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Abstract: The world is transitioning from the conventional grid to the smart grid at a rapid pace.
Innovation always comes with some flaws; such is the case with a smart grid. One of the major
challenges in the smart grid is to protect it from potential cyberattacks. There are millions of sensors
continuously sending and receiving data packets over the network, so managing such a gigantic
network is the biggest challenge. Any cyberattack can damage the key elements, confidentiality,
integrity, and availability of the smart grid. The overall smart grid network is comprised of customers
accessing the network, communication network of the smart devices and sensors, and the people
managing the network (decision makers); all three of these levels are vulnerable to cyberattacks.
In this survey, we explore various threats and vulnerabilities that can affect the key elements of
cybersecurity in the smart grid network and then present the security measures to avert those threats
and vulnerabilities at three different levels. In addition to that, we suggest techniques to minimize
the chances of cyberattack at all three levels.

Keywords: smart grid; cyber attacks; DDoS attack; authentication; authorisation; packet flooding;
denial of service

1. Introduction

The conventional electricity system has been enhanced with modern technology, trans-
forming it into a smart grid. A smart grid incorporates several operational and energy
management techniques. The operational and energy measures may include smart meters
and smart appliances installed at the customer’s location, a production meter, renewable
energy generators, smart inverters, and energy efficiency resources deployed at the grid’s
location [1]. Renewable energy generators contribute to energy cost reductions since the
cost of producing electricity from renewable sources is zero, although renewable energy is
intermittent in nature and is highly influenced by a variety of conditions such as ambient
temperature, humidity, wind speed and direction, and geographical area. Solar energy, for
example, is affected by irradiance, cloud cover, and ambient temperature [2]. Wind energy
fluctuates greatly with wind speed and direction. Numerous techniques exist for forecast-
ing wind energy, solar energy, and battery state of charge in order to incorporate renewable
energy in a robust and timely way. The smart grid enables bidirectional communication
between the grid and the sensors installed in various locations. These sensors continuously
transmit production data to the grid in the form of data packets. This information covers
the creation, consumption, voltage, and frequency of energy, as well as other energy-related
data. Currently, battery-integrated grids send the state of charge over charge through
a communication channel that exposes the battery management system (BMS) to cyber
threats. These cyber threats can lead battery to overcharge or undercharge, which may lead
to catastrophic events.
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There are numerous benefits of the smart grid over traditional grids such as improved
power quality, self-healing, cost effectiveness with the integration of renewable energy,
adaptive energy generation, more environmentally friendly operation, aggregation of dis-
tributed energy resources (DERs), real-time energy consumption monitoring at customer’s
end, integration of AI models to automate tasks, remote energy motoring, rapid response
to faults, remote fault location identification, and automated maintenance. These benefits
make the smart grid more attractive than the traditional grid. The two main challenges
that arise are cybersecurity and complexity. These issues become more challenging when
the smart grid data is hosted on the cloud [3,4]. Apart from physical security, cybersecurity
becomes a key element of the smart grid to keep it secure and stable all the time. Cyber pro-
tection is not only required for the smart grid but [5] shows even traditional and nonsmart
grids are also exposed to cyberattacks. This study performed in [5] presents the impact
on the grid when a malicious software(botnet) controls the overall power consumption
including CPU, GPU, hard disks, screen brightness, and laser printers of computers. The
simulation performed showed that 2.5 to 9.8 million infections can destabilize the grid.
In another research [6], high wattage IoT devices can cause frequency instability, line failure,
and increase in operating cost when the attacker the access to the IoT botnet of the high
wattage smart appliances. These types of attacks have potential to cause major blackout by
manipulating the energy demand.

As the complexity of the grid increases, the chances of faults also increase. For example,
there are thousands of sensors installed and one of the sensors starts transmitting faulty data
despite being no fault in the production devices; this can destabilize the whole functionality
of the grid system. The second challenge is security—specifically, the communication
between devices and the grid. The complexity of the communication channels of the
smart may lead to problems in securing the smart grid data and cyberattack can lead to
physical damage to the smart grid. The key contribution of this paper are (1) analysis of the
communication network of the smart grid. The communication network is the backbone of
smart grid, and it is the communication network that makes the grid a smart grid. (2) We
performed an in-depth review of current vulnerabilities in the present smart grid and their
mitigation techniques. (3) Any cyberattack targets either the communication network or
employees working to manage the communication network or the customers using the
network. We present techniques that can minimize the the chances of any cyberattack at
any level.

The rest of the paper is organized as follows. In Section 2, we discuss the commu-
nication architecture of the smart grid followed by Section 3, which shows the various
vulnerabilities in smart grid. In Section 4, the primary goals of cybersecurity in smart grid
are discussed. In Section 5, we present a brief history of cyberattacks and blackouts around
the world. In Section 6, we discuss the existing solutions to the cybersecurity problem of
smart grid. In Section 7, open issues, challenges, and solutions are discussed, followed by
the conclusion in Section 8.

2. Communication Architecture of Smart Grid

The components of the smart grid are depicted in Figure 1. A communication network
connects the three domains: service provider, grid, and customer. This communication
occurs across a variety of different protocols and channels. The grid domain encompasses
large-scale energy generation, distribution, and transmission. The smart meter connects
concurrently with the consumer domain and the communication network and this com-
bined network is known as Advanced Metering Infrastructure(AMI) network. Smart
meters are assigned to send data of consumption of use, outages, and electricity prices [7].
It communicates with the consumer domain using a short-range protocol such as Zigbee,
and with the customer domain via GSM, Wi-Fi, and so on. While the smart grid enables
more efficient energy distribution than the traditional centralized system, it is subject to
security attacks at many tiers [8–13].
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Figure 1. Smart grid architecture.

