
energies

Article

Towards Cooperative Perception Services for ITS: Digital Twin
in the Automotive Edge Cloud

Viktor Tihanyi, András Rövid , Viktor Remeli , Zsolt Vincze , Mihály Csonthó , Zsombor Pethő ,
Mátyás Szalai , Balázs Varga , Aws Khalil and Zsolt Szalay *

����������
�������

Citation: Tihanyi, V.; Rövid, A.;

Remeli, V.; Vincze, Z.; Csonthó, M.;

Pethő, Z.; Szalai, M.; Varga, B.;

Khalil, A.; Szalay, Z. Towards

Cooperative Perception Services for

ITS: Digital Twin in the Automotive

Edge Cloud. Energies 2021, 14, 5930.

https://doi.org/10.3390/en14185930

Academic Editor: Marco Pau

Received: 13 July 2021

Accepted: 4 September 2021

Published: 18 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Automotive Technologies, Faculty of Transportation Engineering and Vehicle Engineering,
Budapest University of Technology and Economics, 1111 Budapest, Hungary; tihanyi.viktor@kjk.bme.hu (V.T.);
rovid.andras@kjk.bme.hu (A.R.); remeli.viktor@kjk.bme.hu (V.R.); vincze.zsolt@kjk.bme.hu (Z.V.);
csontho.mihaly@kjk.bme.hu (M.C.); petho.zsombor@kjk.bme.hu (Z.P.); szalai.matyas@kjk.bme.hu (M.S.);
varga.balazs@kjk.bme.hu (B.V.); aws.khalil@bme.edu.hu (A.K.)
* Correspondence: szalay.zsolt@kjk.bme.hu; Tel.: +36-1-463-3226

Abstract: We demonstrate a working functional prototype of a cooperative perception system that
maintains a real-time digital twin of the traffic environment, providing a more accurate and more
reliable model than any of the participant subsystems—in this case, smart vehicles and infrastructure
stations—would manage individually. The importance of such technology is that it can facilitate a
spectrum of new derivative services, including cloud-assisted and cloud-controlled ADAS functions,
dynamic map generation with analytics for traffic control and road infrastructure monitoring, a digital
framework for operating vehicle testing grounds, logistics facilities, etc. In this paper, we constrain
our discussion on the viability of the core concept and implement a system that provides a single
service: the live visualization of our digital twin in a 3D simulation, which instantly and reliably
matches the state of the real-world environment and showcases the advantages of real-time fusion of
sensory data from various traffic participants. We envision this prototype system as part of a larger
network of local information processing and integration nodes, i.e., the logically centralized digital
twin is maintained in a physically distributed edge cloud.

Keywords: cooperative perception; ITS; digital twin; sensor fusion; edge cloud

1. Introduction
1.1. Scope and Significance

The future of connected and automated vehicles (CAVs) and the development of
intelligent transportation systems (ITSs) are actively researched topics which open up a
multitude of possibilities. With the progress in computation and communication technology
in the last decade, some formerly unrealistic constructs are becoming more practically
viable and demand proof-of-concept implementations. We envision a future where traffic
participants and observers like CAVs and ITSs share their information resources in real-
time for a safer and more efficient transportation and traveling experience. Herein, we
outline a so-called Central System architecture that enables such information sharing and
integration. We use the term central in a strictly logical sense to denote the emergence of
a single, fully integrated and logically consistent environment and decision model in the
cloud (the digital twin), while the physical implementation itself remains highly distributed,
i.e., computation and communication loads are delegated to a spatially localized edge
processing nodes hierarchy, as well as a network of third-party partners such as trusted
data and algorithm providers. Understanding the wide ranging general applicability of
building a well-integrated smart road and vehicle IoT, we made a dedicated effort to
design the Central System as an easily extensible integration framework using industry
standard interfaces. In the coming months we expect to be able to connect a part of the
fast-developing Hungarian ITS facilities into the Central System and to provide non-stop

Energies 2021, 14, 5930. https://doi.org/10.3390/en14185930 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9044-1760
https://orcid.org/0000-0002-0044-0386
https://orcid.org/0000-0002-5813-3530
https://orcid.org/0000-0002-4772-1740
https://orcid.org/0000-0003-3054-4669
https://orcid.org/0000-0001-8139-3659
https://orcid.org/0000-0002-2945-7974
https://orcid.org/0000-0001-9139-3900
https://orcid.org/0000-0002-6172-5772
https://doi.org/10.3390/en14185930
https://doi.org/10.3390/en14185930
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14185930
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14185930?type=check_update&version=1

Energies 2021, 14, 5930 2 of 26

real-time integration of real traffic data and thus demonstrate the first large-scale industrial
application. In the current paper, we report the positive results of small-scale experiments
conducted in late 2020.

Arguably, the most useful kind of information for traffic participants might very well
be the establishment of a so-called digital twin: a dynamic and real-time model of the
environment, which is the focus of our current work and provides the major information
source to build other services upon. The functional prototype we built and present in this
paper therefore realizes only the fundamental real-time environment perception function of
the Central System, which for clarity we will call Central Perception—distinguishing it from
an envisioned suite of other dependent functionalities like traffic analytics and planning,
road infrastructure monitoring and management, cloud-based traffic control and vehicle
control, specific applications on CAV testing grounds and logistic grounds, etc. Of course,
such derivative services must be introduced in at least some detail to highlight the expected
practical significance of our initial efforts. A schematic overview of the planned Central
System, its participants and functionalities is represented in Figure 1.

Figure 1. Central System overview.

The premise of Central Perception is the following: assuming smart roads and vehicles
in the near future, the same physical traffic environment will typically be perceived through
many sensors and platforms of highly differing setups and capabilities at the same time,
and these platforms may or may not be affiliated. Depending on application requirements
like expected response time and reliability, the integration of environment perception
information from various sources will pose certain challenges including communication,
compatibility, synchronization, calibration, fusion, tracking, and end-to-end latency. Such
an ad-hoc collective and collaborative perception system also requires certain sophistication
in its architecture which must allow for scaling in a dynamically changing environment,
especially considering CAVs that constantly change their location and whose sensor data
must therefore be integrated with different stationary platforms at different points in time.

Energies 2021, 14, 5930 3 of 26

1.2. Prior Work

In the last two years, several connected automotive information system prototypes
were realized, all of them demonstrating some degree of cooperative perception. Krämmer
et al. from TU Munich and Fortiss built “Providentia” [1], an intelligent infrastructure
system consisting of several gantries equipped with cameras and radars, serving as a
support system for intelligent vehicles and aiding them in perceiving blind spots and
objects behind cover. They process and fuse the sensory data both locally at the individual
measurement stations and also centrally at designated edge computing nodes before
communicating it to the consumer vehicles via 5G. Gabb et al. from Bosch and Karlsruhe
showed theoretical guidelines (supported by experiments) for developing a similar system
around the same time, at the Intelligent Vehicles conference in Paris [2]. The University of
Tokyo released open source software for cooperative perception [3] while the University
of California together with Toyota demonstrated a use-case of actually backpropagating
the already integrated data from the cloud for driving assistance purposes [4]. Toyota
also pursues similar topics with other Universities and independently, focusing on various
settings like V2V communication [5] or camera and digital twin integration for visual
guidance systems [6]. In Australia, researchers implemented the ETSI CPM messaging
standard in an I2V setting, allowing sensor-less vehicles to perceive and autonomously
react to pedestrians [7]. Recently, Chinese authorities announced to launch “world’s
first high-level cloud-controlled autonomous driving demonstration zone” (http://m.
news.cctv.com/2020/09/11/ARTIeJEug9svYwuLazxQFzO3200911.shtml (accessed on 14
September 2021)) to be constructed in Beijing with similar long term targets as our Central
System project.

As prior work we have carried out a measurement campaign (together with interna-
tional industrial and academic partners) on a real-world motorway section in Hungary,
which resulted sensory data useful for future automotive R&D activities due to the available
ground truth for static as well as for dynamic content [8].

A possible first industrial application of Central System technology is likely to occur
where experimental CAVs and ITSs are introduced earliest: on automotive testing grounds.
In particular, development of Central System based Scenario-in-the-Loop (SciL) [9] control
is already underway on the ZalaZONE [10] CAV proving ground in Hungary.

