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Abstract: Thermal management is the most vital element of electric vehicles (EV) to control the
maximum temperature of module/pack for safety reasons. This paper presents a novel passive
thermal management system (TMS) composed of a heat sink (HS) and phase change materials
(PCM) for lithium-ion capacitor (LiC) technology under the premise that the cell is cycled with a
continuous 150 A fast charge/discharge current rate. The experiments are validated against numerical
analysis through a computational fluid dynamics (CFD) model. For this purpose, a comprehensive
electro-thermal model based on an equivalent circuit model (ECM) is designed. The designed electro-
thermal model combines the ECM model with the thermal model since the performance of the LiC
cell highly depends on the temperature. Then, the robustness of the model is evaluated using a
precise second-order ECM. The extracted parameters of the electro-thermal model are verified by
the experimental results in which the voltage and temperature errors are less than ±5% and ±4%,
respectively. Finally, the thermal performance of the HS-assisted PCM TMS is studied under the fast
charge/discharge current rate. The 3D CFD results exhibit that the temperature of the LiC when
using the PCM-HS as the cooling system was reduced by 38.3% (34.1 ◦C) compared to the natural
convection case study (55.3 ◦C).

Keywords: electro-thermal model; thermal management system; phase change material; heat sink;
electric vehicles

1. Introduction

The main challenge of creating a safe and reliable means of transport that is economical
and less pollutant is the energy issue [1]. In such respect, automotive industries are moving
from conventional vehicles to electric vehicles (EVs) [2]. The vital part of EVs is the energy
storage system (ESS) that is mainly based on lithium-ion batteries (LiBs) due to high
energy density [3]. Nevertheless, limited lifetime and low power densities are among their
significant drawbacks [4]. On the other hand, supercapacitors (SCs) are high-power ESSs
with a very long cycle life but very low energy density [5]. In this context, to overcome
the drawbacks of the LiBs and SCs, new hybrid technology has emerged with higher
energy density than the SCs, and higher power density than the LiBs, which is called
lithium-ion capacitor (LiC) [6]. However, the performance of the LiCs depends highly on
temperature [7]. Therefore, a reliable thermal management system (TMS) is essential to
guarantee a safe and reliable operation under high current profiles [8]. Such a management
system is based on efficient modeling tools, including 1D electro-thermal models and 3D
computational fluid dynamics (CFD) models [9].

A validated 1D/3D model is essential for LiCs as they operate in high dynamic current
rates. A 1D electro-thermal model for a LiC cell was introduced by Omar et al. [10] that
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was the extension model of the Zubieta model for EDLCs. The model had three capacitors
and two resistances that could predict the LiC behavior under a constant charge/discharge
current rates up to 50 A for different temperature ranges (−18 ◦C to +60 ◦C). It is clear that
the model cannot predict high current rates and does not contain a thermal model. The next
article in the literature that developed an electrical model for the LiC cell was published by
Firouz et al. [11]. He used a parameter identification system in both time and frequency
domain using a wide range of frequency impedance spectroscopy (10 kHz–20 mHz) at
various currents, state of charges (SoC), and temperatures (−10 ◦C to +60 ◦C). The proposed
model combined the time and frequency domains to identify the electrical parameters
in the functioning of current and SoC. The proposed model has not developed a linked
thermal model. The last work in the literature for 1D modeling of the LiCs, to the author’s
knowledge, was proposed by Soltani et al. [12], in which first and second-order equivalent
circuit models (ECM) for high current rates at different temperatures (−20 ◦C to +60 ◦C).
In addition, a thermal model is linked to the electrical model to identify the thermal
parameters of the LiC. The accuracy of the proposed electro-thermal model was ±5%.
However, a 3D CFD model was not developed to be linked to the 1D model. Therefore,
there is a need for a 1D–3D linked electro-thermal to be validated in real applications for
high current rates. There is no more investigation on the 1D electro-thermal modeling for
the LiCs in the literature.