3. Vulnerabilities in the Smart Grid

The vulnerability of a smart grid network is the weak spot at which an attacker may
enter the network and attack the system as shown in Figure 2. The smart grid connects with
multiple domains using different protocols, making it vulnerable to numerous cyberattacks.
In this section, we explore the conditions that might increase the vulnerability of the grid
to cyber intrusion. However, first, we discuss the types of cyberattacks.There are mainly
two kinds of attacks: (1) passive attacks and (2) active attacks. Passive attacks are those in
which no harm to the data is done, but the attacker only monitors the data, whereas the
active attacks are more dangerous compared to active attacks, as the attacker modifies the
data or stops the receiver from receiving the data.

Figure 2. A segmentation of smart grid communication network.

The passive attacks are classified into two categories: (1) eavesdropping attack and
(2) traffic analysis attacks. The types of active attacks includes masquerade attacks, replay
attack, false data attack, and denial of service attacks.

Figure 3 shows different types of cyberattacks. The eavesdropping attacks is when the
attacker can see the data packets shared between sender and the receiver. However, the
attacker does not modifies the data. Traffic analysis attack is another kind of passive attack
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in which the attacks continuously monitors and analyzes the traffic between the sender
and the receiver. Active attacks are more harmful than the passive attacks, as the attacker
has full control over the data. The replay attack is when the attacker and sender both send
the data to the receiver; this confuses the receiver in differentiating between real data by
sender and the data routed through the attacker. In the masquerade attack, the sender
is idle, but the receiver keeps receiving data from the attacker. The false data injection
attack in when the data do not come to the receiver directly from the sender instead the
receiver receives the modified data from the attacker. However, both the sender and the
receiver are unaware about the modification done by the attacker. Denial of service attack
is a kind of attack in which attacker does not target the sender or receiver but the data
server. The attacker generates a bulk amount of irrelevant requests from the server and
the server starts serving those irrelevant requests until all of its resources are exhausted.
The receiver/sender requests information from the server, and due to unavailability of
resources, the request from the sender/receiver is denied. The major causes that make the
smart grid vulnerable to cyberattacks are as follows:

1. Increased installation of intelligent electronic devices (IEDs): As the number of devices
in the network rises, the number of attack sites for attackers increases as well. Even
if the security of a single point is compromised, the entire network system would
be impacted.

2. Installation of third-party components: Third-party components that are not advised
by experts increase the network’s vulnerability to cyberattack. These devices may be
infected with trojans, which can then infect other devices on the network.

3. Inadequate personnel training: Proper training is necessary to operate any technology.
When staff are not sufficiently taught, they might easily fall victim to phishing attempts.

4. Using Internet protocols: Not all protocols are secure when it comes to data transmis-
sion. Certain protocols transfer data in an unencrypted format. As a result, they are
easy candidates for data extraction via man in the middle attacks.

5. Maintenance: While the primary goal of maintenance is to keep things functioning
properly, it can become a vector for cyberattacks at times. While doing maintenance,
operators often disable the security system to conduct testing. In 2015, electric power
companies in eastern Europe reported one similar occurrence [14].

Figure 3. Types of cyber attacks.
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Cybersecurity Challenges in Grid-Connected EV Charging Stations

The integration of electric vehicle charging system (EVCS) makes the power sys-
tem/grid more complex. Over the past several years, the sales of electric vehicles have
increased exponentially, mainly due to economic and environmental factors. With incorpo-
ration of newer technologies, the cost of EVs and EV batteries has seen a drastic decrease in
addition to government incentives. Moreover, EVs do not rely on fossil fuel consumption
so they are contributing in minimizing carbon footprints [15]. However, EVCSs are not
cyberattack-resistant as they depend on the wired and wireless communication systems to
share information with the smart grid. The study in [16] categorized EVCS vulnerabilities
into two broad categories, i.e., internal vulnerability and external vulnerability. Internal
vulnerability such as EVCS processor with weak password and hashing algorithm, weak
access control, unsigned firmware update, and easy extraction of firmware can lead to
attacker to get full control of EVCS. External vulnerabilities such as on-site human machine
interface (HMI) that allow users to connect universal serial bus (USB) drives can be easily
used by attackers to expose the EVCS configuration. Since there is no worldwide stan-
dard for communication systems between EVCSs and EVCS server, the open charge point
protocol (OCPP) has been adopted by many vendors. However, OCPP is vulnerable to man-
in-the-middle attack (MIMA) [16]. In addition to this, many smartphone and web-based
applications that assist users in finding EVCSs nearby, authenticating EVs at EVCS, and
remotely controlling the charging and payment for the charge have been developed. Due
to this, any malicious application or cloned application can potentially damage the EVCS.
In [17], the authors performed a study on cybersecurity challenges in the onboard charging
(OBS) system of an EV. The electric component units (ECUs) are connected in a controller
area network (CAN) to communicate between them. Cyberattacks on OBC system are
classified into two categories: (1) control-based attacks and (2) hardware-based attacks.
Figure 4 shows attacks included in both categories. The sales of EV are highly correlated
with installation of EVCSs such that the EV penetration will go up, there will be a spike in
EV charging stations, and there will be a significant impact on energy demand [18]. In this
study, the communication requirement and standards for the Internet of electric vehicles
are presented. In another research study, authors developed a framework for analysis,
comparison, and test of standards (FACTS), proposed in [19], to identify cyberthreats in a
battery management system (BMS).