1.3. Primary Contribution

According to the best of our knowledge, we are the first to demonstrate a real-time
cooperative perception platform that has both stationary and moving multi-sensor data
sources and that combines several levels of data integration such as inter-sensor raw fusion,
on-platform tracking and inter-platform local area fusion to finally create and visualize a
simultaneous, centrally consistent model (digital twin) of all objects of interest in the area
covered by the sensors’ field of views.

We emphasize that our primary contribution lies in the demonstration of system-level
possibilities as they were not demonstrated beforehand, i.e., the maintenance of a digital
twin in a complex and heterogeneous environment. In this paper we do not claim any
scientific novelty wrt. our individual subsystems, nor are they uniquely necessary for
the development of our technological demonstration (we could have chosen alternative
technological approaches to demonstrate the same concept).

To clarify, we define the following:

• Digital twin: a logically centralized, dynamic digital model of the traffic environment
that integrates data from heterogeneous sources including both intelligent infrastruc-
ture and traffic participants in the cloud real-time.

• Derivative services: novel services that are expected to become available via a digital
twin. These services fall into following major categories:

– Cooperative perception services: more reliable centralized perception via sensor
fusion in the cloud (Central Perception).

http://m.news.cctv.com/2020/09/11/ARTIeJEug9svYwuLazxQFzO3200911.shtml
http://m.news.cctv.com/2020/09/11/ARTIeJEug9svYwuLazxQFzO3200911.shtml

Energies 2021, 14, 5930 4 of 26

– Dataset generation services: more reliable perception enables more sophisticated
scenario extraction and data referencing on multi-sensor datasets, as well as
cross-validation of perception algorithms.

– Accident reconstruction related services
– Cloud Control: certain control functionalities (e.g., emergency braking) could be

performed centrally based on cooperative perception inputs assuming sufficiently
low latencies (a technological possibility in the near future).

– Proving ground and logistical yard management: some of the first potential areas of
Central Perception and/or Cloud Control deployment.

– Analytic services: miscellaneous real-time datastream and historical data analytics.

2. Problem Definition

Arguably, the most crucial element in providing centrally maintained digital twin
services is achieving a centrally integrated, real-time perception of the traffic environment.
This paper presents a solution to the Central Perception problem that we specify as follows.

The overall system must acquire an integral and dynamic object-level view of the
real-time traffic situation with at most 100 ms latency. The logical core of the system
should be responsible for data integration while the peripheral measurement platforms
will act as data sources. The overall architecture and the established interfaces must
enable the simultaneous participation of connected intelligent equipment including static
road-side infrastructure, mobile (vehicle-borne) and third-party measurement systems.
Various sensor types and vendors must be supported, as well the precise and reliable
detection of traffic participants including pedestrians, vehicles, obstacles, etc. As additional
data sources, the system may use static HD maps and various traffic data (e.g., road
meteorology) providers.

We specified and built a proof of concept system covering a substantial subset of
above requirements, demonstrating the viability of the approach. Our functional sample
provides following capabilities:

• a single central server (edge node);
• covering a spatially localized region of overlapping sensor field of views;
• fusing data from three multi-sensor camera-LiDAR platforms, one of them mobile;
• detecting (currently only) pedestrians;
• visualizing the digital twin in a realistic 3D simulation;
• in real-time (with less than 100 ms latency).

3. Overview of the Central Perception System Architecture

In order to support the requirements mentioned in Section 2, numerous design deci-
sions had to be made regarding the prototype development of the measurement systems,
the central server, and the communication between them. The following sections will
discuss the overall design in some detail, the current section giving only a brief overview.

The realized system consists of one central server in the cloud and three wirelessly
connected measurement systems, two of which are stationary and one that is mounted
on a vehicle. At present we focus on fusion-based perception since we want to utilize the
strengths of different sensor types on a single platform. Each measurement system has a
sensory setup consisting of a camera-LiDAR pair, with the exception of the vehicle which
has one camera and two LiDARs. For precise distance measurements and large-scale 3D
reconstruction in automotive applications, stereo vision is becoming a less and less viable
choice simply due to the precision loss at distances that are relevant to driving (compared
to the high precision and falling prices of LiDAR technology) [11].

The measurement systems use the RTMaps software framework for data acquisition,
synchronization, and data-flow processing. Detection and tracking is performed locally
on the GPU-s and CPU-s of the measurement systems. The 3D pedestrian detection is
done using low-level (raw) data fusion on the local system, i.e., the camera image and
the corresponding LiDAR pointcloud are both necessary and are considered together in

Energies 2021, 14, 5930 5 of 26

calculating the 3D position of the detected pedestrian (in contrast to object-level fusion
where each sensor arrives at a detection estimate separately, and fusion occurs only after-
wards). The fused detections of each sensor cluster are then tracked locally to smooth out
any remaining uncertainties or missing datapoints. The tracks are then communicated
using standard SENSORIS message formats over 5G or DSRC to the central server, where
the inter-systems track fusion occurs. Finally the resulting locally and globally fused tracks
are displayed real-time in a digital twin simulation developed in Unity. The overview of
the system components and connections is shown in Figure 2.

Figure 2. Central Perception prototype main components and protocols.

4. Perception Module
4.1. System Calibration

The proposed Central System integrates numerous different type of sensors (each
having an assigned local coordinate system) such as LiDARs, cameras deployed in the
infrastructure or attached to a vehicle. In addition to these sensors—in case of vehicles—the
IMU/dGPS stand for an additional key element. For the system to work properly the
calibration parameters have to be estimated first, i.e., all the intrinsics and extrinsics. Here,
the intrinsics cover the internal parameters of cameras (such as focal length, principal
point coordinates, skew, radial and tangential lens distortion) and the extrinsics stand
for the transformations between the local coordinate systems of attached sensors as well
as transformations from and to the Universal Transverse Mercator (UTM) frame which
was selected to represent the global reference frame. For camera calibration the method
published in [12] has been applied. The simplified calibration setup is illustrated by
Figure 3. Let us briefly introduce the calibration approaches used to calibrate the proposed
Central System.

Energies 2021, 14, 5930 6 of 26

Figure 3. Illustration of the simplified setup of calibration containing two infrastructure stations and
a vehicle each equipped with a camera and a LiDAR. In the vehicle there is an IMU/dGPS system,
as well.

4.1.1. Chessboard Based Camera-LiDAR Calibration

The estimation of the rotation and translation between the camera-LiDAR pairs is
more challenging than that of the camera-camera pairs, since we have to identify 3D points
in the LiDAR point cloud and their corresponding image points in camera images. The
estimation of LiDAR-camera extrinsics was based on the method proposed by authors
in [13], which is a fully automatic extrinsic calibration approach aimed for LiDAR-camera
extrinsics calibration by using a printed chessboard attached to a rigid planar surface.
The key element of the method is to determine the 3D locations of chessboard corners
in LiDAR’s coordinate system. A full-scale model of the chessboard (A0 sized) is fitted
to the segmented 3D points corresponding to the chessboard in the LiDAR point cloud.
The intensities of light rays reflected form black and white patches of the chessboard are
different and well distinguishable, thus the model is fitted to a 4D point cloud where the
last dimension corresponds to the intensity of the given LiDAR point). The corners of the
fitted model are considered to be the 3D corners of the chessboard.

The extrinsic calibration of the camera and LiDAR is performed by minimizing the
re-projection error (given the estimated corners Mi in the LiDAR frame, their measured
projections in the camera image mi as well as the intrinsics of the camera (camera matrix K,
radial and tangential distortion coefficients p1, p2, p3, q1, q2). N stands for the number of
corner points considered.

min
R,t

N

∑
i=1
‖mi − m̂i(Mi, K, R, t, p1, p2, p3, q1, q2)‖2 (1)

Figure 4 shows the process of data acquisition. The blue and yellow colors correspond
to different LiDAR point intensities. Figure 5 shows the LiDAR points projected onto the
camera image. In the chessboard image we can see both the detected corners and the 3D
corners identified in the LiDAR point cloud and projected onto the camera image. The 3D
viewer shows the detected corners together with the point cloud of the chessboard colored
based upon the black and white patches of the fitted chessboard model. The achieved
RMSE in case of five different poses of the chessboard can be followed in Table 1.

Energies 2021, 14, 5930 7 of 26

Figure 4. Data acquisition for chessboard-based camera-LiDAR calibration.

