
energies

Article

Methodology for Management of the Protection System of
Smart Power Supply Networks in the Context of Cyberattacks

Igor Kotenko 1,* , Igor Saenko 1 , Oleg Lauta 2 and Mikhail Karpov 3

����������
�������

Citation: Kotenko, I.; Saenko, I.;

Lauta, O.; Karpov, M. Methodology

for Management of the Protection

System of Smart Power Supply

Networks in the Context of

Cyberattacks. Energies 2021, 14, 5963.

https://doi.org/10.3390/en14185963

Academic Editor: Srd̄an Skok

Received: 15 August 2021

Accepted: 15 September 2021

Published: 20 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Computer Security Problems, St. Petersburg Federal Research Center of the Russian Academy
of Sciences (SPC RAS), 39, 14th Liniya, 199178 St. Petersburg, Russia; ibsaen@comsec.spb.ru

2 Department of Integrated Information Security, Admiral Makarov State University of Maritime and Inland
Shipping, 5/7 Dvinskaya St., 198035 St. Petersburg, Russia; laos-82@yandex.ru

3 Department of Information and Telecommunication Security, Saint-Petersburg Signal Academy,
3 Tikhoretsky Av., 194064 St. Petersburg, Russia; karpuh.djan@mail.ru

* Correspondence: ivkote@comsec.spb.ru

Abstract: This paper examines an approach that allows one to build an efficient system for protecting
the information resources of smart power supply networks from cyberattacks based on the use
of graph models and artificial neural networks. The possibility of a joint application of graphs,
describing the features for the functioning of the protection system of smart power supply networks,
and artificial neural in order to predict and detect cyberattacks is considered. The novelty of the
obtained results lies in the fact that, on the basis of experimental studies, a methodology for managing
the protection system of smart power supply networks in conditions of cyberattacks is substantiated.
It is based on the specification of the protection system by using flat graphs and implementing a
neural network with long short-term memory, which makes it possible to predict with a high degree
of accuracy and fairly quickly the impact of cyberattacks. The issues of software implementation of
the proposed approach are considered. The experimental results obtained using the generated dataset
confirm the efficiency of the developed methodology. It is shown that the proposed methodology
demonstrates up to a 30% gain in time for detecting cyberattacks in comparison with known solutions.
As a result, the survivability of the Self-monitoring, Analysis and Reporting technology (SMART)
grid (SG) fragment under consideration increased from 0.62 to 0.95.

Keywords: power supply; protection system; graph theory; SMART grid system; data transmission
network; cyberattack; control methodology; LSTM neural network

1. Introduction

The Self-monitoring, Analysis and Reporting technology (SMART) grid is a power
grid technology that uses information and communication networks and technologies to
collect information about energy production and energy consumption to automatically
improve the efficiency, reliability, economic benefits, and the sustainability of electricity
generation and distribution [1–9].

The SMART grid has the following features:

• Application of open information and communication networks, protocols and tech-
nologies for collecting information on energy production and energy consumption;

• Active bidirectional scheme of interaction in real time of the information exchange
between all elements and participants of the network (from power generators to
terminal devices of power consumers);

• Coverage of the entire technological chain of the electric power system from energy
producers and power distribution networks to the end consumers;

• Constant exchange between the network elements of information about the parameters
of electrical energy, modes of consumption and generation, the amount of energy
consumed and planned consumption, and commercial information [1].
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On the one hand, the use of the SMART grid makes it possible to reduce the cost of
the electrical network, solve the problem of technological limitation of electricity when
consumed near peak capacities, use a large number of renewable energy sources, and also
switch from a centralized topology of the electrical network to a highly distributed topology.

On the other hand, the pace at which the modern field of open information and
communication networks, protocols, and technologies is developing exposes the world
community to a number of unprecedented threats and vulnerabilities. At the same time,
the greatest danger is caused by cyberattacks.