Figure 4. Cyberattack categories in OBC.

4. Primary Goals of the Cybersecurity in the Smart Grid

The National Institute of Standards and Technology (NIST) developed a framework
for enhancing smart grid cybersecurity. They categorized logical interface categories in
22 different categories. Table 1 summarizes their definition along with example and their
impact on confidentiality, integrity, and availability. Furthermore, the NIST suggests 19
smart grid requirements, which are as follows:

1. Awareness Training (SG.AT)
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2. Access Control (SG.AC)
3. Audit and Accountability (SG.AU)
4. Security Assessment and Authorization (SG.CA)
5. Configuration Management (SG.CM)
6. Continuity of Operations (SG.CP)
7. Identification and Authentication (SG.IA)
8. Information and Document Management (SG.ID)
9. Incident Response (SG.IR)
10. Smart Grid Information System Development and Maintenance (SG.MA)
11. Media Protection (SG.MP)
12. Physical and Environmental Security (SG.PE)
13. Planning (SG.PL)
14. Security Program Management (SG.PM)
15. Personnel Security (SG.PS)
16. Risk Management and Assessment (SG.RA)
17. Smart Grid Information System and Services Acquisition (SG.SA)
18. Smart Grid Information System and Communication Protection (SG.SC)
19. Smart Grid Information System and Information Integrity (SG.SI)

Security requirement identifier, category, requirement, supplemental guidance, re-
quirement enhancement, additional consideration, and impact level allocation should be
added with each security requirement. Security requirement in depth can be presented
in [20].

There are five main goals of cybersecurity in smart grids that are described below.
Table 2 provides the summary of attack category and security goal they compromise.

1. Authentication: The verification of the user. The system verifies that the credentials
provided by the user are correct or not. Various authentication techniques in the smart
grid network are presented in the [21].

2. Authorization: The user is authenticated when he provides the correct credentials.
Now, the user becomes authorized to use the services and to transmit and receive data
packets. In an unencrypted authentication process, credential inserted by the users
are exposed to the attacker, and later, the attacker uses the credentials and pretends to
be an authorized user.

3. Confidentiality: This ensures that only authorized users have the access to the data.
There is an abundance of sensitive data circulating throughout the smart grid net-
work. This information comprises client energy consumption statistics, a customer
identification number, and a list of appliances in use by consumers. An attacker can
use this information to investigate the customer’s energy use patterns. Additionally,
if unauthorized users have access to the data, an ICMP (Internet Control Message
Protocol) flood attack can be launched and the reading can be tampered with or
altered [22]. As a result, utilities may face severe financial difficulties or customers
may get excessively high bills.

4. Integrity: This protects the recipient against data tampering by ensuring that the data
is not changed or corrupted during transmission. Parity check, checksum error, and
several other similar techniques are utilized at the receiving end to verify that the
data have not been modified. False data injection attack(FDIA) is one of the most
frequently used forms of attack. An injection attack adulterates the genuine data with
fake data.

5. Availability: Availability ensures that whenever user requires resources or/and data,
they are always available. There are various factors that can affect the availability such
as fault at the data center, but in terms of cybersecurity, it is affected by cyberattacks
such as denial of service (DoS) attacks. During a DoS attack, the resources are hijacked
by the attackers and user requests are not served due to a lack of resources.
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Table 1. NIST Logical Interface Category Definition and Impact.

Risks

Logical Interface Category Definition Example Confidentiality Integrity Availability

1
Interface between control systems and equipment
with high availability, and with compute and/or
bandwidth constraints,

Between transmission SCADA and substation
equipment Low High High

2
Interface between control systems and equipment
without high availability but with compute and/or
bandwidth constraints

Between distribution SCADA and lower priority
pole-top equipment Low High Medium

3
interface between control systems and equipment
with high availability, without compute or
bandwidth constraints,

Between transmission SCADA and substation
automation systems Low High High

4
Interface between control systems and equipment
without high availability, without compute or
bandwidth constraints,

Between distribution SCADA and backbone
network-connected collector nodes for distribution
pole-top IEDs

Low High Medium

5 Interface between control systems within the same
organization, Multiple DMS systems belonging to the same utility Low High High

6 Interface between control systems in different
organizations

Between an RTO/ISO EMS and a utility energy
management system Low High Medium

7 Interface between back office systems under
common management authority

Between a customer information system and a
meter data management system High Medium Low

8 Interface between back office systems not under
common management authority,

Between a third-party billing system and a utility
meter data management system High Medium Low

9 Interface with B2B connections between systems
usually involving financial or market transactions,

Between a retail aggregator and an energy
clearinghouse Low Medium Medium

10 Interface between control systems and
noncontrol/corporate systems,

Between a work management system and a
geographic information system Low High Medium

11

Interface between sensors and sensor networks for
measuring environmental parameters, usually
simple sensor devices with possibly analog
measurements,

Between a temperature sensor on a transformer and
its receiver Low Medium Medium
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Table 1. Cont.