On the other hand, a 3D model can simulate the cell’s behavior at high current rates
where the temperature of the cell goes beyond the safe limit (+40 ◦C) and requires a robust
cooling system [13]. Cooling techniques for ESSs are divided into two methods, including
active and passive methods [14,15]. The active method comprises the air cooling tech-
nique [16] and the liquid cooling technique [17]. These two active methods have high cool-
ing capabilities [18], but they require an external power source to operate, and their main-
tenance costs are also high due to moving parts [19]. The passive method comprises heat
pipes [20], heat sinks [21], and phase change materials (PCM) [22,23]. Heat pipes are pas-
sive high thermal conductive systems that should be used as secondary condensers [24,25].
In addition, heat pipes are gravity-dependent with complex designs [26]. Heat sinks
increase the heat flow away from a heat source by increasing the device’s surface area.
Heat sinks are not good solutions for high power applications when using as a first cooling
system, but in the case of using as a secondary cooling system, they show high performance.
PCM is another passive system, which absorbs large amounts of latent heat through a
phase change transition [27]. However, PCMs cannot release all the absorbed heat since
they have very low thermal conductivity [28]. Therefore, an added material should be
added to the PCMs to increase the thermal conductivity and help reject the absorbed heat
to the ambient. The secondary material that can be added to the PCM would be aluminum
mesh grid [29], copper mesh grid [30], nano-particles [31], heat pipes [32], heat sinks [33],
or even active systems like liquid [34] or a fan [35].

A 1D electrical model is developed at the first stage of the present work, and the
electrical parameters of the LiC cell are extracted. Then, a 1D thermal model is developed
linked to the electrical model to make a robust 1D electro-thermal platform capable of
identifying the electro-thermal parameters. The characterization tests have been carried out
within a wide range of temperatures from −30 ◦C to +60 ◦C. Such a very cold temperature
has never been carried out before showing the uniqueness of the present work. In addition,
the current rates applied to the cell are pretty high, from 0.1 A to 500 A, which shows the
work’s uniqueness in the field of electro-thermal modeling. Later, the extracted parameters
will be the input to the 3D thermal model to be validated against the experiments. This
work aims at proposing a hybrid TMS employing PCM and a novel lightweight heat sink
(PCM-HS) to control the temperature of the LiC under high current rates. The hybrid PCM-
HS TMS is validated through a robust 3D CFD simulation platform linked to the developed
1D electro-thermal model. To the authors’ best knowledge, such a comprehensive 1D–3D
tool is not addressed in the literature.
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The structure of the paper is as follows: Section 2 deals with the chemistry and
characterization of the LiC cell. Section 3 presents the hybrid TMS based on PCM and heat
sink. The 3D CFD thermal model is introduced and validated in Section 4. Furthermore, in
Section 5, results and discussion are given. The last section provides the conclusion and
critical features of this work.

2. Chemistry and Characterization of the LiC
2.1. LiC 2300 F Technology

In this study, the target cell is a commercial prismatic LiC cell with 2300 F capacitance.
The LiC is a hybrid technology that is categorized between LiBs and EDLCs that has no
symmetric structure. The cathode of the LiC is made of porous activated carbon (AC),
and the anode is made of carbon with doped li-ion. In addition, Lithium salt is used as
an electrolyte. The LiC can be cycled with current rates of up to 300 A for continuous
currents and 500 A for pulse currents. Therefore, in this work, a high duty current rate is
applied to the cell to extract the cell’s electrical and thermal parameters, which will then
be used for the 3D CFD simulation studies. The characteristics of the target LiC cell are
shown in Table 1. In addition, the schematic of the cell with all the dimensions is depicted
in Figure 1.

Table 1. Specifications of the 2300 F LiC cell.

Parameters Value Unit

Rated Capacitance 2300 F
Voltage Range 2.2 to 3.8 V

Nominal Voltage 3 V
Weight 0.355 kg

Working Temperature −30 to +70 ◦C
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Figure 1. The dimensions and layout of the lithium-ion capacitor cell.