Figure 5. chessboard-based camera-LiDAR calibration results.

Table 1. The achieved RMSE in case of five poses.

Chessboard Pose Index RMSE [px] Chessboard Size

1 1.66
2 1.30
3 1.49
4 0.87
5 0.87

The chessboard
pattern is 6× 8
with a cell size

of 140× 140 mm

The whole image set 1.28

4.1.2. Box Based Calibration

In this second approach, the Camera-LiDAR extrinsics calibration relies on box cor-
ners, instead of a chessboard. The calibration box is placed at different locations (with
known UTM coordinates measured in advance by a portable dGPS modul) of the working

Energies 2021, 14, 5930 8 of 26

area. For each pose of the box the point cloud and the corresponding camera image is
acquired. In the LiDAR pointcloud, the box corners were determined by segmenting the
points which correspond to the box in the point cloud followed by fitting the box model.
Since the box corners are obtained with respect to the LiDAR coordinate frame and the
corresponding UTM coordinates are known, the LiDAR pose wrt. the UTM frame can be
estimated. Similarly, the camera pose can be determined by minimizing the re-projection
error (see Equation (1)) associated with the selected corners with known UTM coordinates.
Since the UTM coordinates of box corners as well as the IMU pose wrt. UTM are known,
the transformation between the LiDAR and IMU coordinate systems can also be deter-
mined. Another well known approach to estimate LiDAR-UTM extrinsics is the hand-eye
calibration which requires at least two motions (with non-parallel rotation axes) of the
sensors (LiDAR and IMU) [14].

4.2. Data Synchronization

In order to keep the data streams synchronized among infrastructural and vehicular
sensors, a common time source as well as a time protocol is needed. As the most commonly
used time protocols, the Network Time Protocol (NTP) and the Precision Time Protocol
(PTP) might be emphasized. During our experiments the NTP was utilized and the GPS
time was used as time source. Each station (including two infrastructural stations and
one measurement vehicle) was equipped with an on-board unit having an integrated GPS
time source and running the NTP service (see Section 6.1). Each computing node’s (PCs,
DrivePX2 Tegra A and Tegra B) system clock has been synchronized with the GPS time by
relying on the NTP protocol. Prior to testing the Central Perception system, the synchronicity
of data streams from different sensors have been verified by experiments. To each data
frame (independently on what type of sensor it originates from), a timestamp is assigned
as it enters the computing framework. In the computing framework the data frames (from
different streams) being closest in time are associated and processed afterwards as depicted
by Figure 6.

Figure 6. Illustration of the data flow and timestamp based assignment of data frames.

As another alternative for time synchronization the Precision Time Protocol might be
used, which instead of millisecond-level synchronization, aims to achieve nanosecond- or
even picosecond-level synchronization. In case of the PTP, switches with PTP support are
required for each station. For most commercial and industrial applications, NTP is more
than accurate enough [15].

Energies 2021, 14, 5930 9 of 26

4.3. 3D Object Detection

3D object detection plays crucial role in environment perception and understanding.
During the development of the Central System we payed much attention on the development
of robust 3D object detection methods which are considered to be essential from the overall
system performance point of view. We have considered two type of approaches:

1. camera-lidar based approach benefits from the high resolution of cameras and the
high position accuracy of 3D LiDAR points.

2. a single camera based detection where the YOLO 2D detection [16] algorithm and
the homography between the road plane and the image plane was considered. This
approach is cost efficient (due to the camera only requirement) and is preferred to be
applied in such scenarios where the camera is static.

4.3.1. Yolo and Point Cloud Based Approach

Camera-based systems perform outstandingly well in case of recognition tasks, but
when it comes to position estimation they are less accurate than LiDAR-based systems.
Depending on the resolution and the number of used cameras, the baseline length, the
accuracy of calibration as well as the accuracy of the pixel coordinates of points of interests,
the position estimation might be improved; however, by including one or more LiDARs
the location estimation of object’s might significantly be improved.

The method presented below combines the advantages of the two sensors (i.e., the
high resolution of cameras and the localization capabilities of LiDARs). In order to fuse
camera images with LiDAR point clouds the sensors have to be calibrated (see Figure 3).
Another crucial point here is to guarantee real-time processing which puts additional
constraint (depending on the used hardware) on the complexity of applied algorithms.
Nevertheless, the data streams of different sensors must be kept synchronized to ensure
that data frames closest to each other in time are associated and processed accordingly (see
Section 4.2).

As first step the detector receives images on its input and 2D object detection is
performed by the YOLOv4 object detector [16]. The speed and accuracy of the algorithm
are in line with the requirements defined, which means that the frame rate of the overall
system was set to be at least 20 FPS (which currently stands for the upper limit for LiDARs).
During the experiment pedestrians and cars have been considered as primary objects of
interest, however the algorithm can easily be extended to detect additional classes such as
motorcycles, buses, etc. The 2D detection may take several milliseconds even on the most
powerful hardware (∼30 ms).

In the next stage, the point cloud is projected onto the camera image and each es-
timated 2D bounding box gets associated with the LiDAR points which projections are
bounded by the given box. As result a set of frustums is obtained (one for each 2D bound-
ing box) containing the 3D points of the objects of interest. Let us denote the set of these
frustums by Fi. Given Fi the 3D bounding box corresponding to the given object might
either be estimated on neural basis by a convolutional neural network trained to perform
detection in frustums or the position of the object might be determined based on a simple
reasoning.

By the reasoning based approach first the false points (foreground, background points)
from Fi are eliminated and a small 2D window inside each bounding box is defined. The
size and position of the window is proportional to the size of the original box. The scaling
factor and position were set empirically based on the type of object. Since these windows
generate significantly narrower frustums, the points falling inside it are more likely to
belong to the object of interest. Let us denote the set of these points as F ′i . The location of
the object is determined as the mean of the points falling inside the volume bounded by Fi
and satisfying the constraint

dmin < ‖pj − c‖< dmin + δ, pj ∈ Fi, j = 1..Ni, (2)

Energies 2021, 14, 5930 10 of 26

where c stands for the camera center and Ni represents the number of points in Fi, δ =
max{objectwidth, objectheight}.

dmin = argmin
q∈F ′i

‖q− c‖. (3)

This is an extremely simple and therefore very fast way to filter out unnecessary points
and localize the object of interest Figure 7. The latency of the detection can be followed in
Figure 8.

Figure 7. Detected objects.

Figure 8. Yolo based object detector latency.

4.3.2. Yolo and Homography Based Approach

The detector described above uses the lidar point cloud to estimate the 3D location
of the target, the method introduced in this section focuses on a single camera based
3D localization of targets. Homography and its estimation is well known topics in the
literature, but let us briefly summarize it: Let us denote a world point by M and its image
coordinates by m. Let us consider the scenario when the world points of interest are lying
on the XY plane, thus their Z coordinate is zero. These points are projected onto the image
plane of the camera as follows:

m = PM = K[R | t]

X
Y
0
1

 = K
[
r1 r2 r3 t

]
X
Y
0
1

 = K
[
r1 r2 t

]︸ ︷︷ ︸
H

X
Y
1

, (4)

where ri denote columns of the rotation matrix R, t stands for the translation and K denotes
the camera matrix containing the camera intrinsics. In order to estimate the homography

Energies 2021, 14, 5930 11 of 26

H the following cost function is minimized (measurement error is considered in both the
image and world plane):

min
H,m̂′i ,m̂i

N

∑
i=1
‖mi − m̂i‖2 + ‖m′i − m̂′i‖2, st. m̂′i = Hm̂i, ∀ i, (5)

where mi and m′i stand for the measured point pairs while m̂′i and m̂i stand for the estimated
perfectly matched correspondences, i.e., m̂′i = Hm̂i [17].