Risks

Logical Interface Category Definition Example Confidentiality Integrity Availability

12 interface between sensor networks and control
systems Between a sensor receiver and the substation master Low Medium Medium

13 Interface between systems that use the AMI
network,

Between MDMS and meters Between LMS/DRMS
and Customer EMS High High Low

14 Interface between systems that use the AMI
network with high availability,

Between MDMS and meters Between LMS/DRMS
and customer EMS Between DMS applications and
customer DER

High High High

15
Interface between systems that use customer
(residential, commercial, and industrial) site
networks such as HANS and BANs

Between customer EMS and customer appliances
Between customer EMS and customer DER Low Medium Medium

16 Interface between external systems and the
customer site

Between third-party and HAN gateway Between
customer and CIS Web site Low Medium Low

17 Interface between systems and mobile field crew
laptops/equipment

Between field crews and GIS Between field crews
and substation equipment Low High Medium

18 Interface between metering equipment, Between submeter to meter Between PEV meter and
energy service provider Low High Low

19 Interface between operations decision support
systems Between WAMS and ISO/RTO Low High Medium

20 Interface between engineering/maintenance
systems and control equipment

Between engineering and substation relaying
equipment for relay settings Low High Medium

21 Interface between control systems and their vendors
for standard maintenance and service Between SCADA system and its vendor Low High Low

22 Interface between security/network/system
management consoles and all networks and systems

Between a security console and network routers,
firewalls, computer systems, and network nodes High High High
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Table 2. Security goals compromised under attack category.

Attack Category Security Goal Compromised Description Reference

Flooding attack Availability Deterring users from utilizing the resources [23,24]

Denial of service Availability Stop serving of users’ request [7,25–28]

Jamming Availibility Jamming the network [29–31]

Buffer overflow Availability, Confidentiality Overwriting the memory of buffer [32]

False Data Injection Integrity Tampering the real data [33–36]

Social Engineering Attack Integrity, Confidentiality Attacking humans instead of machines or
networks [37–39]

Man-in-the-middle Confidentiality Extracting packet information between
sender and receiver [39–41]

Packet Sniffing Confidentiality Analyzing the packet [42]

Session hijacking attack Integrity, Confidentiality Obstructing the user from resources for a
particular amount of time [43]

Data manipulation Integrity Data tampering [44,45]

Replay Attack Integrity Send data, again and again. [46–49]

5. Brief History of Cyberattacks on Smart Grids and Blackouts
5.1. Ukraine Power Grid Attack, 2015

Cyber assaults on the energy industry are on the rise, posing an ever-increasing
threat to dependability and safety. This danger is shown by the successful assaults on
Ukraine’s power system in 2015 and 2016. During these incidents, attackers gained access
to distribution grid operator consoles and remotely closed breakers, resulting in local
blackouts. In this attack, 30 substations were switched off and around 230,000 people were
affected by the blackout. It was the first successful known cyberattack on a smart grid.
Attackers may potentially breach communications channels and alter data, or they could
overwhelm the highly linked network with data traffic, restricting operators’ capacity to
monitor and manage the grid.

5.2. Iran Nuclear Facility Attack, 2010

Stuxnet is said to have caused many centrifuges at Iran’s Natanz uranium enrichment
plant to burn out. Stuxnet was designed to disrupt and sabotage Iran’s nuclear program,
but it also showed that Stuxnet had the potential to inflict significant physical damage to
critical infrastructures by targeting computer controllers and SCADA systems that manage
industrial equipment [50].

5.3. Blackout in US and Canada, 2003

On 14 August 2003, a high-voltage power line in northern Ohio collided with some
overgrown trees, causing the fault. The line had weakened as a result of the strong current
flowing through it. The issue would normally have triggered an alert in the control room,
but the alarm system failed. Later, three more lines sagged into trees and shut down,
putting further strain on other power lines. Due to overburden, they also cut off a couple
of hours later, triggering a chain reaction of failures throughout southeastern Canada and
eight northeastern states. In all, 50 million people lost power for up to two days in North
America’s largest blackout in history. At least 11 people were killed as a result of the
incident, which is believed to have cost $6 billion. The details of the event can be found
on [51].
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5.4. Arizona–Southern California Blackout, 2011

A total of 2.7 million people were impacted by the 8 September 2011, Arizona–
Southern California blackout. On a hot days demand during peak hours increases and
due to this increase in demand, a single high-voltage line failed due to a fault, causing
electricity to be transferred to the San Diego region. More line and transformer failures
followed within minutes of this power redistribution, and ultimately, San Diego was cut
off from the rest of Western Interconnection. A mismatch between supply and demand in
the San Diego region arose from this separation, resulting in generation of overloads and
blackouts [6].

6. Cyberattack Detection and Mitigation Techniques

Smart grids involves multiple stakeholders that includes consumers, electric utili-
ties, grid operators, and third-party service providers. Due to involvement of multiple
stakeholders, the management of the smart grid data specially from the smart meters
becomes a daunting task. For enhanced security and privacy protection of smart meter, [52]
proposed framework that provide guidelines for integrating security and privacy across
different domain. The framework classifies the security into three classes: communication
security, secure computing, and system control security. Communication security includes
cryptosystem, routing security, and network privacy. The objectives of the communication
security may be achieved by a key management system, end-to-end encryption, and multi-
ple hop routing. Furthermore, the authors of [53] discussed primary tasks of smart meters
that includes recording of amount of energy consumed and factors such as voltage and
frequency. In addition, they are also responsible for sending the information to the grid
operating over a secure communication channel and also to operate load switch during by
operators to avoid blackouts during emergency cases. The study provided proof of concept
of high assurance smart meters (HASM). To address the cybersecurity aspects of smart grid,
various approaches have been suggested in the literature, and as the complexity and inte-
gration of artificial intelligence (AI) increases, more research studies on ways to make the
grid more reliable will be conducted. Some research studies also show that the smart grid is
also prone to human error, and those errors can be due to social engineering attacks. In our
paper, we divided the existing approaches into two major categories: (1) nonhuman-centric
approaces and (2) human-centric approaches. In Table 3, we summarize the advantages
and disadvantages of both of the approaches.