2.2. Characterization Test Protocol

The facilities of the MOBI laboratory in the ETEC department of the Vrije Universiteit
Brussel were employed for the experimental tests. In this context, PEC battery tester and
cycler were used to characterize and cycle the LiC cell. A climate chamber was employed
to keep the temperature at a controlled test condition. K-type thermocouples and a data
logger were linked to a computer in each time step to measure the temperature. The test
protocol is demonstrated in Figure 2, showing all the tests needed to characterize the cell
and extract the electrical and thermal parameters of the LiC. The characterization tests have
been carried out within a wide range of temperatures from −30 ◦C to 60 ◦C. In addition,
the current rates applied to the cell are pretty high, from 0.1 A to 500 A, which shows the
work’s uniqueness in the field of electro-thermal modeling.
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2.2.1. Electrical Characterization

The electrical characterization is the first essential step to identify the LiC cell pa-
rameters. Therefore, some tests should be carried out to characterize the cell under some
predefined conditions. The electro-thermal tests are conducted employing the battery
cycler and the climate chamber. The experimental process consists of a pre-conditioning
test, capacity test, open-circuit voltage (OCV) test, hybrid pulse power characterization
(HPPC) test, and validation test.

The first test is a pre-conditioning test that includes ten cycles of 10C (C refers to
the rated capacitance) constant–current, constant–voltage charge (CCCV), and constant–
current (CC) discharge. Each of the ten cycles consists of ten minutes rest in the end to
activate the ion kinetics. After the pre-conditioning test, the capacity of the cell should be
checked using a capacity test. This test includes a 1C CCCV charge and CC discharge with
30 min rest in between.

The most crucial test to characterize the state of charge (SoC) of the LiC cell is the OCV
test, which is a standardized test. In the OCV test, the cell is fully charged with a 1C CCCV
step. The cell rests for an hour, and then a 5% SoC discharge procedure is carried out to
reach the lower voltage limit of the cell. After every discharge procedure, one hour of rest
should be imposed to stabilize the OCV test. The next step of the OCV test is to charge the
cell with 5% CC fully.

The pulse power capability of the LiC cell is studied by the HPPC test conducted at
different SoC. First, the cell is fully charged with a 1C CCCV procedure before an hour rest
period. The cell is then discharged by 5% with a 1C-rate. After a similar rest period, a set of
20 A, 100 A, and 200 A charge and discharge pulses complement the Ah change in the cell.
This process is continued until the cell reaches the cut-off voltage limit. Figure 2 exhibits
the test protocol for the 150 A charge/discharge current rate.

2.2.2. Thermal Characterization

The thermal characterization test includes single charge/discharge current pulses
ranging from 50 A to 500 A and continuous currents from 50 A to 300 A. The data logger
linked to a computer is responsible for monitoring the temperature at every time step using
the K-type thermocouples. The mentioned current rates are applied to the LiC while the
cell is cycled between its lower and upper cut-off voltages from 2.2 V to 3.8 V until the cell
is in thermal equilibrium with the chamber’s temperature.

2.3. Governing Equations of the Electro-Thermal Model

The electro-thermal model of the LiC cell has been developed in this section for a
wide temperature range from −30 ◦C to +60 ◦C. The LiC technology is emerged to operate
in high power applications where high peak current rates are required. In this regard,
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the electrical and thermal models are explained below that will be implemented in the
MATLAB environment for 1D simulations.

2.3.1. Electrical Model

A second-order equivalent circuit model (ECM) including an ohmic resistance (R0 [Ω])
representing the resistance of the charge transfer in the electrolyte side, two RC branches
representing the polarization of the electrode and contact resistance between the domains
of electrode and electrolyte (R for polarization resistance (RP [Ω]) and C for capacitance
(CP [F])), and a voltage source [36]. These parameters depend highly on the current rates,
operating temperature, and state of charge (SoC). The terminal voltage (Vt [V]) is then
expressed as:

Vt = OCV(SoC, T)− ILR0(SoC, T, IL)−VCP1(SoC, T, IL)−VCP2(SoC, T, IL) (1)

dVCPi
dt

= − 1
RPiCPi

VCPi +
1

CPi
IL (2)

τi = RPiCPi (3)

The OCV [V] represents the open-circuit voltage of the cell. In addition, I [A] denotes
the current of the cell. The CP1 and RP1 are for the first RC branch, while CP2 and RP2 are
for the second RC branch. The estimated parameters in the developed model are stored in
look-up tables (LUTs).