We have used 18 markers m′i with known UTM coordinates (measured by a mobile
GNSS system in advance with an accuracy of ∼20 mm) and their image projections mi
to estimate the homography. mi stand for the undistorted normalized image points. The
detection part of the approach uses the YOLO4 [16] neural network to detect targets of
various types in images (during our experiment pedestrians were the main objects of
interest, however other object types are also supported by the proposed perception system).
The point of interest for each detected pedestrian was set to be the center point of the
bottom edge of its 2D bounding box. Let us denote these points by mi. By applying the
estimated homography H, the image points mi can be transformed to the XY plane of the
UTM coordinate system as m′i = Hmi, ∀i. Here we omit the true altitude, thus it was set to
zero for each point. Although this kind of 3D detection is very useful for static cameras (for
example cameras installed in the infrastructure), in case of cameras attached to a vehicle,
change in pitch or roll of the vehicle (caused for example when accelerating or making a
hard turn, etc.), invalidates the estimated homography. In addition, the uncertainty of the
measured image points mi must also be considered. Given both the uncertainty of H and
mi, the covariance of the estimated points mi

′ is given by:

Σmi
′ = Jh Σh JT

h + Jmi Σmi JT
mi

, (6)

where Σmi
′ , Σmi and Σh stand for the covariance matrix of the estimated road point mi

′,
the measured image point mi and the estimated homography h, respectively (vector h
is composed from the concatenated rows of H). Furthermore, Jmi

and Jh stand for the
Jacobians of m′i = Hmi wrt. mi and h, respectively [17].

Since the vehicle is moving, the detected objects have to be transformed according
to the actual pose of the vehicle to a global coordinate system (e.g., UTM). Firstly, the
detections should be estimated wrt. a selected reference coordinate system and then based
on the actual pose of the vehicle transformed to the UTM frame. The reference coordinate
system for the vehicle was set to be the coordinate system of the IMU shifted along the
vertical axes to the ground level (road level). Let us refer to this coordinate system as
IMUgl . In order to estimate the homography which transforms the image points directly to
IMUgl , one needs to estimate the marker coordinates in IMUgl . Since the IMU modul (used
during our experiments) includes a differential GPS with a dual antenna system, the UTM
coordinates and the heading of the vehicle can be measured with an accuracy of ∼20 mm
which might be considered to be sufficient for autonomous driving related applications.
Based on the measured pose of the vehicle, the UTM to IMUgl rigid transformation can be
determined, thus the markers in IMUgl can be calculated. By applying the homography
(estimated based upon markers in the IMUgl and the corresponding image plane points) to
points mi, the 3D position of each detected target is obtained directly in IMUgl . Since the
pose of the vehicle is continuously measured with a sampling rate of 100 Hz, the detections
can directly be transformed to the UTM frame in real-time.

4.4. Object Tracking
4.4.1. Overview

There are several different types and solutions for tracking objects [18]. Kalman-filter
based methods are widely used for target position tracking.

Energies 2021, 14, 5930 12 of 26

For tracking objects with high manoeuvring capabilities, utilisation of the Interacting
Multiple Model (IMM) filter is a good practice. Although the IMM filter is a well known
approach for object tracking, let us briefly point out the basic principle. The IMM filter
considers multiple motion models (e.g., constant velocity, constant acceleration, constant
turn rate models) each associated with a dedicated Kalman filter. The Kalman filters are
running simultaneously in parallel and their outputs are blended to generate the estimated
state of the system according to the likelihoods of being in a certain motion mode. The
higher the probability of a mode, the higher its contribution to the blended state. The state
of a more probable mode is affected slightly by less probable modes [19,20]. During this
process, the likelihoods of being in a certain mode (e.g., constant velocity mode) and the
likelihoods of transitions between modes are calculated based on the last state. In order to
reduce the transient period every filter is reinitialized with the mixed estimate of state and
covariance [21].

4.4.2. Implementation

The tracker component receives a description data structure from all recognised objects
as input. From that data structure, it pulls the position coordinates and the corresponding
timestamp and combines them into a position list for a given frame. The core of the
tracker is an IMM filter. The filter consists of three different motion models, which are
the constant velocity, constant acceleration and constant turn-rate models. In each step,
the tracker gives an estimation of current positions for all the registered tracks. Then the
tracker component pairs the tracks with the input positions using Munkres global nearest
neighbour assignment algorithm. Then it manages the tracks in the following manner: If
no existing track can be paired with a position, it creates a new one. If a track was paired
with any positions 5 times within the last 7 frames, then it flags it as confirmed. With this
method, any false positive detection can be filtered out. The component deletes a track
when it has not been assigned with any positions at least 22 times within the last 25 frames.
These settings fit the Yolo and point cloud based approach. Due to behaviour differences,
the Yolo and homography based approach requires other settings for the tracker component
for best results. Therefore, a tracker with optimised settings has been implemented for
each detector solution. After the track management, the component compiles a list with
the positions of the confirmed tracks. The output of the component is a data structure that
contains the ID and position of the tracks and the position and orientation information of
the sensor system. The output data structure has the same format as the input structure.
The pseudo code of the tracker is listed below:

The latency histogram of tracking can be followed in Figure 9. First of all it is influ-
enced by the number of current tracks and detections. The average response time of the
component is 690.7 µs for the sample sequence.

Figure 9. Latency histogram of tracking.

Energies 2021, 14, 5930 13 of 26

READ input
FOR elements in detection data:
READ position
FOR each track:

LOAD last position
ESTIMATE new position with IMM Filter

ASSIGN estimations with current detection positions
FOR each track:

IF track was paired with a detection for n times in the last m
frames:

REGISTER track as „Confirmed”
IF track was paired with detection less times than j in the last
k frames:

DELETE track
IF there are any detection which were not assigned to a track:

FOR each unassigned detection:
CREATE new track based on current detection

ASSEMBLE a list from the positions of „Confirmed” tracks
CREATE output data structure
ADD system origin position and yaw information from input data
WRITE output

5. Local Area Fusion Server
5.1. Stream Setup

The local area fusion server we set up for our current demonstration automatically
processes and converts the incoming detections streams across five sequential processing
steps until we get the fused result in the final stream. The five so-called fusion-processors
can be observed in Figure 10.

Figure 10. Current stream setup in the Central Perception functional sample server (cylinders represent
topics/streams, while the numbered arrows represent stream processors).

Energies 2021, 14, 5930 14 of 26

The sequentially numbered stream processors from Figure 10 have the following
responsibilities:

1. Converts system origin coordinates from WGS84 to UTM. Position uncertainty re-
mains the same since the SENSORIS input was in (square) meters already. Rotation
and its uncertainty do not change because WGS84 and UTM frames point in the
same directions.

2. Recalculates all object coordinates from system-relative to absolute UTM.

(a) Position: The transformation matrix is straightforward to derive from the
relative frame (e.g., vehicle IMU): we just calculate the rotation matrix from the
platform’s current orientation and append its current position as a translation
vector.

(b) Orientation: The global heading is obtained by adding the relative (IMU-
based) object yaw to the system yaw. Calculating global pitch and roll is more
involved and was skipped since this data is not represented in our current
environment model. The pitch and roll values are set to zero.

(c) Position covariance: the object position covariance matrix has to be backro-
tated and added to system position covariance, assuming no cross-covariance
between system and object positions since they are independent.

Σop = Σpp + R Σrp R> (7)

R denotes the IMU-to-UTM rotation matrix, while Σop, Σpp, Σrp denote the
resulting object position covariance, the platform position covariance and the
IMU-based relative object position covariance, respectively.

(d) Orientation covariance: the object heading variance is added to the sys-
tem heading variance, the pitch and roll uncertainties are disregarded (set
to identity).

3. Here, the fusion algorithm itself is performed on the objects-utm stream. Exact details
will be given in the next subsection. For convenient further utilization a very specific
rule for populating the output fusion-utm stream is applied: the chosen fusion input
messages and the fused output message are written sequentially to the out-stream. So
later reading the messages in offset order will yield an alternating sequence of fusion
inputs followed by the corresponding fusion output. Note that not every objects-utm
message becomes a fusion input.

4. Converts all objects from UTM coordinates into WGS84 coordinates.
5. Optionally filters certain objects according to position in relation to demonstration area.

5.2. Fusion Algorithm

Assuming no cross-correlation between sources, we employed a Kalman filter and
Global Nearest Neighbor (GNN) association based central tracking source-to-track fusion
method called trackerGNN (https://www.mathworks.com/help/fusion/ref/trackergnn-
system-object.html (accessed on 14 September 2021)), which is an integral part of the Sensor
Fusion and Tracking Toolbox of Matlab. TrackerGNN maintains a single hypothesis (set
of central tracks) about the environment and it follows the central tracking algorithm
template detailed in the following subsection. The theory behind the implementation is
based on [22]; notably it solves GNN association using the Kuhn-Munkres [23] algorithm,
also known as the Hungarian method [24].