In the past few years, a characteristic trend of our time has been an increase in the
number of cyberattacks on critical information infrastructure (CII) and strategic industrial
facilities, which can lead to the disabling by attackers of systems that support human life
and the emergence of global man-made disasters. The main element of CII is an integrated
telecommunication network, including SMART grid (SG) power supply systems, in which
controlled objects should allow remote control, and systems for assessing the situation and
emergency automation should reduce excessive requirements for the reserves of power
and information capacities [2].

The effects of computer attacks, first of all, are aimed at disrupting the performance
of the SG protection tools that are combined with a unified management and monitoring
system. However, in this system, it is possible to distinguish the following negative features.
First, it requires one to have socket specialists who are usually not enough. Secondly,
specialists are not able to process all the incoming threat messages during the working day.
Finally, energy companies use a large number of various means of protecting information
and communications, which are not always conjugated with each other. Considering that
information security specialists need to analyze thousands of events daily, the task of
viewing and filtering such a number of data, as well as managing the protection tools can
be solved only by applying the automation tools. For the continuous monitoring of the
state of geographically distributed defense means and the implementation of proactive
measures to neutralize cyberattacks, it is necessary to take into account the peculiarities
of the SG functioning, the interaction of defense means, the indicators characterizing the
effectiveness of its work, and the constantly changing ways of implementing cyberattacks.
All this gave rise to the search for new methods of managing the SG protection system in
the context of cyberattacks [3,10–13].

Considering that the behavior of the SG protection system in the context of cyberat-
tacks can be represented as a sequence of random events with a finite or countable number
of outcomes, it can be assumed that well-tested Markov chains can be used to describe it.
However, the Markov process mechanisms lose their meaning when analyzing complex,
multifaceted systems, such as the SG protection system, in which processes can proceed
not only sequentially, but also contain events independent of each other.

In this work, in order to study the SG protection system as the system in an antagonistic
confrontation (the cyberattacks versus the protection system), we will apply the method
of constructing models using flat, or plane, graphs. A flat (planar) graph is a graph that
can be included in a plane; that is, it can be drawn on a plane in such a way that its edges
intersect only at their endpoints. Flat graphs are widely used as probabilistic automata in
modeling structures such as simple cycles, trees, forests, etc.

The results of the modeling of information processes in the SG technological data
transmission networks (TDTN) using flat graphs are then used in our methodology for
the substantiation and implementation of the architecture of the SG protection system (PS)
based on its capabilities to identify and further predict cyberattack impacts.

The analysis showed that one of the most efficient prediction methods is the usage of
artificial neural networks with long short-term memory (LSTM). The property of recurrence
allows an artificial neural network (ANN) to “refer” to the results of its work in the past and
fulfill a predictive analysis. However, the efficiency of LSTM operation largely depends
on the quality of the formation of the features and the context of datasets used for the
LSNM network learning. For complex systems such as the SG PS, the formation of training
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datasets very often becomes a very hard problem, making it difficult to use LSNM networks
or significantly reducing the effect of their use. It should be noted that the use of open
access test datasets for training LSNM networks does not solve this problem, since the
computer networks on which the test datasets are formed, as a rule, do not take into
account the specifics of TDTN in the SG.

Thus, we can say that the methodology proposed in the paper is aimed at solving the
scientific problem of increasing the efficiency of detecting and predicting computer attacks
in SG TDTN using LSTM networks by improving the quality of the formation of training
datasets based on SG modeling using flat graphs.

Solving this problem requires overcoming a number of current challenges, among
which are the following:

• Flat graph-based development and implementation of the formal models, which
provide the specifications necessary for constructing a LSTM network and training
and testing datasets, i.e., the information resource model, the security threat model,
and the PS functioning model;

• Selection and justification of hyperparameters necessary to construct the LSTM network;
• Development of an approach to generate datasets with TDTN information content

necessary for training and testing LSTM networks;
• Integration of the developed approaches according to the required criteria into a

unified methodology of the SG PS management in the context of cyberattacks.

To overcome the above challenges, the methods of graph theory, probability theory,
and machine learning, including deep learning and others, were used. The fairness of
the models and approaches developed on their basis was verified as a result of their
practical implementation and experiments, for which modern proven software technologies
(frameworks and libraries) were used. The results of the experiments have shown that
more efficient approaches are needed to provide proactive SG protection.