6.1. Nonhuman-Centric Approaches

In this section, we discuss various nonhuman centric attack detection and mitigation
techniques using the diverse approaches as summarized in Table 4.

6.1.1. Machine-Learning-Based Attack Detection and Mitigation

As the transition of traditional grid into smart grid is taking place, thousands of
sensors are being installed in the smart grid infrastructure. These sensors continuously
monitor the states of the device they are connected to and generate a huge amount of data
in the form of log files or time series data. Irradiance sensor, module temperature sensor,
voltage monitor sensor, and current monitor sensor are just a few examples of the sensors
present in the smart grid network. The data from these sensors are stored on a server, and
sometime before sending the data to the servers, these data are preprocessed. The servers
can be local servers or cloud servers. Posting the data on the local server provides the
highest level of data protection; however, it limits the strength of the data in finding new
patterns or getting any insights from the data. When the data are stored on the cloud server,
the user has more flexibility over data usage because the data can be access remotely and
can be scrapped to machine using GETS command.

Recently, machine learning algorithms have proved to be accurate in cyberintrusion
detection. Unlike rule-based methods, machine learning detects the intrusion based on
historical data. In [54], a combination of JRipper and Adaboost was developed to predict



Energies 2021, 14, 5894 11 of 22

power system disturbances. The output of the model was three classes (attack, natural
disturbances, and no event) based on the data. False data injection attack (FDIA)/data
poisoning attack is another one of the most common attacks that carry the potential of
severely damaging smart grid networks and FDIA can also harm utilities and customers
financially by poisoning the data from smart meters. To detect an FDIA, researchers used
an ensemble-based machine learning algorithm [55]. The model was tested on IEEE 14 bus
system. The performance of ensemble-based learning models was compared with linear
regression, naive Bayes, decision tree, and support vector machine (SVM), and the result
shows that unsupervised ensemble models outperformed the individual models with the
highest accuracy of 73%. In [56], deep analysis of the impact of FDIA on AI-based smart
grid is performed using multilayer perceptron (MLP). The results from the study show
that even if only 20% of the data is falsified, it can reduce the accuracy of the machine
learning algorithms by 15% that can affect the critical decision making of the smart grid.
For example, in the case of data poisoning, if there is disturbance and the model fails to
predict the disturbance due to false data, then the grid can go into an unstable state that can
result in catastrophic events. In [33], a conditional deep belief network model is proposed
to detect FDIA for power theft in real time. The model was tested on IEEE 118 and IEEE
300 bus systems. The performance of the model was compared to artificial neural networks
and support-vector-machine-based methods.

Sometimes, a smart grid also faces distributed denial of service (DDoS) attacks. DDoS
attacks comprise the availability of the resources that are needed for communication such
as servers. The primary objective of the DDoS attack is to inundate the communication
server with fake requests to jam the server and make it unavailable for communication.
In [57], a multilevel autoencoders model was proposed to detect DDoS attacks. Autoen-
coder consists of one input layer at least one hidden layer and one output layer. The model
was trained using data of around 700 thousand packets and with 49 features. Source and
destination IP and ports, source and destination jitters, record time, and attack category
were some of their features. The UNSW-NB15 publicly available data set was used to de-
velop the model. The results show that autoencoder-based prediction model performance
was better than long short-term memory (LSTM), random forest, naïve Bayes, decision tree,
k-nearest neighbor, and LSVM.
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Table 3. Human-Centric vs. Nonhuman-Centric approaches.

Cyberattack Detection &
Mitigation Techniques Approach Advantage Disadvantages

Nonhuman-Centric

Machine-Learning-Based

1. High accuracy
2. Easy to deploy models
3.Task automation
4. Continous and adaptive learning

1. Highly data-oriented so as to get the best results
historical data in bulk is need to train the model.
2. Training model takes a lot of time and is computationally
expensive.
3. If hyperparameters are not tuned, then there are chances of
overfitting or underfitting.

Cloud-Computing-Based
1. Highly secure
2. Not computationally expensive
3. Low latency

1. High availability of bandwidth
2. Dependency on cloud service provider

Blockchain-Based

1. Highly secure in general
2. Distributed data storage
3. Smart contract are immutable
4. All the transactions are encrypted

1. Few studies on blockchain-based cyber protection
2. High energy consumption to run all the nodes
3. Private blockchains are not secure.

Human-Centric

Multifactor authentication Provides an addtional layer of security to the operator working in
the command and control center

Not all employees are ready to embrace new technological
changes as they find difficulty in adapting to new technology

Employee Training

Employees in an organization can be categorized as attitudinal
(employees who do not think that cybersecurity is an important
factor to consider) and cognitive (employees who understand the
importance but do not embrace it because they think its too much
work) [58] therefore, regular employees training can be helpful in
combatting cyberattacks.

Encouraging employees to teach themselves about the latest
technologies and tools is a complex task, especially when the
employees come from different age groups and with a variety of
technical backgrounds.

Password strength and
security

Cognitive-type fatigue can lead to employees setting weak
passwords [58]; thus, enforcing strong passwords and strength
policy can be helpful.

As per [58], some employees find it difficult to remember all the
of different and complex passwords.

Customer Awareness
It is almost impossible to provide proper training to customers, so
customer participation becomes critical to spread awareness about
cybersecurity among customers.

Irrespective of how many resources an organization invests in
customer awareness, at the end, customers are the key decision
makers in the customer domain.

Customer Interaction A customer interaction platform can help with easy reporting of
any cyberattack or any malicious activity on the customers’ portal.

