
It can be said that almost whenever wind speed is under the cut-in wind turbine speed, the
MGCC begins to send signals to BESS.
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7. Conclusions

By implementing a shiftable DRP for robust optimal sizing of a microgrid, it was
shown in this case study that the uncertainty in RESs can increase project cost, and imple-
mentation of DRP in the optimal sizing problem can reduce the investment cost and BESS
capacity. From an economic perspective, these results can lead to different tradeoff scenar-
ios for investor persuasion. Comparing the base scenario (BS) with the worst scenario (WS),
it was shown that considering only 20% uncertainty sets, the cost of the project increased by
16%. In addition, by choosing scenario 20 as a tradeoff scenario (TS), the project cost only
increases 7%. This scenario considers 20% uncertainty sets with Γ = 1 for robust optimal
sizing and PP = 20% for DRP implementation. In addition, from this microgrid planner
perspective, it can be concluded that the shiftable DRP is highly correlated with the solar
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energy power output. Furthermore, comparing wind speed with state of charge of the
BESS, another correlation between BEES state of charge and wind speed was discovered.
These correlations among different components and DRPs show the significance of each
component specification that can affect the other component performance.
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Abbreviations

Nomenclature
O&M Operation and maintenance cost
Rep Replacement cost
Res Residual value
M0 Lifetime of components
N Total lifetime of the project
IC Investment cost
NPC Net present cost
OF Objective function
Nk Size of components
i Discount rate
k Index for problem components {PV, WT, BAT}
Pw Wind turbine output (kW)
Pr Wind turbine rated power (kW)
v Wind speed
vr Wind turbine rated speed
vcut in Wind turbine cut-in speed
vcut out Wind turbine cut-out speed
PPV PV panels output (kW)
Pnom PV panel rated power (kW)
Gt Sun radiant (w/m2)
ηpv PV panels power reduction factor
βT PV panels temperature coefficient
TC,STC PV panels cell standard test conditions (STC) temperature
TC PV panels cell temperature
NOCT Normal operation cell temperature
Tamb Ambient temperature
CSeason, type Seasonal demand effect
Dc Demand coefficient
Ptype Peak demand coefficient
RF Constant percentage of demand
D Hourly demand of islanded microgrid (IMG)
SOC BESS state of charge
δ BESS self-discharge coefficient
ηBAT BESS efficiency
Pcharge BESS charged power
Pdischarge BESS discharged power
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Ich ,Idis BESS charge and discharge binary variables
RBAT Maximum charge or discharge rate of battery energy storage system (BESS)
Emax,Emin Minimum and maximum capacity of BESS
DOD BESS depth of discharge
Erated BESS rated capacity
Pshi f t−in Shifted-in demand
Pshi f t−out Shifted-out demand
PP DRP participation percentage
DDR Demand after implementation of demand response programs (DRP)
cm,dk Integer and continuous coefficients of variables
xm,yk Integer and continuous variables
ãim, b̃ik,p̃i Uncertain parameter matrices
P̃k The uncertain output power of renewable energy sources (RESs)
∆PRES,∆PRES Uncertainty upper and lower bounds for RESs
zRES,zRES Uncertainty decision variables for lower and upper bounds of RESs
Γ Robust uncertainty budget factor
ζ,λk, λk Duality variables for Γ and lower and upper bounds for uncertainty

decision variables (k ∈ (RDG.w.pv.RES))
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