Therefore, the main contribution of the paper, demonstrating the range of possible
applications of flat graphs for describing the features of functioning of the SG protection
system under the influence of cyberattacks, as well as LSTM neural networks for making
effective management decisions on the implementation of proactive SG protection, is
undoubtedly relevant.

In addition, the contribution of the paper is as follows:

• Structures of long-term dependencies in the SG traffic, which allow for revealing its
characteristic features in the interests of the early detection of cyberattacks;

• A new approach to cyberattack detection based on the use of flat graphs and LSTM
neural networks;

• A software tool that implements the proposed approach;
• A dataset with SG traffic containing anomalies from the impact of cyberattacks;
• An experimental evaluation of the proposed approach.

The novelty of the obtained results lies in the fact that, on the basis of experimental
studies, a methodology for managing the SG protection system in conditions of cyberattacks
is substantiated. It is based on the specification of the SG protection system by using flat
graphs and implementing a neural network with long short-term memory. Such results
make it possible to predict with a high degree of accuracy and fairly quickly the impact of
cyberattacks, on which the basis of the proactive protection measures can be developed.
This is a significant advantage of the proposed method.

The further structure of the paper is as follows. Section 2 reviews related works on the
research topic. Section 3 describes the theoretical foundations of the proposed methodology
for the management of the SG protection system, based on modeling the protection system
and predicting the impact of cyberattacks. Section 4 presents the implementation issues of
the proposed methodology. Section 5 outlines the experimental results and its comparative
evaluation. Section 6 contains conclusions and further research directions.
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2. Related Work

In international practice, the abbreviation SMART stands for “Self-Monitoring, Analy-
sis and Reporting Technology”, i.e., the technology that implies the independent monitor-
ing, analysis and transmission of monitoring results, and network resource management.
Typically, the SMART grid refers to the hardware and software architecture that contributes
to the efficiency of energy management. Along with the SG, the concepts of the Modern
grid, Wise grid, Future grid, Empowered grid, and Intelligrid are used [4–7]. Sometimes SG
systems are called “smart”, “intelligent” or “adaptive-active” power supply systems [8,9].

Security threats of the SG power supply are included in the five most probable risks
(together with the risks of epidemics, critical weather conditions, financial collapses, and
extreme natural disasters) and in the list of the six most critical factors in terms of possible
damage (together with the risks of using weapons of mass destruction, natural disasters,
weather anomalies, and the lack of drinking water). That is why the security of SG
management [10–13] is one of the priority directions for development of the energy complex
all over the world, as it is critical for their effective functioning.

All of the SG security threats can be characterized by two parameters: firstly, the
likelihood of the threat being realized, and, secondly, the potential damage to the energy
company (organization, enterprise). Usage of these parameters to select a model of the
threats to SG resources allows one to find the “golden mean” when building a protection
system, choose network management techniques, and make decisions to minimize risks.
Today, there are a huge number of diverse and very common methods for managing SG
security systems, which in turn are divided into three main groups.

The first group [14–18] summarizes the methods based on quantitative indicators
and criteria. The measure of ranking of the threat models (criterion) is the permissible
level of possible damage from information and technical impact on SG resources and the
assessment of the profit factor from investments in protective measures. Quantitative
methodologies follow the requirements of ISO 27001 and 27002, NIST, and COBIT IV.
Although these methodologies take into account a predetermined risk appetite, they do not
consider the variability of the SG defense system design. In addition, the disadvantages
of these techniques include the complexity of their implementation and the high level of
labor costs. The complexity of quantitative methods also lies in the fact that the decision
taken for each potential threat must be taken into account in the strategy for eliminating the
consequences of a cyberattack [19]. For example, in [20], the quantitative ranking of risks
for the SG is taken into account. However, the method of managing the security system
through a cloud computing service considered in this work is of interest. Nonetheless,
this technique contains a number of negative factors associated with the problems of
cloud resources.