There is a huge variation in customer categories. For example,
some customers are of different age groups, and some customers
have a limited sense of technology, so it becomes challenging to
design a portal that fits all.

Updates and incremental
patches installation

Patching policy varies between immediate, 30, 60, and 90 days [59]
depending upon the potential impact of the vulnerability or bug;
therefore, patching can be highly impactful in tackling future
cyberattacks.

No Even systems armored with the best security tools and
software are always under threat; thus, continous monitoring
and auditing are required for robust protection.



Energies 2021, 14, 5894 13 of 22

6.1.2. Cloud-Based Detection and Mitigation

In [60], the authors discussed how the attributes of cloud computing could be used
to enhance security in the event of a DDoS attack on the smart grid. In [61], a cloud-
based firewall was proposed to prevent DDoS attacks on the smart grid. The study was
performed by generating 250 Gbps of data to replicate a DDoS attack. The simulation
results showed that there was low latency with the grid OpenFlow firewall. In [62], an
attribute-based online/offline searchable encryption scheme was introduced in order to
secure data access for authorized users in the cloud environment for smart grid applications.
In [63], the authors introduced a secure home area network based on cloud of things, which
is detrimental against brute force, replay and capture, and other attacks. In [64], a security
evaluation model was proposed for a smart grid based on a deep belief network (DBN)
comprised of multiple RBMs and a BP neural network. They evaluated security risks in
five respects: policy and organizational risks, general technical risks, SaaS risks, PaaS risks,
and IaaS risks.

6.1.3. Blockchain-Based Detection and Mitigation

In recent times, blockchain has become one of the most lucrative technologies in
various domains due to its security. The blockchain is a chain of blocks in which each block
contains the index, timestamp, previous hash, hash, and data. Blockchain is considered to
be secure because of the hashing. If someone tries to change the hash value of the block,
then he has to change the value of all the previous blocks, so when there are many blocks
in the chain, it becomes a computationally expensive task to change the hashes of all of the
previous blocks.

In [65], the authors proposed a policy architecture based on blockchain for the ex-
change of data between independent system operations and underoperating agents to
protect against FDIA. The model contains three layers: (1) the data layer, (2) the detection
layer, and (3) the blockchain layer. The data layer is responsible for the collection of data,
the collected data are transferred to the detection layer for community detection, and the
blockchain layer keeps the community detection and transaction record secure. In their
research, the authors of [66] proposed a blockchain-based secure message transfer method
for smart meters and service providers. The method prevents FDIA on the smart meter side.
In this study, each transaction is initiated by the smart meters and the service provider is
the master node. The transaction information is shared over the network and periodically
validated by auditing and broadcasting of transactions. Service providers are connected in
a peer-to-peer (P2P) network fashion. To add a new transaction/block, consensus verifi-
cation is needed, and only after verification is the new block added. A key is generated
using the SHA-256 algorithm at every transaction. Using the blockchain-based structure,
the authors showed in this study that data can be exchanged within a P2P service provider
network. In the study [67], a decentralized security model based on the lightning network
and smart contract in the blockchain ecosystem was introduced. This model includes
registration, scheduling, authentication, and charging phases. The authors of [68] proposed
a novel framework with a combination of integrated hardware security and blockchain
scheme for the grid-edge devices to maintain a distributed cybersecurity technique that
verifies the provenance of messages both from and to the devices.

6.1.4. Hardware-Based Security

IoT devices are one of the most critical parts of the smart grid network. Theses
devices are responsible for data collection and analysis and sending the data over the
communication channel, and also at the same time, they need to be armored to combat any
cyberattack [69]. Some of the key hardware security problems were discussed in [70]. These
security problems includes physical attacks, side channel analysis, and hardware Trojans.
In the physical attack, the attacker tries to bypass the authentication system. During the
physical attack, the attacker exploits the vulnerabilities in the implemented system that
they find using reverse engineering. In side channel analysis, the attacker uses the profile
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of the features such as current, voltage, and frequency to predict the cryptographic keys.
A hardware Trojan is any change or addition made to a circuit with the intent of causing
harm. Unauthorized access of private information, manipulation of circuit functioning, and
reduction of circuit reliability are some of the primary objectives of hardware Trojans. The
authors of [71] proposed methods to detect hardware trojan using path delay fingerprint.

Smart meters, sensors, and communication devices, among other IoT devices, face a
number of difficult challenges, including low energy usage and a shortage of computing ca-
pabilities [72]. Physical unclonable functions (PUFs) offer completely secure authentication
without the device containing any cryptographic capabilities, as it requires more compu-
tational resources; thus PUFs are particularly appealing for resource-limited IoT devices.
However, with the evolution of machine learning, which is highly capable of predicting
behavior using historical data/events, PUFs’ behavior can also be predicted with 95%
accuracy [73]. To protect PUFs against machine-learning-based attacks, the authors of [73]
proposed a configurable tristate PUF (CTPUF), which used an XOR-based mechanism to
ambiguate the relationship between the challenge and response. This ambiguity makes the
machine learning model unable to draw any pattern between the challenge and response.
The results in this study showed the accuracy of machine learning, including support
vector machine (SVM), artificial neural network (ANN), and logistic regression model after
CTPUF was about 60%. Another research showed the limitations of voltage-overscaling
(VOS)-based authentication, as it can be exploited using machine learning models (ML) [74].
In this study, an ML-resistant VOS method that integrated previous challenges with keys
was proposed. The results showed that the accuracy of the ML model after challenge
self-obfuscation structure (CSoS) was about 51.2%.