5.2.1. Central Tracking

Central tracking, sensor-to-track or source-to-track (S2T) fusion has detections from
multiple sources (usually sensors) as inputs and is expected to produce a single set of central
tracks as output. Therefore, the detections have to be integrated across time and across
sources. If we first perform the time-integration (tracking) and subsequently perform the
source-integration (fusion), we get the equivalent of a track-to-track (T2T) fusion approach.

https://www.mathworks.com/help/fusion/ref/trackergnn-system-object.html
https://www.mathworks.com/help/fusion/ref/trackergnn-system-object.html

Energies 2021, 14, 5930 15 of 26

In contrast, if we perform source-integration (fusion) before time-integration (tracking), we
are talking about S2T fusion.

The general S2T fusion framework assumes the maintenance of a single set of central
tracks throughout the filtering steps. An S2T fusion step usually follows the template
given below:

1. Collect measurements within a time interval between previous and currently
queried step time. Each potential source should provide exactly zero or one
measurement containing a number of simultaneous detections. Sequential
measurements from the same source within the data collection interval can
be handled by (a) discarding all but the last, as done in our approach; or
(b) keeping all but technically regarding them as different sources with shared
measurement model parameters.

2. Assign each detection of each source to exactly one track (either pre-existing
or newly-created). Make sure that no two detections from the same source
are assigned to the same track. Thus each track is assigned 0 to s detections (s
being the number of sources at this step).

(a) Track lifecycle management is done during this step (trackerGNN uses
parametrizable heuristics as detailed in Section 4.4.2).

(b) The assignment algorithm may handle passage of time. A simple
solution like trackerGNN would disregard time and only use spatial
data for assignment. A sophisticated solution might have to assign and
integrate each measurement individually, ordered by time, iterating
between steps 2 and 3, increasing computation costs.

3. Filter (predict and update) each live track with the assigned measurements
ordered by time.

4. Output the prediction for all tracks for the same moment in time (which was
provided as the fusion query argument).

5.2.2. Integration

In order to make use of trackerGNN as part of an efficient stream processor outside of
Matlab, several technical challenges had to be overcome, most notably:

• C code generation and compilation from Matlab,
• generation of a Java wrapper using the SWIG (http://swig.org/ (accessed on 14

September 2021)) framework for integration with Kafka Streams API,
• devising and implementing an appropriate input buffering scheme within the stream

processor, and finally
• making sure both real-time and playback fusion options are supported.

5.2.3. Buffering

The issue of input message buffering is not entirely trivial, since the order of message
arrival in the topic partition does not necessarily follow any kind of (e.g., timestamp-based)
ordering. We have to somehow make sure that the tracker is always fed appropriately
chosen inputs and that no inputs are wasted or discarded prematurely. The regular
intervals the fusion is queried at (in our case 120 ms) require a flexible buffering method
that supports fusion with missing or no data, old and future data, etc.

Our buffering method:

• tries to collect and buffer all available data immediately and continues to collect as
long as the stream is accessible;

• discards messages with past timestamps that precede the most recent fusion step;
• preserves far-future data points without running out of memory;

http://swig.org/

Energies 2021, 14, 5930 16 of 26

• collects data falling—according to timestamp—into each inter-fusion time window
into separate sets;

• when the time for the next fusion step comes, the cluster of messages that falls into
the preceding time-window is regarded: a collection of one latest message per sensor
is retained as fusion input, the rest discarded.

5.2.4. Real-Time vs. Playback Mode

The behavior of the fusion module should be different when we play back data from
the past then when we stream the present data. In both cases fusion is performed at fixed
real time (not timestep time) intervals, and fusion time can proceed only forward (strictly
greater than previous) (see Table 2).

Table 2. Comparison of real-time and playback fusion modes.

Real-Time Playback

Pace: always jump forward to the most
recent available timestep.

Pace: always read input data with a natu-
ral pace: for every second passed in con-
sumed timesteps, a second should pass
in reality.

Missing data: our requirement for fused
tracks is to disappear when no data is
received from any of the sensors, i.e., to
artificially advance fusion in time and
“wind down” within a dozen simulated
steps.

Missing data: when no data is received
from any of the sensors, we want to
freeze everything as it is and to not step
the time forward. Empty (0-detection)
data can clear the scene, but no-data
should freeze it.

Fusion restart: not required, since real
time can flow only forward.

Fusion restart: required when rewinding.

5.2.5. TrackerGNN Parametrization

The method parameters for the trackerGNN fusion component were set to:

tracker = trackerGNN(...
’TrackerIndex’, 0, ...
’FilterInitializationFcn’, @initcvkf, ...
’Assignment’, ’MatchPairs’, ...
’AssignmentThreshold’, 15*[1 Inf], ...
’TrackLogic’, ’History’, ... \% History|Score
’ConfirmationThreshold’, [2 3], ...
’DeletionThreshold’, [5 5], ...
’DetectionProbability’, 0.9, ...
’FalseAlarmRate’, 1e-6, ...
’Beta’, 1, ...
’Volume’, 1, ...
’MaxNumTracks’, 100, ...
’MaxNumSensors’, 20, ...
’StateParameters’, struct(), ...
’HasDetectableTrackIDsInput’, false, ...
’HasCostMatrixInput’, false ...

);

Energies 2021, 14, 5930 17 of 26

The detection-to-track assignment upper threshold was set to half of the default
since pedestrians are smaller and slower than vehicles and are expected to have smaller
uncertainty. Track confirmation threshold was set to 2 out of 3 detections, although our
detections often come with a nonzero object type meaning instant confirmation. The
track deletion threshold was set to 5 out of 5 misses. Besides, a custom rule was also
introduced removing all input detections with any position covariance value larger then
an experimentally chosen threshold ε = 5.0 m2.

5.2.6. Results

The processing time of the local area fusion component was measured and found
sufficiently performant for our requirements. Latencies are on the order of 2–3 ms, counting
not only fusion itself, but including also stream (de)serialization and message parsing.
There were some acceptably rare outliers: 0.14% of cases required more than 5 ms and none
more than 35 ms (see Figure 11).

Figure 11. Distribution of processing times of the local area fusion component.

We have developed two distinct tools for visualizing fusion outputs. One is a 3D ren-
dering demonstration tool described in Section 7. The other is a 2D monitoring dashboard
for internal use that lets us step through each fusion cycle individually. A screenshot of the
fusion results is presented in Figure 12 below.

Figure 12. Central System Dashboard: our monitoring and analysis tool.

6. Client Module
6.1. DSRC Communication

Real-time communication, such as 5G cellular network or WiFi-based 802.11p (DSRC—
Dedicated Short Range Communication), plays a major role in the system architecture. In
the Central Perception functional sample of the Central System, the dedicated DSRC 5.9 GHz
radio communication has made it possible for distant system components—such as the
infrastructure stations, the vehicle, and the central server—to communicate with each other
in real-time via radio frequency (RF).

Energies 2021, 14, 5930 18 of 26

For DSRC in our functional sample we used Cohda Wireless MK5 OBUs, which use the
Software-Defined Radio (SDR) baseband processor SAF5100 and the dual-radio (antenna
A, B) multi band RF transceiver TEF5100. These chips offer adjustable parameters for radio
wave modulation schemes. The unit includes a dedicated HSM (Hardware Secure Module)
for data encryption, compression, decryption and also the keys used for encryption using
this chip [25]. The data rate corresponding to the modulation schemes of the device (BPSK,
QPSK, QAM, etc.) can be changed from 3 Mbps to a maximum of 27 Mbps. At faster data
rates, one of the most critical metrics, the PDR (Packet Delivery Ratio) is less than 100% so
a trade-off had to be made and a medium rate, more reliable modulation option than BPSK
(Binary Phase Shift Keying) was chosen.

The MK5 OBU complies with the following standards and protocols: IEEE 802.11
(part of the IEEE 802 set, the most widely used wireless networking standard), IEEE
1609 WAVE (Standard for Wireless Access in Vehicular Environments), ETSI ES 202 663
(European profile standard for the physical and medium access control layer for Intelligent
Transport System operating in the 5 Ghz frequency band), SAE J2735 (Dedicated Short
Range Communications (DSRC) Message Set Dictionary).