The second group of techniques [21–24] consists of qualitative techniques. The method-
ologies of this group take into account the security threats to SG resources by quality
criterion. Qualitative methods boil down to finding an optimal solution, a balance between
the costs of building a protection system and the resulting effect (cost/benefit analysis), i.e.,
the quality of the protection system. As a rule, the methods use the mathematical apparatus
of game theory (matrix games). The disadvantages of qualitative methods include the high
complexity of calculating the results of a risk analysis for the financial justification of the
feasibility of investing in the implementation of the SG protection system according to one
or another threat model, as well as the insufficient visibility of the results of qualitative
methods. Techniques using qualitative criteria are similar in nature to the facilitated risk
analysis process (FRAP) technique [25,26].

The third approach [27–31] is a combined (mixed) one. It combines the approaches
used in both the first and the second groups of techniques. Most often, combined tech-
niques are used in small energy companies. The weaknesses of this group of methods are
insufficient analytical data on the predicted damage of the cyberattack impact, as well as
the use of a minimum set of factors in risk assessment.
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Thus, in [32–35], a structured approach to assessing the model of threats to the SG
information and telecommunications resources, namely CRAMM (Risk Analysis and Man-
agement Method from Central Computer and Telecommunication Agency) and MEHARI
(MEthod for Harmonized Analysis of Risk) methods, are presented, an integrated repre-
sentation of the information security threat parameters is employed, but the peculiarities
of building the SG protection system are practically not considered.

The information security management methodology of Microsoft Security Assessment
Tool (MSAT) [34,36] is interesting not only for its threat model ranking system, but also
for the implementation of the information security threat decision-making system and for
assessing the effectiveness of the measures taken. However, it is usually implemented on
local SG power grids. The MSAT system is based on the Risk Management Manual [23]. It
performs the following functions: (1) risk assessment; (2) decision support; (3) implemen-
tation of control; and (4) evaluation of the effectiveness of the program. This application
(app) is targeted at companies with less than 1000 employees and is designed to help one
better understand the potential information security issues.

All of the above approaches to the management of SG protection systems are either
based on a deep analysis of the potential risks (probable damage), or a selectively ranked
construction of the SG PS. Therefore, we propose an architecture-oriented approach to man-
aging the SG security system that goes beyond the abstract representation and dispenses
with the technical details.

Our approach covers the identification and assessment of threats to the impact of
cyberattacks, modeling the PS architecture, situational PS management based on a neural
network algorithm with long short-term memory, as well as reducing the risks and assess-
ing the effectiveness of the predictions and countermeasures taken. At the end of the paper,
we will take a closer look at the proposed active security solutions for SMART grids and
their implementation.

3. Theoretical Foundations of the Methodology for Management of the SG
Protection System

Many works, for example [37,38], are devoted to the theoretical foundations of the
theory of planar (flat) graphs. Therefore, let us consider in more detail their application for
building the model of the SG protection system functioning. This model, in turn, includes
three models: the model of protected information resources, the cyberattack threat model,
and the model of functioning of the SG TDTN protection system.

3.1. Model of Protected Information Resources of SG

The components of the SG TDTN, which contain protected information resources
(PIR), are services and software and hardware systems that implement logically complete
functionality of the SG TDTN. Information security threats are unique to each element
of the system. However, each component of the TDTN must comply with the security
policy requirements.

To create a model, we construct an N-root graph GTi, which reflects the PIR of the
TDTN (Figure 1). The top of the GTi graph reflects the main goal of the information and
technical impact of an adversary’s cyberattack. By the term “adversary” we mean an
attacker (or an organized group of attackers) whose purpose is to disrupt the effective
functioning of the SG as a critical infrastructure object that affects the life of society.
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Figure 1. Oriented graph “Protected resources of TDTN”.

The nodes
{

STi.jg
}

of the graph GTi represent the secondary goals (subgoals) of the
impact of cyberattacks, and the arcs

{
ai.j
}

reflect the significance of these subgoals. The
subgoals are grouped into groups

{
GTij

}
, which are subgraphs of the graph Gi.