Table 4. Types of attacks and their detection and prevention techniques.

Attack Category Detection/Mitigation
Technique Type

Proposed Solution/Research
performed Target of Attack Reference

Flooding attack Time measurement of
flooded packets Bait-Message-Based Detection Communication network [23,24]

Denial of service (DoS) —— Impact of DoS in AMI network AMI Network [7]

DoS —— Impact of DoS on load
frequency control Load frequency controller [26]

FDIA Deep Machine
Learning

Conditional Deep Belief
Network (CDBN) SCADA network [33]

FDIA Machine Learning Ensemble-Based Learning AMI Network [55]

Social Engineering
Attack (SEA) ——

Impact of SEA on industrial
control system security by

measuring the mean time to
compromise under attack

Humans at organizations [38]

FDIA Machine Learning

Multilayer Neural Network to
study the impact of FDIA in
Artificial-Intelligence-Based

Smart Grid

Communication Network [33]

FDIA Machine Learning
Artificial neural network

model to predict presence of
cyber attack

Communication network
to poison PV generation

data
[36]

SEA ——
Studied 37 intrusion detection

and prevention system and
proposed appropriate IDPS

SCADA and AMI [37]

FDIA Blockchain

Blockchain-based secure
message transfer method for

smart meters and service
providers

Smart Meters [66]
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Table 4. Cont.

Attack Category Detection/Mitigation
Technique Type

Proposed Solution/Research
performed Target of Attack Reference

DDoS Cloud computing Computing capability of cloud Communication network [60]

DDoS Cloud computing Cloud-based firewall Communication network [61]

Data manipulation Cloud computing Attribute-based online/offline
searchable encryption scheme AMI and SCADA [63]

Social Engineering,
Data Manipulation,

and Session Hijacking
Cloud computing Deep Belief Network SCADA [64]

6.2. Human-Centric Mitigation Approaches

In this section, we discuss various human-centric attack detection and mitigation
approaches.

6.2.1. Employee Protection at Command and Control Center Technique

1. Multifactor Authentication (MFA): As referred to Figure 5, this protects data from
unauthorized access to data. The complexity of the password-breaking program
increases exponentially when two sequential authentication processes are integrated.
This minimizes the chance of unauthorized users getting access to the data.
SMS token authentication, email token authentication, hardware token authentication,
software token authentication, and phone authentication are some of the techniques
that are currently used for multifactor authentication in various domains. When the
user clears the first pass, he is redirected to one of the authentication methods in
the second pass. All of the passwords/pin generated in the second pass are valid
for single login. In an SMS token system, the user receives a unique pin number
that can be between 4 to 8 digits over his phone. Similar to an SMS token, in an
email token, the user receives the pin over his verified email address. There are
various algorithms used to generate the random code after each login. The generation
procedure is out of the scope of this paper. The hardware token is one of the most
secured multifactor authentications and mainly used in sectors in which data security
is highly critical such as banking, insurance, or healthcare. In this, the user needs
to insert the hardware token into their device to use it. Software token MFA is little
bit similar to the SMS token, and in this authentication system, instead of getting
the one-time password through wireless service provider, the user receives it in an
application. The software token provides a level of security almost similar to that of a
hardware token, but in software token MFA, the user’s device is treated as hardware.
The phone MFA can be through SMS, such as an SMS token, or a user can receive a
call to verify his identity.

2. Employee training: Advancements in technology have made attacks on smart ap-
pliances more difficult such that hackers are target humans. Machine learning ap-
proaches are playing a key role for attackers in recognizing employees’ behaviors and
reactions in different situations. Not all humans have the same level of knowledge
about technology, and they adapt to the environment at their own pace if no training
is provided. This makes humans easy targets for attackers. According to [33], social
engineering attacks are the second most common attacks after malware. Ransomware
is one of the most recent attack methods through which humans are targeted instead
of directly targeting the machine. Employee training is one of the key requirements
for cyberattack aversion. In the smart grid network, the end users at command and
control centers are human beings. Proper training helps them to avoid any social
engineering attacks such as phishing and ransomware. Any successful phishing
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attack gives complete control of the grid to the attackers and consequences can be
catastrophic.
Another common type of attack that can be minimized by employee training is an
insider attack. An insider attack occurs when any disgruntled employee uses the
resources/access given to him to harm the organization. Employee training can
beneficial to avert these attacks, as in that case, the employee will know what action
he should take if he is not happy with the organization. Employee training can help
to train workers to report any unusual behavior in their colleagues.

3. Password Strength: Strong passwords reduces the chances of integrity and confiden-
tiality attack. Weak passwords are more vulnerable to password-guessing attacks.
Password guessing is the mechanism by which the attacker tries to obtain entry to a
system by guessing passwords (and often usernames) to get the target device login.
Additionally, to perform the attack, the attacker uses the network resources and band-
width which limits the resources for legitimate users. These attacks are performed
remotely and generate a large volume of log data. The password strength is specified
in terms of information entropy, which is measured in bits. For instance, if a password
is 32 bits, then by a brute force method, an attacker will need to make 232 attempts
to crack the password—the stronger the password, the harder it is to crack. Strong
passwords can make it almost impossible to guess the password, which is one of the
viable methods to stop the intruder.

Figure 5. Working of multifactor authentication.