2.3.2. Thermal Model

The thermal model is an essential part of the 1D model development since the electrical
parameters depend highly on temperature. The relationship between electrical and thermal
parameters is shown in Figure 3. The generated heat of the cell is then measured in this
section through the thermal model. The heat source, the ambient temperature, and the
initial temperature are among the parameters that are input to the model. The heat is
generated during the charge or discharge processes due to reversible heat (entropy change)
and irreversible heat (internal resistance) [37]. The total generated heat of the cell (Ploss [W])
can be expressed as follows:

Ploss = I2
LR0(SoC, T, IL) + I2

RP1RP1(SoC, T, IL) + I2
RP2RP2(SoC, T, IL)− ILTcell

∂OCV(Tcell , SoC)
∂Tcell

(4)

where Cth [J/K], Rth [K/W], and Rcon [K/W] denote the thermal capacity, thermal conduc-
tive resistance, and thermal convective resistance.
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For the proposed thermal circuit, the surface temperature (Ts [K]) is calculated [38]:

Ts(t) =
(

1− e
−∆t

Cth(Rth+Rcon)

)
(Ploss(t)Rcon + Ta) + Ts(t− ∆t)e

−∆t
Cth(Rth+Rcon) (5)

where Ploss [W], Tint [K], Tcell [◦C], Ta [K], and Ts denote the cell’s power loss, internal tem-
perature, the cell’s temperature, ambient temperature, and the cell’s surface temperature.

3. Hybrid TMS Development

A robust hybrid TMS using phase change materials (PCM) and heat sink (HS) is
proposed in this section to cool down the LiC cell. Then, the experimental results are
validated against the 3D CFD model developed based on the 1D electro-thermal model in
the previous section.

3.1. Experimental Test Bench

The experimental test bench for the proposed TMS is composed of the LiC 2300 F
prismatic cell, paraffin PCM, two aluminum heat sinks, a data logger, K-type thermo-
couple, a battery cycler, a climate chamber, and a computer. The test bench facilities are
demonstrated in Figure 4. The PCM and HS properties are listed in Table 2.
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data logger with thermocouples, and the PCM-HS inside the chamber.

Table 2. The PCM and HS properties.

Parameter Value Unit

PCM
Material Paraffin /

Latent heat of fusion 236 kJ/kg
Melting temperature 32–44 ◦C
Thermal conductivity 0.2 W/m·K

HS
Material Aluminum /

Dimension 77 × 40 × 7 mm
Density 2700 Kg/m3

Specific heat 963 J/kg·K
Thermal conductivity 218 W/m·K
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The error of the test bench facilities is utilized to calculate the uncertainty analysis.
Based on the Schultz and Cole method, the error of uncertainty for the experiments can be
expressed as follows [39]:

UR =

[
n

∑
i=1

(
∂R
∂VI

UVI

)2
]1/2

(6)

where UVI represents the error of every single factor and UR shows the total errors.
The maximum uncertainty of our test bench for the 1D electro-thermal tests and the 3D
CFD test is around 2.01%.

3.2. Experimental Results

In this section, the monitored temperature by the data logger linked to a computer is
explained. Four different case studies have been investigated, including thermal behavior
of the LiC under the natural convection (NC), thermal behavior of the LiC when pure PCM
is used as a passive cooling system, and thermal behavior of the cell when a hybrid TMS is
employed to cool down the LiC.

3.2.1. NC

The cell is put inside the climate chamber when the fan is off to avoid increasing the
convective heat transfer coefficient. Therefore, this section aims to investigate the cell’s
temperature under NC, not forced convection. The high current rate of 150 A is applied
to the cell continues to cycle the LiC at high current rates. Such a high current rate can be
defined as high power applications in electric vehicles for acceleration or when high peak
power is required for traction.