The groups disclose one of the aspects of information security (confidentiality GTi1,
integrity GTi2, and availability GTi3 of the information), as well as the required parameters
of the telecommunications component of the TDTN (intelligence security GTi4, sustainabil-
ity GTi5, and the TDTN throughput GTi6) that is to be protected. GTi5 can be decomposed
into four more oriented subgraph chains characterizing “Noise immunity”, “Reliability”,
“Vitality”, and “Cyber resilience” of the TDTN (Figure 2).

Figure 2. Components of the sustainability graph for the SG TDTN.

In the works [39,40], the mutual influence of noise immunity, survivability, reliability,
and cyber-stability of the information resources of technological data transmission net-
works is described in some detail. Showing that the individual properties of technical
systems can be considered together, within the framework of the concept of technical
stability, using unified fuzzy logic descriptions, the authors place special emphasis on the
complex influence of the balance of all four components S1, S2, S3 и S4. Let us describe the
subgraphs

{
GTij

}
with the following expressions:

(1) Confidentiality of information

GTi1 =
(
GTi, ST1.1g, ST1.2g, ST1.3g, ST1.4g, a1.1, a1.2, a1.3, a1.4

)
; (1)
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(2) Integrity of information

GTi2 =
(
GTi, ST2 .1g, ST2.2g, ST2.3g, ST2.4g, a2.1, a2.2, a2.3, a2.4

)
; (2)

(3) Availability of information

GTi3 =
(
GTi, ST3.1g, ST3.2g, ST3.3g, ST3.4g, a3.1, a3.2, a3.3, a3.4

)
; (3)

(4) TDTN intelligence security

GTi4 =
(
GTi, ST4.1g, ST4.2g, ST4.3g, ST4.4g, a4.1, a4.2, a4.3, a4.4

)
; (4)

(5) TDTN sustainability

GTi5 =
(
GTi, ST5.1g, ST5.2g, ST5.3g, ST5.4g, a5.1, a5.2, a5.3, a5.4

)
; (5)

(6) TDTN throughput

GTi6 =
(
GTi, ST6.1g, ST6.2g, ST6.3g, ST6.4g, a6.1, a6.2, a6.3, a6.4

)
. (6)

In Figure 1, the dotted line delineates the protected information and telecommunica-
tion resources. However, this distinction is conditional. In real TDTN, it is rather difficult to
separate the rigidly interconnected components of information and telecommunications se-
curity.

Each of the directed subgraphs
{

GTij
}

included in the graph GTi comprises levels
that characterize the assets directly related to the protected resource. We will take into
account the following levels:

• Disruption to the functioning of the TDTN (ST1.1g, ST2.1g, ST3.1g, ST4.1g, ST5.1g, ST6.1g);
• Hardware resource of the TDTN (ST1.2g, ST2.2g, ST3.2g, ST4.2g, ST5.2g, ST6.1g);
• Software resource of the TDTN (ST1.3g, ST2.3g, ST3.3g, ST4.3g, ST5.3g, ST6.1g);
• Protected information and telecommunications resource of the TDTN (ST1.4g, ST2.4g,

ST3.4g, ST4.4g, ST5.4g, ST6.4g).

Having determined the specific weight of each of the vertices of the subgraphs
GTi1, . . . , GTi6, as well as the price of each of their arcs, we obtain a weighted N-root
planar graph for which we can determine the reachability matrix of each vertex of the
subgraphs (STi.1g, STi.2g, . . . , STi.ng).

By the terms “specific weight” we mean the importance of a particular protected
information and telecommunications resource of the TDTN when choosing a defensive
strategy or information security policy. Thus, the specific weight of the vertex to which the
path µ1 leads is calculated as follows:

L[µ1] = ∑
ai.j∈µ1

Aij, (7)

where Aij is the weight of the arc ai.j, belonging to the path µ1.

3.2. Cyberattack Threat Model

A cyberattack is a planned deliberate impact on the protected information resource,
information infrastructure, technical means, or programs that solve the problem of receiv-
ing, transmitting, processing, storing, and reproducing protected information in order to
cause characteristic functional or structural changes [39].