The 802.11p protocol compliance grants the following advantages:

• No additional infrastructure requirement: 802.11p does not require any additional
infrastructure part, just the receiver and the transceiver units. This is because an
ad-hoc network is formed, as soon as two DSRC units come in each other’s radio
range.

• Low latency: Road experiments have shown the latency at MAC layer to be around
2 ms or less in an optimal setup. The latency value depends on several different
factors, such as payload size, vehicle speed (if the unit is mounted in a vehicle), radio
interference, line of sight, etc.

• Range: The range is dependent on other variable factors like data rate and environ-
mental factors. According to documentation it offers data exchange among vehicles
and roadside infrastructure within a range of 1000 m, with a transmission rate of up
to 27 Mbps and a vehicle speed up to 260 km/h.

The OBUs have another key role in the Central System architecture because they are
also used for time synchronization, using the Chrony module and the GNSS antenna. The
MK5 runs a gpsd server to allow applications to access GPS data. Chrony [26] is a versatile
implementation of the NTP (Network Time Protocol), and it can synchronize the system
clock with the NTP servers and reference clocks. With the help of the Chrony module all of
the OBUs can be configured to have a reference time with microsecond accuracy.

Regarding the network topology in the DSRC setup, we define four subnetworks: two
infrastructure stations, one vehicle, and one central server. Every subnetwork contains one
PC for data acquisition, processing and visualization, one wireless router and one Cohda
Wireless MK5 OBU.

The MK5 module has an Ethernet connection interface, which supports Ethernet
100 Base-T with 100 Mbps data rate. For the Central Perception functional sample the
Cohda OBUs have been configured as IPv4 (Internet Protocol v4) gateways to provide
a fully transparent communication between subnetworks. This means that all subnets
are seen by each other, so real-time data exchange between nodes can be easily achieved.
Figure 13 represents the subnetwork layout of the communication architecture of the
Central Perception prototype.

6.2. Kafka Streaming Platform

For communication middleware we have chosen to use Kafka, the popular open-
source “dumb broker” streaming platform maintained by the Apache Foundation. Judging
by its main functionality Kafka can also be considered a distributed commit log, although
it is primarily used for messaging. The aim of the project is to provide a real-time, high-
throughput, low-latency streaming platform. Kafka provides horizontal scalability via
distribution of message topic partitions across respective partition leader brokers while also

Energies 2021, 14, 5930 19 of 26

providing fault tolerance by replicating each partition across non-leader brokers in a way
reminiscent of RAID redundancy and fallback mechanisms. The distributed brokers and
topic partitions architecture perfectly fits our long-term hierarchical edge computing vision
if we assume that message topics should be divided into partitions according to the source
area of measurements. We already tested our system in a 3-broker, 3-way-partitioned and
triply-replicated (one original and two replicas) setup and experienced no perceptible lag
or slowdown. When a broker was deliberately terminated, one of the remaining brokers
automatically took up partition leadership; and when the temporarily disabled broker
came back to life, the load balancing mechanism automatically reassigned it to partition
leadership once again.

Figure 13. Subnetwork layout of the communication architecture.

In order to connect to the Kafka middleware, we developed a universal and platform-
independent client module that runs in the Java Virtual Machine runtime environment
in order to create a convenient socket-based API for uploading processed sensor data
(detections, tracks, source system positions, etc.) to the distributed Kafka cloud in all the
supported standard business domain level formats and protocols. This currently extends
to the SENSORIS and ETSI CPM protocols, of which SENSORIS was used in the prototype
demonstration. The client module’s API encapsulates Kafka specifics and accepts standard
SENSORIS messages. For further convenience we also provided a python wrapper API that
we can easily call from the RT Maps client-side real-time dataflow-processing framework.

6.3. SENSORIS Message Standard

Exactly one message is sent for each source’s each output (after each measurement-
detection-tracking cycle). The source is not necessarily a single sensor, it might be, e.g.,
a raw sensor fusion based untracked detection, or the output of a tracker. The data that
we collect via SENSORIS v1.0.0 (https://sensoris.org/ (accessed on 14 September 2021))
messages therefore contains the following elements:

• Message identification
• Source system information

– identification (platform UUID, sensor UUID, sensor SUID) (UUID stands for
universally unique identifier; SUID stands for system-wide unique identifier)

– GPS PPS synchronized timestamp of originating measurement (event time)
– localization (position, orientation) and its uncertainty

• Detected objects (i.e., detections or tracks) information [given for each object]

– Object SUID

https://sensoris.org/

Energies 2021, 14, 5930 20 of 26

– Object existence uncertainty
– Object type and type uncertainty
– Object position and orientation in relative coordinate system and its uncertainty
– Object size and uncertainty

7. 3D Renderer

In order to visually represent the information provided by the individual sensor
systems, as well as the central fusion system, it is necessary to use a digital twin rendering
module. A properly constructed 3D visualization demonstrates the cooperative perception
of scenario participants in scenarios where a single on-site sensor would not ensure proper
operation. The visualization system must communicate with the Central System, including
reading SENSORIS messages, and being able to decode and display this information in real
time. It is also assumed that a digitized 3D model of the real environment of the on-site
demonstration is available so that the visualized information can be compared with the
real-world scenario. In our case, we used Unity 3D software to implement the visualization,
which communicates with the Central System over a TCP connection. The localization of
the measurement stations and their respective object detections (fused or raw) are available
on a Kafka topic as encoded Sensoris messages. In order to visualize the measurement
vehicle and the surrounding pedestrians, these data are accessed and forwarded to the
visualization module in a proper structure.

7.1. Virtual Environment

Virtual imaging of the real environment is most accurate when based on laser measure-
ments. Therefore, testing on the university campus was preceded by a laser measurement
that provides a digitized description of the area as a LiDAR point cloud. This point cloud
had to be brought from las format to some readable, xyz format to display within Unity
software. In addition to the transformation of the format, it is important to place the lateral
and longitudinal coordinate pairs relative to some center point in the x-y coordinate system
defined by us so that the distances can also be interpreted in the Unity software. This
transformation requires the use of the ellipsoid WGS84 as well as the determination of a
clearly definable (0, 0) coordinate. This coordinate will later become the center of Unity’s
virtual world, as well as the basis for the transformation of all information that comes in
during testing. The xyz data created in this way can already be read in a csv or txt file,
and spheres representing the points can be created for the coordinate points it contains.
In this way, it becomes interpretable in the virtual space of Unity, and based on this the
various landmarks are clearly outlined (Figures 14 and 15). During the demonstration, the
most important thing is that the roads are positioned correctly in the digital world, so we
performed additional GPS measurements at their corner points. The origin of the virtual
world was also determined during these measurements.

The shape and texture of the buildings surrounding the campus have been modelled
according to reality. The shape and location of the vegetation and other components in the
parking lot could be modeled based on the point cloud. The vegetation has been designed
to vary the colour and density of the foliage according to the seasons. Unity software
also provides the ability to model current lighting conditions using various skyboxes.
However, for proper running performance, the generation of lights is not done in real-time.
Still, a so-called baked lightmap is created, which predetermines illumination with the
given settings.

The digital replica of the environment is best presented through cameras that can be
matched to each real sensor. For a scenario to be well demonstrated, it is necessary to
be able to present the given environment from several perspectives. We placed virtual
cameras in the positions corresponding to the two infrastructure cameras as well as the
cameras placed on the test vehicle, applying the basic properties of the real sensors.

Energies 2021, 14, 5930 21 of 26

Figure 14. University campus based on LiDAR point cloud (map source: http://maps.google.com
(accessed on 14 September 2021)).

Figure 15. The Unity model of the University campus with the point cloud.

7.2. Sensor Detection Visualization

The test vehicle is displayed according to the method detailed in [27]. High-frequency
real-time GPS data is available from the test vehicle that is accurate enough to place the
vehicle in the virtual world. In this case, the lateral and longitudinal position of the vehicle
and its heading are used. The movement of the vehicle’s wheels was not modelled. When
handling sensor detections—either from static stations or from the moving vehicle—it is
necessary to separate information from different sources, as well as to handle different
objects. Although only pedestrians were detected during our current measurements, the

http://maps.google.com

Energies 2021, 14, 5930 22 of 26

system is also prepared to handle all static and dynamic objects defined by SENSORIS.
The detections from the sensors always reflect the state closest to real-time, i.e., only the
most recent objects are always displayed. This also means that the objects existing in the
previous update step must be moved or deleted. We also had to consider that the frequency
of messages from different stations and sensor types is not the same in all cases, and may
change dynamically. Residual detections—object tracks that get no confirmation within a
short time period—are only rendered for the time specified by a parameter, after which
they are automatically deleted. In our simulations, this time was set to 0.25 s. With these
solutions, the movement of the detected pedestrians is continuous, there is no vibration
in the display process, and the objects do not multiply during the movement, they do not
draw a strip.