The experimental results show that the LiC’s temperature exceeds the safe limit
and proves that a robust TMS is mandatory for such a high-power application. The LiC
temperature reaches 55.3 ◦C after 1400 s, which is way beyond the temperature range
announced by the manufacturer. Figure 5 shows the temperature curve of the LiC under
the NC case study.
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Figure 5. Experimental results for the LiC cell under NC case study.

3.2.2. PCM

In the next step of the experimental tests, the pure paraffin PCM is poured into the
polyvinyl chloride (PVC) container around the cell to absorb the cell’s heat. The maximum
temperature of the cell is 40.8 ◦C that is almost close to the safety setpoint for 150 A current
rate. However, it should be enhanced due to the LiC applications up to 300 A. As is evident,
PCM can absorb the generated heat of the LiC during the cycling thanks to its high latent
heat of fusion. However, the pure PCM cannot release the absorbed heat to the ambient
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due to its very low thermal conductivity of around 0.2 W/m·K. Therefore, a secondary
cooling system is needed to be added to the PCM TMS to increase its ability to remove the
heat. Figure 6 illustrates the temperature evolution of the LiC when using the PCM as the
cooling system.
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Figure 6. Experimental result for the LiC cell employing PCM TMS case study.

Compared to the NC case study, pure PCM reduces the temperature by 26.2%, perfect
for a system that does not require any external power source to operate. Therefore, such
a passive system can be used for thermal storage or as a hybrid system to control the
temperature of the LiC in high-power applications for electric vehicles.

3.2.3. Hybrid PCM-HS

In this section, the low thermal conductivity of the PCM is compensated using two
heat sinks on both sides of the cell. Hence, a hybrid TMS is proposed that is also called
HS-assisted PCM TMS. The results of the proposed hybrid TMS are demonstrated in
Figure 7. As shown, the maximum temperature of the cell after 1400 s intense high current
charging/discharging with a 150 A current rate is around 38.3 ◦C, which is quite good in
controlling the maximum temperature at the desired range.
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The hybrid PCM-HS reduces the maximum temperature by 38.3% compared to the
NC case study and 16.4% to the pure PCM cooling system. Therefore, such a hybrid system
has the high thermal performance to be used in high power applications.

3.2.4. Comparison of the Results

The experimental results for three use cases, including NC, PCM, and PCM-HS case
studies, are explained in this section to have the insight to compare the results regarding
which system has better performance. In such respect, the results are depicted in Figure 8
and compared in Table 3.
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Table 3. Comparison of the experimental results for three case studies.

NC PCM Hybrid PCM-HS

Max. Temperature (◦C) 55.3 40.8 34.1
Temperature reduction - 26.2% 38.3%

Difference with ambient (◦C) 32.3 17.8 11.1

4. CFD Model Development

The output of the 1D electro-thermal model used for the 3D model development is
the LiC temperature and power loss. The 1D model’s output is linked to the CFD model in
this section to make a 1D–3D robust model capable of extracting the electrical and thermal
parameters and simulating the CFD model.

4.1. Model Development and Equations
4.1.1. 3D Heat Generation

The energy equation for the 3D thermal model that is developed through the finite
element method (FEM) is described as follows:

ρCp
dT
dt

=

[
λx

∂2T
∂x2 + λy

∂2T
∂y2 + λz

∂2T
∂z2

]
+ Ploss (7)

where ρ [kg/m3] denotes the density, Cp [J/kg·K] is the heat capacity, T [K] is the tem-
perature, λ [W/m·K] represents thermal conductivity, and Ploss [W/m3] represents the
volumetric heat generation.
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As mentioned in the electrical modeling section, the LiC’s heat generation comprises
two heat sources, including reversible and irreversible [40]:

Ploss = I (OCV −Vt)− I T
∂U
∂T

(8)

Ploss =
R I2

Vtab
(9)

R = ρ′
l
S

(10)

where Vtab [V] is the tab volume, ρ′ [Ωm] denotes the resistivity, l [m] is the length, and
S [m3] represents the cross-sectional area. The heat is generated during the charge/discharge
cycle tests, where 150 A flows through the positive (cathode) and negative (anode) tabs.
The positive tab is made of aluminum, and the negative tab is made of copper. The physical
parameters of the cell utilized in the 3D CFD simulation studies are listed in Table 4 [19].