Targeted or structural changes in the critical infrastructure objects targeted by the
cyberattack are to reduce the level of information and telecommunications security of the
SG TDTN.
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Let us represent the set of possible options for the implementation of the effects of a
cyberattack on the TDTN in the form of a concatenation of the graph M (set of cyberattacks)
and the graph R (set of PIRs), as shown in Figure 3.

Figure 3. Context diagram of the cyberattack effects on the TDTN.

Let us represent M = {mk, k = 1, 2 . . . , K} in the form of a set of possible options for
the implementation of information influences on the TDTN. Let us introduce into consider-
ation β = {bn, n = 1, 2 . . . , N} is the set of private scalar indicators of the effectiveness of
cyberattacks on the TDTN, for which the normalization condition is valid.

N

∑
n=1

bn = 1, (8)

where n is the private indicator identifier.
Let us denote M∗ = {mk1 ⇒ mk2 ⇒ . . .⇒ mk∀} as a subset of the preferred options

for choosing an attacker’s impact strategy, ordered by efficiency, where ∀ is the number
of preferred options for implementing a cyberattack. A subset M∗ is defined using the
following expression:

(M, A, C, E, P, Q,β} →
ϕ

M∗, (9)

where ϕ is the rule of choosing the subset M∗ from the set M, using the indicator β
(optimality criterion).

In the context diagram presented in Figure 3, the vertex M is composed of vectors of the
information and technical impact (E, Q, C), as well as the information and psychological
(A, P) impact on the TDTN. Here E is the vector of the set of indicators of software and
technical espionage (intelligence) in relation to the TDTN and protected resources, Q is
the vector of the set of indicators of passive (providing) cyberattacks, C is the vector of the
set of indicators of active cyberattacks on the TDTN resources (destruction, manipulation,
blocking, substitution, and so on), A is the vector of the set of indicators of information
tools and methods of influencing the personnel of the TDTN, and P is the vector of the set
of indicators of the psychotronic and cognitive impact on the personnel of the TDTN. In
the future, we will not consider the information-psychological impacts (vectors A and P),
taking into account that for the SG this area of impacts refers to the limitations.
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Let us represent the threat model for the implementation of cyberattacks in the form
of a directed graph M, as shown in Figure 4.

Figure 4. Oriented graph “Threats of the impact of the cyberattacks on the resources of the TDTN”.

The state of the graph M is described by the expression

M =
(
M1j, M1.1j, M1.2j, M1.3j, M1.4j, M1.5j, b1.1, b1.2, b1.3, b1.4, b1.5

)
. (10)

We will also use the following expression for shorthand:

M =
(
Mij, Bi.j

)
. (11)

In the graph M, the vertices M1.1j is the object of the threat impact (element of the
TDTN); M1.2j is a protected TDCT resource; M1.3j is a cyberattack implementation; M1.4j is
a violation of the information security indicators; M1.5j is a violation of the information and
technical characteristics of the TDTN.

Let us consider in more detail the components of the “Threats” graph. The top of the
graph M1j represents a set of threats influenced by the impact of cyberattacks. A variant of
the classifier of the vertex M1j is shown in Table 1.

Table 1. Classifier of the model of threats.

Intelligence Service Penetration Attack Anchoring

M1.1—vulnerability
detection

M1.4—activation of hidden
malicious code (backdoor)

M1.6—implementation of
undeclared software capabilities

M1.9—duplication and distribution
of malware in the system

M1.2—system analysis
M1.5—exploitation of a

vulnerability

M1.7—copying PIRs
M1.10—masking (hiding) malware

in the operating systemM1.3—exfiltration M1.8—destruction (substitution)
of the PIRs

By detailing this classifier, we will break down each of the stages of a computer attack
into implementation options. So, when scouting the ports of the router’s network services
(M1.1), the following actions are used: scanning network services (M1.1.1), discovering
peripheral devices (M1.1.2), discovering network configuration parameters (M1.1.3), and
so on.