A visual distinction was made between detections of different origin, which helps
us to understand the scenario. In addition, different sources also assign different tags to
objects, which allows one to treat the objects belonging to that tag as a group, whether it is
to turn off the display of objects or even delete objects. Pedestrian objects are generated
based on a predefined cylindrical shape, the properties of which, such as size, colour, or
permeability, are set based on the data associated with the detection.

The system provides a sufficiently high frequency to ensure that the motion is clearly
continuous. There are two ways to test the visualization system, displaying real-time
uploaded detections online and playing back data already present on the server offline.
During the tests, we had two main expectations for the viewer, the first of which was
to display the detection sent to it in real-time, and the second was to position both the
environment and the detections accurately in the virtual world. With these conditions
fulfilled, we observe a complete and synchronous copy of reality within the simulation.
The system also allows one to turn off the display of detections of any given sensor for
separate analysis. Figure 16 simultaneously shows the simulated camera FoV areas of all
three sending infrastructures and a larger camera FoV overlooking the entire simulation
environment. This figure also shows that the vehicle sensor sees a garage door (lower
right corner), meaning that the snapshot came from a replay when the test vehicle did not
participate in the measurement.

Figure 16. Detections in simulation.

Energies 2021, 14, 5930 23 of 26

We can best evaluate our digital twin during real-time tests, where we can see the
scenario in reality and in its digital version at the same time. The streaming of raw camera
images also provides additional checking possibilities. In the offline state, when a recorded
stream is played back, the video played can also reveal whether there is a substantial
difference in the digitized world compared to reality, as can be observed in Figure 17.

Figure 17. Top-left image: objects sensed by the infrastructure-1; Bottom-left image: objects sensed
by the infrastructure-2; Top-right image: objects sensed by the vehicle; Bottom-right image: Real-
time digital twin generated by the central system.

8. Conclusions and Future Work

We have proposed a cooperative perception system capable of generating and main-
taining the digital twin of the traffic environment in real-time by fusing higher level data
of multiple sensors (deployed either in the infrastructure or in intelligent vehicles), thus
providing object detections of higher reliability and at the same time extending the sensing
range. Besides giving a general idea on cooperative perception we have also introduced
the key building blocks of this system including the calibration, 3D detection, tracking,
fusion, data synchronization, communication and visualization. In case of time-critical
components we have also presented the underlying algorithms and pointed out the rel-
evant implementation details, as well. The functional prototype of the proposed system
has also been created and tested under real circumstances on-line. We have demonstrated
a single service of the proposed perception system, namely the real-time visualization of
the generated digital twin of the environment including pedestrians as dynamic objects of
interest communicated using standard SENSORIS message formats over 5G or DSRC to
the central server. The system can further be extended to support other type of objects, as
well such as cars, bicyclist, etc. Besides the digital twin generation a broad range of new
derivative services can be facilitated, as well, including cloud-assisted and cloud-controlled
ADAS functions, various analytics for traffic control, etc., which are subjects of further
research. We have also shown that the proposed perception system is able to operate in
real-time, meaning that an overall latency of less than 100ms has been achieved. As already
stated, we envision this prototype system as part of a larger network of local information
processing and integration nodes, where the logically centralized digital twin is maintained
in a physically distributed edge cloud in real-time.

Energies 2021, 14, 5930 24 of 26

We have encountered several noteworthy practical questions and lessons during
the implementation which led to the establishment of certain best practices that can not
be treated adequately within the bounds of this paper, but can be at least mentioned.
Some of them include considering sensor latencies, triggering simultaneous snapshots and
associating data from sensors with different frequencies. There are effects related to vehicle
movement during a full LiDAR rotation. There are problems with creating a perfectly
flat and orthogonal calibration points layout in the field. As already mentioned in some
detail, GPS time based inter-platform synchronization was a cardinal issue. Detection
can suffer from all the problems inherent in deep learning systems: unfamiliar lighting,
background, or anything that takes the input image beyond the domain and distribution
the neural network was trained for can influence the algorithm adversely. Of course, deep
learning models are also susceptible to deliberate adversarial attacks like “invisibility
T-shirts” [28] on pedestrians, etc. Foreground clutter in chest height (even a stretched out
hand) can destabilize our LiDAR-reliant raw fusion method. DSRC communication tends
to break down in the presence of obscuring objects: the installation height and placement
of on-board/road-side communication units is crucial, communication hand-off between
moving vehicle platforms and stationary road side units has to be solved. On the server
side, managing the spatially distributed digital twin across several edge computing nodes
and their overlapping areas of responsibility is a theoretical problem we are currently
investigating. Practical considerations like system security, authentication, authorization
and information integrity are undeniably safety critical issues that must be tackled before
industrial application. So is the adherence to automotive standards like ASIL D and the
use of provably real-time hardware and software systems that come with industrial-grade
guarantees. Despite numerous challenges, technological enablers like cheap LiDAR-s,
powerful deep learning and ubiquitous 5G are making the road towards cooperative
perception services more attainable by the day.

Author Contributions: Conceptualization, Z.S. and V.T.; methodology, V.T., A.R. and V.R.; sensor
calibration, A.R., M.C. and A.K.; platform setup: A.R., V.R., Z.V. and M.C.; platform software: data
acquisition, object detection, A.R. and M.C.; platform software: tracking, Z.V.; communication: Z.P.
and V.R.; central software: stream processing and local area fusion, V.R.; simulation and visualization,
M.S. and B.V.; writing—original draft preparation, A.R. and V.R.; writing—eview and editing, A.R.
and V.R.; supervision, project administration, V.T.; funding acquisition V.T. and Z.S. All authors have
read and agreed to the published version of the manuscript.

Funding: The research reported in this paper and carried out at the Budapest University Technology
and Economics has been supported by the National Research Development and Innovation Fund
(TKP2020 National Challenges Subprogram, Grant No. BME-NC) based on the charter of bolster
issued by the National Research Development and Innovation Office under the auspices of the
Ministry for Innovation and Technology. In addition the research was supported by the National
Research, Development and Innovation Office through the project ”National Laboratory for Au-
tonomous Systems” under Grant NKFIH-869/2020. Funder NKFIH Grant Nos.: TKP2020 BME-NC
and NKFIH-869/2020.

Acknowledgments: The research reported in this paper and carried out at the Budapest University
of Technology and Economics has been supported by the National Research Development and
Innovation Fund (TKP2020 National Challenges Subprogram, Grant No. BME-NC) based on the
charter of bolster issued by the National Research Development and Innovation Office under the
auspices of the Ministry for Innovation and Technology. In addition the research was supported by
the Ministry of Innovation and Technology NRDI Office within the framework of the Autonomous
Systems National Laboratory Program.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Energies 2021, 14, 5930 25 of 26

Abbreviations
The following abbreviations are used in this manuscript:

4G/5G Fourth/fifth generation technology standard for broadband cellular networks
ADAS Advanced Driver-Assistance Systems
API Application Programming Interface
CAV Connected and Autonomous Vehicle
CPU Central Processing Unit
dGPS Differential Global Positioning System
DSRC Dedicated Short-Range Communications
FoV Field of View
GNN Global Nearest Neighbor
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPU Graphics Processing Unit
HAD Highly Automated Driving
HD map High Definition map
I2V Infrastructure to Vehicle
IMM filter Interacting Multiple Model filter
IMU Inertial Measurement Unit
ITS Intelligent Transportation System
JVM Java Virtual Machine
LiDAR Light Detection and Ranging (sensor)
MAC Medium Access Control (sublayer of the data link layer in the OSI networking model)
NTP Network Time Protocol
PPS Pulse Per Second (synchronization signal)
PTP Precision Time Protocol
R&D Research and Development
RAID Redundant Array of Independent Disks
S2T Central tracking, aka. sensor-to-track fusion or source-to-track fusion
SciL Scenario in the Loop
SUID System-wide Unique Identifier
T2T Track-to-track fusion
TCP Transmission Control Protocol
UTM Universal Transverse Mercator
UUID Universally Unique Identifier
V2V Vehicle to Vehicle
WGS84 World Geodetic System 1984
WiFi Wireless Fidelity (network protocol family)
YOLO You Only Look Once (object detection system)

References
1. Krämmer, A.; Schöller, C.; Gulati, D.; Knoll, A. Providentia—A large scale sensing system for the assistance of autonomous

vehicles. arXiv 2019, arXiv:1906.06789.
2. Gabb, M.; Digel, H.; Muller, T.; Henn, R.W. Infrastructure-supported perception and track-level fusion using edge computing.