Table 4. Physical parameters of the LiC used in the 3D CFD model [19].

Parameter Electrode Domain Positive Tab Negative Tab Units

Density 1500 2700 8960 Kg/m3

Thermal conductivity λlayer = 5; λplanar = 0.3; 238 400 W/m·K
Specific heat 641 900 385 J/kg·K

4.1.2. Heat Sink (HS) Modeling

The heat transfer rate associated with the HS is modeled in this section. The first
step to model the HS numerically is knowing the temperature profile. Some assumptions
should be made to simplify the model and reduce the computational cost. In this regard,
due to the small dimensions of the HS, the conduction is assumed to take place only
in the longitudinal (x-) direction, even if conduction within the HS is two-dimensional.
The dimensions of the used HS are shown in Figure 9. Moreover, the temperature change
in the transverse directions (y-, z-) are small. Hence, the thermal conductivity (K [W/m·K])
is assumed constant, and the surface radiation is negligible. The other assumption is related
to the convective heat transfer coefficient (h [W/m2·K]) uniform over the surface. Figure 10
shows the energy balance within the HS that can be expressed as:

dqconv = qx − qx+dx (11)
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Equation (11) expresses that the heat flow is set up from the hot spot to the cold spot.
The temperature gradient is inversely proportional to the heat flow, thanks to Fourier’s law:

qx = −kAc
dT
dt

(12)

qx+dx = qx +
dqx

dx
dx (13)

qx+dx = −kAc
dT
dt
− k

d
dx

(
Ac

dT
dx

)
dx (14)

where Ac denotes the cross-sectional area that may vary along the x-direction. Nevertheless,
due to the assumptions, the cross-sectional area is constant:

dqconv = hdAs(T − T∞) (15)

where T∞ is the temperature far from the HS, i.e., ambient temperature. In addition, As is
the surface area that can be calculated as:

As = Px (16)

The surface area is measured from x, the base. In addition, P is the HS perimeter.
By the mentioned equations, the energy equation can be substituted to:

d
dx

(
Ac

dT
dx

)
− h

k
dAs

dx
(T − T∞) = 0 (17)

The second-order ordinary differential equation (ODE) is given by:

d2T
dx2 −

hP
kAc

(T − T∞) = 0 (18)

By giving a dimensionless form at Equation (18) by defining two normalized variables:

Θ(x) = (T − T∞) (19)

X =
x
L

(20)
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where Θ denotes the excess of temperature. By defining a coefficient determining how fast
the warm-up fades along with the HS:

λ2 =
hPL2

kAc
(21)

A linear, homogeneous, second-order differential equation with constant coefficients
is achieved:

d2Θ
dX2 − λ2Θ = 0 (22)

The general solution is given by:

Θ = C1e(λ.X) + C2e(−λ.X) (23)

In order to solve Equation (23), we need appropriate boundary conditions. Two cases
can be considered:

(1) The temperature at the base of the HS is fixed, meaning that T(x = 0) = Tbattery. Therefore:

Θ(0) = Tbattery − T∞ = Θbattery (24)

(2) The second case occurs at the HS tip (x = L) that may correspond to one of the three
different physical conditions:

• Conditions 1: L→ ∞ meaning that the temperature is not too high and the PCM
around the HS has not yet melted. The solution becomes:

Θ = e(λ.X) (25)

• Condition 2: Assuming that the heat dissipation at the tip of the fin is negligible,
the adiabatic condition can be assumed (∇Θ = 0 at X = 1). The solution is:

Θ =
cos h(λ(1− X))

cos h(λ)
(26)

• Condition 3: When the side surface does not dissipate all the heat loss of the cell,
the tip of the HS is crossed by a convective flux governed by Newton’s law:

− k
dT
dx
|x=L = h(T(L)− T∞) (27)

That can be resumed as:
dΘ
dX

= Bi.Θ (28)

where Bi is the Biot number that quantifies the ratio between the heat evacuated by
convection and the heat transmitted by conduction to the solid. The final solution for the
HS modeling is:

Θ =
cosh(λ(1− X)) + Bi

λ sin h(λ(1− X))

cosh(λ) + Bi
λ sin h(λ)

(29)

4.1.3. PCM Modeling

The effective heat capacity (EHC) method is employed in this section to model the
PCM. Using such a method is the phase transition of the PCM that occurs in a wide temper-
ature range. The adjustment of the enthalpy is also considered in the PCM modeling [41].
The phase transition region (mushy zone) has an essential factor that is called the EHC
value. This value is maximum at the mushy zone. The density and thermal conductivity of
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the solid and liquid phases are different. Therefore, the average of these two phases should
be considered [42]. The EHC (Cpeff [J/kg·K]) can be expressed as follows:

ρCPe f f
∂T
∂t

= λ∇2T (30)

CPe f f =


CPs

CPs + a (T − Ts)
CPm + b (T − Tm)

CPl

T ≤ Ts
Ts < T < Tm
Tm < T < Tl

T ≥ Tl

(31)

where indices s, m, and l represent the solid, mushy, and liquid zones. In addition, a and b
can be defined as follows:

a =
CPm − CPs

Tm − Ts
(32)

b =
CPm − CPs

Tl − Tm
(33)

By knowing the PCM’s latent heat of fusion dH [kJ/kg], the heat capacity in the mushy
zone (CPm [J/kg·K]) can be calculated:

CPm =
2dH + 2(CPl − CPs)(Tl − Tm) + CPs (Tm − Ts) + CPl (Tl − Tm)

Tl − Ts
(34)

In addition, the effective thermal conductivity (keff [W/m·K]) and the effective density
(ρeff [kg/m3]) can be expressed as follows:

ke f f =


ks

ks+kl
2
kl

T ≤ Ts
Ts < T < Tl

T ≥ Tl

(35)

ρe f f =


ρs

ρs+ρl
2
ρl

T ≤ Ts
Ts < T < Tl

T ≥ Tl

(36)

4.2. Boundary Conditions

The boundary condition for all of the surfaces of the system can be defined as the
convective heat transfer coefficient (h [W/m2·K]) between the ambient (T∞ [◦C]) and
surface (T [◦C]):

− k
∂T
∂n

= h (T − T∞) (37)

As mentioned earlier, k is the thermal conductivity. In addition, ∂T
∂n denotes the

temperature gradient. At the beginning of the numerical computations (t = 0), the initial
condition of T(x, y, z) = T∞ is assumed. Hence, the initial and the ambient temperature of
23 ◦C is set in the CFD simulation studies. The simulation time for the 3D CFD simulation
studies is 1400 s with 1 s step time. The mass of the PCM for the pure PCM case study
is 330 g, where the thickness of the PCM around the LiC cell inside the PVC container is
13 mm. The radiation is omitted in the CFD analysis [43].

5. Results and Discussion
5.1. Results of the 1D Electrical Model

The developed semi-empirical 1D model was modeled in which the OCV model was
based on a numerical method that the results are saved in LUTs. Figure 11 demonstrates
the OCV map as function of SoC (between 0% to 100%) and temperature (−30, −10, 0,
10, 25, 40, 50, and 60 ◦C). The ohmic resistance values that were calculated utilizing the
least-square fitting method are shown in Figure 12. The ohmic resistance map is a function
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of SoC (between 0% to 100%) and temperature (−30, −10, 0, 10, 25, 40, 50, and 60 ◦C) for
the current rate of 150 A that is very high. The extracted parameters are stored in LUTs
that are used to calculate the terminal voltage of the LiC.
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The accuracy of the extracted parameters in the developed 1D model is evaluated
in a dynamic driving cycle to be verified against the experimental results. Figure 13a
shows a part of the driving cycle consisting of different current rates up to 300 A for
500 s. The results are compared for voltage in the electrical model and temperature in
the thermal model. The experimental and simulation results for voltage are shown in
Figure 13b with very low simulation error (Figure 13c). In such a high dynamic current rate
that can be used for high power applications, the error for high current rates above 100 A
is around ±5% that is very low. For the currents lower than 100 A, the simulation error
for voltage is remarkably lower than this (≤±3%), proving the precision of the developed
electrical model.
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5.2. Results of the 1D Thermal Model