The classifiers of the components of the TDTN threat graph are represented by an
undirected flat subgraph M2. Thus, the formal model of threats (Figure 5) consists of a
direct compositional sum (⊕) of the graphs M1 (directly the threat) and M2 (classifiers of
the components of the graph M1), defined by the following expression:

ГM = M1 ⊕ M2. (12)

The vertices (classifiers) of the subgraph M2 are united by the edge b2.6, which means
the characteristic dependence of the classifiers from each other. For example, the component
of the classifier M2.5tx “TDTN throughput” has both forward and reverse connectivity with
the component M2.1tx “border router of the open segment of the TDTN”.
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Figure 5. Formal model of cyberattack impact threats.

3.3. Protection System Model of the SG TDTN

The protection system model shown in Figure 6 is a kind of barrier between the graphs
M and GT.

Figure 6. Formal model of the TDTN protection system.

In this model, three directed graphs can be distinguished: IM, Ti, and Ck. Digraph
IM consists of the following nodes: IM—threat identifier; I1m—target of the cyberattack;
I2m —channels of influence of the cyberattack; I3m—requirements for the elements of the
TDTN protection system; I4m—protection system architecture; I5m—coefficient of efficiency
of the TDTN protection means.

The digraph Ti contains, as the vertices, the efficiency coefficients of the TDTN pro-
tection means for each protected resource. The digraph Ck contains the channels of the
threat’s impact.

The possible channels of threats of the impact of the cyberattack on the resources of
the SG TDTN are represented in Figure 7. The protection system model takes into account
the following threat channels: physical, program, organizational, technical, and social.
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Figure 7. Possible channels of threats of the cyberattack impact on the resources of the SG TDTN.

Besides the subgraphs Ti and Ck, in the formal threat model, there is a bipartite
subgraph Dg, which, with its vertices

{
Dx5g

}
, characterizes the requirements for the

protection means of each PIR, and, with the vertices
{

Dx5gi
}

, denotes the chosen defense
strategy that excludes the threat (Figure 8).

Figure 8. Bipartite subgraph of the choice of means of protection of the TDTN and the requirements
for the means of protection of each information resource.

Thus, the formal model of the protection system not only constitutes a lexicological
scheme with the digraph protected resources, but also contains a matrix of requirements
for each individual asset protection tool [2,40].

3.4. Model of Functioning of the SG Protection System

Thus, in the model of functioning of the SG protection system, there are three digraph
models: a threat model, a protection system model, and a protected information and
telecommunication resource model.

The relationship of these digraphs is expressed by the concatenations

M ` IM ` GT. (13)

The concatenation operation means that there is only one arc that connects one vertex
of each graph M, IM, and GT to each other (Figure 9).
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Figure 9. Formal model of “Cyberattack threat/TDTN protection system/Cyberattack recipient”.

As seen from Figure 9, subgraphs Dg, Cxk, Txi, and M2 are connected by compositions
with their generating digraphs.

Thus, the model of functioning of the SG protection system can be represented by the
following expression:

(M1 ⊕M2) ` {(IM ⊕Cxk)(IM ⊕ Txi)} ` GT⊥
(
IM ⊕ GT⊕ Dg

)
. (14)

From Expression (14) it can be seen that IM is a transit graph with respect to the
graph M.

Thus, the model of the functioning of the SG protection system is developed as a
model of functioning of complex opposing systems. Modeling is focused on solving the
problem of distributing a heterogeneous resource among interdependent elements.

The model makes it possible to obtain qualitative assessments of the threat parame-
ters and automate the assessment process, as well as dynamically recalculate the results
obtained when the external environment or individual components and systems of the SG
TDTN change.
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3.5. A Technique for Using a LSTM Neural Network for Early Detection of Cyberattacks

LSTM neural networks are a subtype of the more general recurrent neural networks
(RNNs). The main area of RNN usage as a deep learning model is applications with time
series and sequential data [41]. LSTM neural networks extend the capabilities of traditional
RNNs. They are highly effective in solving problems of classification and the forecasting
of time series in conditions of a priori uncertainty of the boundaries of time intervals
between events [42]. As a result, LSTM networks are successfully used in many areas
related to anomaly detection, in particular, in speech recognition and generation [43–45],
text document processing [46], intrusion detection [47], etc. Therefore, the idea of using
LSTM networks is key in our work.