In Proceedings of the IEEE Intelligent Vehicles Symposium, Paris, France, 9–12 June 2019; Institute of Electrical and Electronics
Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 1739–1745. [CrossRef]

3. Tsukada, M.; Oi, T.; Kitazawa, M.; Esaki, H. Networked roadside perception units for autonomous driving. Sensors 2020, 20, 5320.
[CrossRef] [PubMed]

4. Wang, Z.; Liao, X.; Zhao, X.; Han, K.; Tiwari, P.; Barth, M.J.; Wu, G. A Digital Twin Paradigm: Vehicle-to-Cloud Based Advanced
Driver Assistance Systems. In Proceedings of the IEEE Vehicular Technology Conference, Antwerp, Belgium, 25–28 May 2020;
[CrossRef]

5. Kobayashi, H.; Han, K.; Kim, B. Vehicle-to-Vehicle Message Sender Identification for Co-Operative Driver Assistance Sys-
tems. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia,
28 April–1 May 2019; pp. 1–5. [CrossRef]

6. Liu, Y.; Wang, Z.; Han, K.; Shou, Z.; Tiwari, P.; Hansen, J.H. Sensor Fusion of Camera and Cloud Digital Twin Information for
Intelligent Vehicles. arXiv 2020, arXiv:2007.04350.

http://doi.org/10.1109/IVS.2019.8813886
http://dx.doi.org/10.3390/s20185320
http://www.ncbi.nlm.nih.gov/pubmed/32957554
http://dx.doi.org/10.1109/VTC2020-Spring48590.2020.9128938
http://dx.doi.org/10.1109/VTCSpring.2019.8746463

Energies 2021, 14, 5930 26 of 26

7. Shan, M.; Narula, K.; Wong, R.; Worrall, S.; Khan, M.; Alexander, P.; Nebot, E. Demonstrations of cooperative perception: Safety
and robustness in connected and automated vehicle operations. Sensors 2020, 21, 200. [CrossRef] [PubMed]

8. Tihanyi, V.; Tettamanti, T.; Csonthó, M.; Eichberger, A.; Ficzere, D.; Gangel, K.; Hörmann, L.B.; Klaffenböck, M.A.; Knauder, C.;
Luley, P.; et al. Motorway Measurement Campaign to Support R&D Activities in the Field of Automated Driving Technologies.
Sensors 2021, 21, 2169. [CrossRef] [PubMed]

9. Szalay, Z.; Szalai, M.; Tóth, B.; Tettamanti, T.; Tihanyi, V. Proof of concept for Scenario-in-the-Loop (SciL) testing for autonomous
vehicle technology. In Proceedings of the 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE),
Graz, Austria, 4–8 November 2019; pp. 1–5.

10. Szalay, Z.; Hamar, Z.; Simon, P. A multi-layer autonomous vehicle and simulation validation ecosystem axis: Zalazone.
In International Conference on Intelligent Autonomous Systems; Springer: Berlin/Heidelberg, Germany, 2018, pp. 954–963.

11. Zhao, M.; Mammeri, A.; Boukerche, A. Distance measurement system for smart vehicles. In Proceedings of the 2015 7th
International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 27–29 July 2015; pp. 1–5. [CrossRef]

12. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
13. Wang, W.; Sakurada, K.; Kawaguchi, N. Reflectance Intensity Assisted Automatic and Accurate Extrinsic Calibration of 3D

LiDAR and Panoramic Camera Using a Printed Chessboard. Remote Sens. 2017, 9, 851. [CrossRef]
14. Daniilidis, K. Hand-Eye Calibration Using Dual Quaternions. Int. J. Robot. Res. 1999, 18, 286–298. [CrossRef]
15. Vyacheslav, I.V.; Illya, E.K.; Irina, P.C. Accurate Time Synchronization for Digital Communication Network. In Proceed-

ings of the 2007 17th International Crimean Conference—Microwave Telecommunication Technology, Sevastopol, Ukraine,
10–14 September 2007; pp. 259–260. [CrossRef]

16. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

17. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004;
[CrossRef]

18. Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey’ACM computing surveys (CSUR). ACM Comput. Surv. 2006, 38, 13.
[CrossRef]

19. Labbe, R. Kalman and bayesian filters in python. Chap 2014, 7, 246.
20. Chong, C.Y. Tracking and data fusion: A handbook of algorithms (bar-shalom, y. et al; 2011)[bookshelf]. IEEE Control. Syst. Mag.

2012, 32, 114–116.
21. Blom, H.; Bar-Shalom, Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans.

Autom. Control 1988, 33, 780–783. [CrossRef]
22. Blackman, S.S.; Popoli, R. Design and Analysis of Modern Tracking Systems; Artech House Radar Library: Boston, MA, USA; London,

UK, 1999.
23. Munkres, J. Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 1957, 5, 32–38. [CrossRef]
24. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [CrossRef]
25. Abd El-Gawad, M.A.; Elsharief, M.; Kim, H. A comparative experimental analysis of channel access protocols in vehicular

networks. IEEE Access 2019, 7, 149433–149443. [CrossRef]
26. Dinar, A.E.; Merabet, B.; Ghouali, S. NTP Server Clock Adjustment with Chrony. In Applications of Internet of Things; Springer:

Berlin/Heidelberg, Germany, 2021; pp. 177–185.
27. Szalai, M.; Varga, B.; Tettamanti, T.; Tihanyi, V. Mixed reality test environment for autonomous cars using Unity 3D and

SUMO. In Proceedings of the 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI),
Herlany, Slovakia, 23–25 January 2020; pp. 73–78. [CrossRef]

28. Xu, K.; Zhang, G.; Liu, S.; Fan, Q.; Sun, M.; Chen, H.; Chen, P.Y.; Wang, Y.; Lin, X. Adversarial T-shirt! Evading Person Detectors
in A Physical World. arXiv 2020, arXiv:1910.11099.

http://dx.doi.org/10.3390/s21010200
http://www.ncbi.nlm.nih.gov/pubmed/33396804
http://dx.doi.org/10.3390/s21062169
http://www.ncbi.nlm.nih.gov/pubmed/33808936
http://dx.doi.org/10.1109/NTMS.2015.7266486
http://dx.doi.org/10.1109/34.888718
http://dx.doi.org/10.3390/rs9080851
http://dx.doi.org/10.1177/02783649922066213
http://dx.doi.org/10.1109/CRMICO.2007.4368706
http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1145/1177352.1177355
http://dx.doi.org/10.1109/9.1299
http://dx.doi.org/10.1137/0105003
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1109/ACCESS.2019.2947290
http://dx.doi.org/10.1109/SAMI48414.2020.9108745

	Introduction
	Scope and Significance
	Prior Work
	Primary Contribution

	Problem Definition
	Overview of the Central Perception System Architecture
	Perception Module
	System Calibration
	Chessboard Based Camera-LiDAR Calibration
	Box Based Calibration

	Data Synchronization
	3D Object Detection
	Yolo and Point Cloud Based Approach
	Yolo and Homography Based Approach

	Object Tracking
	Overview
	Implementation

	Local Area Fusion Server
	Stream Setup
	Fusion Algorithm
	Central Tracking
	Integration
	Buffering
	Real-Time vs. Playback Mode
	TrackerGNN Parametrization
	Results

	Client Module
	DSRC Communication
	Kafka Streaming Platform
	SENSORIS Message Standard

	3D Renderer
	Virtual Environment
	Sensor Detection Visualization

	Conclusions and Future Work
	References