6.2.2. Customer Protection Technique

1. Operating system protection: Customers are one of the weakest links in the cybersecu-
rity chain, and a major challenge with customers is that they cannot be systematically
trained like employees. Thus, devices themselves, such as smart meters and smart
inverters, need to be protected. The most efficient way to bar customers from cus-
tomizing the internal operating system of the device is to make them tamper-proof.
Another reason for a secured operating system is to stop customers from manipulat-
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ing the reading of the meter. According to [75], a rigged smart meter can cost utility
providers a huge loss, as the customers will be underpaying their bills.

2. Notifying customers: Recommending the best possible methods to customers is
another approach to protection based on their current setting. For example, if a
customer is using the utility application on his handheld device and the operating
system on his device is outdated, this can make him an easy target of an attacker
to exploit the vulnerabilities. Every customer is important. Even if an attacker is
successful in breaching one customer’s privacy, he can grab enough information to
increase his chances for a successful next attack.

3. Software and hardware security: Apart from protecting the device against attack
through the network, customers should protect their devices physically by having
strong entry-level passwords for their devices. Customers providing minute and
personal details to their friends can make them victims of password-guessing attacks.
Sharing the password with friends can lead to an attacker installing bots to monitor
the device and even taking full control of the device [76].

4. Protection against third-party applications: Customers should always be cautious
about an application asking for permissions. Customers store sensitive information
on their device, and some third-party applications ask for more information than they
actually need. Around 98.5% of customers either pay no attention or sometimes pay
attention to the permissions required by the applications, and 93.6% of users accept
the terms and conditions of the application either instantly or within 1 min [77].

5. Cyberattack reporting: Utilities should build a platform where the customers can
easily report any suspected attack. As the difference between the time of attack and
and the time of report increases, the damage caused exponentially grows. A delay
in reporting of attack puts not only one customer’s privacy at risk but the privacy of
other customers at stake as well. The most viable solution for this is to have a 24*7
customer support that can guide customers to the necessary actions to be taken at the
time of attack.

7. Open Issues, Challenges, and Future Research Directions

As smart grids are environmentally friendly, they employ many of these renewable
energy sources, and above all, they are safer than traditional power grids, they are better
than traditional power grids in terms of efficiency and productivity [78]. The findings also
revealed that the smart grid may also be vulnerable to cyberattacks. The advantages of
using a smart grid in general will improve the security of cyberattack problems using a
wide range of technologies and techniques. However, when conducting the study, multiple
sources demonstrated the safety advantages and vulnerability associated with intelligent
grids. Almost all research studies show that a denial-of-service attack would be a major
issue for smart grids. Because intelligent grids are constructing the network, a network
attack will render the smart grid inoperable. The smart grid would maintain service
availability while providing several layers of security, utilizing the virtual private network
(VPN) to increase secure communication, IPS, and IDS as the best security features. Smart
grid and traditional grid are always at risk of human error. These errors may be due to
overburdened employees, as it restricts their decision making capability, or it may be due
to social engineering or insider attacks if employees are not trained to handle such kind of
attacks. Attacks such as ransomware have increased by 500% since 2018, and that needs
immediate attention, as ransomware attacks lead to huge losses and leaks of confidential
information. Although some researchers have studied the impact of ransomware [79,80],
more research is required to analyze the impact and reasons behind ransomware attacks in
smart grid infrastructure.

Additionally, it is critical to be self-aware of cyberattacks on smart grids [78]. To pro-
tect the smart grid from various cyberattacks, the user should educate themselves on and
mitigate the risks associated with the smart grid by doing various risk analysis and case
studies. Furthermore, the study addressed possible difficulties associated with the smart



Energies 2021, 14, 5894 18 of 22

grid. The issue with intelligent grids is that they connect disparate devices over huge
networks of geographical locations. Therefore, the primary issue becomes protecting this
equipment from the larger infrastructure. By enabling the sharing and encryption of data,
blockchain technology may be beneficial for addressing security concerns posed by mali-
cious nodes or hackers [81]. Additionally, it may be used to authenticate identities and give
access to transactions by storing and documenting them in an integrated database, as well
as enabling smooth and cost-effective data transfers across scattered devices. Computer
network protocols must be updated to reflect the present state of communication and to
incorporate modern encryption technologies and security countermeasures, according
to [82]. As a result, protection against emerging cyber threats is given.

Numerous difficulties occur from numerous attacks on the security of smart grid
systems, as the smart grid’s safety requirements and objectives are dispersed across large
areas [83]. Due to the critical importance of power infrastructure and the socioeconomic
impact of blackouts, the smart grid may be a primary target of cyber terrorism [83,84].
Cyber defense solutions should be used to safeguard all components of smart grid sys-
tems. Defensive solutions should incorporate a variety of defense technologies, including
machine learning [85], proactive IDS/IPS systems, wireless controlled propagation, autho-
rization, authentication, and certification [83,84]. The solutions should incorporate scalable,
resilient, and adaptive cybersecurity/defense approaches for intelligent grid operations
that do not jeopardize genuine smart grid operations.

8. Conclusions

Risks are inherent in innovation, and the move from a conventional to a smart grid
adds another layer of complexity. In addition to maintaining and developing a strong
physical architecture for the smart grid, it is exceedingly challenging to build, operate, and
maintain the communication network architecture. This study performed a deep analysis
on the smart grid communication network and did an in-depth review of the potential
cyberattacks and their mitigation techniques.

No attack is insignificant; even the tiniest strike might result in disastrous conse-
quences. A solution was presented to build a robust smart grid network by securing
customers, the smart grid’s communication network, and its employees, as we believe
not only that the communication network is vulnerable to cyberattacks, but also that the
people who use or manage it are equally vulnerable and can become an easy target of the
attacker if they do not properly handle the attacks.
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