The temperature error is essential to be as low as possible to simulate the temperature
curve highly and to show the precision of the thermal model. In this regard, the temperature
curve for the dynamic driving cycle is presented in Figure 14. The temperature of the
climate chamber is set at various ranges to perform the experimental thermal test. Therefore,
the condition should be considered the forced-flow or forced convection since a fan inside
the climate chamber is responsible for controlling the temperature. In the figure, the
simulation and experimental results for the temperature with an initial temperature of
24.6 ◦C as well as the error of temperature are exhibited. As can be seen, the error of
temperature in the worst scenario (the highest current rate) is around±4%, which shows the
very high precision of the thermal model at the beginning of the simulation. After 5 × 104 s,
where the cell’s temperature is at the steady-state zone, the error ranges below ±2%, which
is perfect for such a high dynamic profile.
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5.3. Results of the 3D CFD Model

The 3D CFD model is simulated by setting all the initial and boundary conditions for
the system. The precision of the simulations is evaluated by validation of the results with
experiments. With respect to this, all the case studies, including NC, pure PCM, and the
hybrid PCM-HS, are modeled and validated against the experimental results. Figure 15
demonstrates the validation results of these use cases. As is evident, the CFD simulations
for all the use cases perfectly match the experimental results, showing the precision of the
extracted electrical and thermal parameters linked to the accurate 3D CFD model.
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6. Conclusions

In this work, a prismatic 2300 F lithium-ion capacitor (LiC) was the target cell.
The present paper aimed to develop a validated and robust coupled 1D–3D model ca-
pable of extracting the electrical and thermal parameters of the cell, which will then be
used as an input to the 3D CFD model to investigate the thermal behavior of the LiC
under the high dynamic current rate of 150 A. The 1D electro-thermal model was devel-
oped in a wide temperature range (from −30 ◦C to +60 ◦C) under high current profiles
(from 0.1 A to 500 A), which is unique. The electrical and thermal parameters were then
extracted thanks to the robust 1D electro-thermal model and validated against the experi-
ments. The extracted electrical parameters are open-circuit voltage (OCV), polarization
capacitance and resistance, and internal series resistance. In addition, the power loss of the
LiC was extracted using the 1D thermal model. Using the extracted electrical parameters,
the electrical model was validated in such a high dynamic driving profile, in which the
error for high current rates above 100 A was around ±5%. For the currents lower than
100 A, the simulation error for voltage was lower than ±3%, proving the precision of
the developed electrical model. The temperature error in the thermal model in the worst
scenario (the highest current rate) was around ±4%. When the temperature of the LiC
was at the steady-state zone, the error was below ±2%, which is perfect for such a high
dynamic profile.

Moreover, a 3D CFD model was linked to the 1D model to employ the extracted
parameters and to be validated versus experimental tests. In this context, a test bench
including PCM and heat sink (PCM-HS) was proposed to cool down the cell when working
continuously under a high current rate of 150 A. Three different case studies were defined:
natural convection (NC), pure PCM cooling system, and hybrid PCM-HS as the proposed
hybrid TMS. The results exhibited that the temperature of the LiC under NC experiences
very high temperatures above 55 ◦C that limit the cell’s lifetime. When the PCM was used
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as the TMS, the maximum temperature of the cell was controlled at 40.8 ◦C that shows a
26.2% improvement compared to the NC case study. Using the hybrid PCM-HS controlled
the temperature of the cell around 34.1◦C, which shows a 38.3% enhancement compared
to the NC. This proves the claim that, when a secondary passive system is added to the
PCM to improve its thermal conductivity, the efficiency of such a passive system increases
sharply, even at very high current rates.

The combined results of the 1D electro-thermal model and 3D thermal model show
that the coupled model is very accurate for the high current rate of 150 A. The development
of such a robust database will help to investigate the behavior of the LiC cell. Nevertheless,
future work would be testing the proposed passive TMS for higher currents like 200 A,
where the LiC will generate enormous heat.
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