The key feature of the LSTM networks, such as RNNs as a whole, is their ability to
store information or state of a cell for further use in the network (Figure 10).

Figure 10. Neural network architecture and prediction scheme.

This makes them especially suitable for analyzing temporal data that changes over
time. LSTM networks are used for tasks such as speech recognition, text translation, and in
this case, for network anomaly detection.

LSTM can remove information from the cell state. This process is governed by struc-
tures called gates. Filters allow information to pass through based on certain conditions.
They consist of a sigmoidal neural network layer and a pointwise multiplication operation.
The sigmoid layer returns numbers from zero to one that indicate how much of each block
of information should be passed down the network. Zero in this case means “do not miss
anything”, one means “pass everything”.

Let us consider the LSTM cell operation algorithm step by step:

1. The information that can be removed from the cell state is determined. This decision is
made by a sigmoidal layer called “the forget gate layer”. It counts ht−1 and xt and re-
turns a number between 0 and 1 for each value from the cell state. As such, “1” means
“keep completely” and “0” means “discard completely”. The calculation is made
according to the following formula: ft = σ(Wi · [ht−1, xt] + bf), where ft—output for
forget gate layer, σ—sigmoidal transfer function, Wi—weight for input layer gate,
[ht−1, xt]—set-theoretic union operation ht−1 and xt, bf—offset for forget gate layer.

2. A decision is made about what new information will be stored in the cell state. This
stage has two parts.

a. First, a sigmoidal layer called ”the input layer gate” determines which values
to update: it = σ(Wi · [ht−1, xt] + bi), where it—output for input gate layer,
bi—offset for input gate layer.
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b. Then the tanh layer builds a vector of new candidate values C̃t that can be

added to the cell state: C̃t = σ
(

WC · [ht−1, xt] + b̃C

)
, where C̃t—output for

tanh gate layer, WC—weight for tanh layer, b̃C—offset for tanh layer.

3. Updating the old cell state value Ct−1 based on Ct: Ct = ft · Ct−1 + it · C̃t, where
Ct —state of cell t, C̃t—possible future state (candidate state) of cell t.

4. Generation of output data:

a. Using the sigmoidal layer, it is determined what information will be output from
the cell state: ot = σ(Wo · [ht−1, xt] + bo), where ot—output for output layer
gate, Wo—weight for output layer gate, bo—offset for the output layer gate.

b. Cell state values are passed through a tanh layer to output values in the −1 to
1 range, and are multiplied with the sigmoidal layer outputs to output only
the information required: ht = ot·tan h(Ct), where ot—output for output layer
gate, tan h—hyperbolic tangent.

3.6. Synthesis Technique for the SG Protection System

Despite the fact that the mathematical model of the SG protection system is very
abstract, it has a certain advantage. To describe it, only one integral numerical indicator is
required—the probability of making a timely error-free decision.

In addition, the integral probability of solving the tasks set by the system is considered
in the model as an efficiency criterion, which corresponds to the target settings of the
structure. In this case, the vector criterion in the factor space “efficiency—survivability” of
the system is considered as an optimization criterion.

We mean that the system has two abstract states: a state when a timely error-free
decision p(t) is made, and a state when an erroneous and untimely decision (1− p(t)) is
made (Figure 11).

Figure 11. The process of evolutionary dependence of the survivability of the system on time.

Thus, the functional φ1
(
p(t), T′

)
= 1

2

∫ T′

0 p(t)dt determines the average probabil-
ity of a timely error-free solution on the time interval (0, T′). The mathematical ex-
pectation of the probability of a timely error-free decision determines the indicator of
the survivability of the SG management system β′ = E

(
φ1
(
x(t), T′

))
. The functional

φ2(p(t), T′′ ) = 1
2

∫ T′′
0 (p(t)− a)+dt, where the function x+ = max(x, 0), 0 < a < 1, deter-

mines the fraction of time spent by the process above level a, where β′′ = E(φ2(x(t), T′′ ))
determines the mathematical expectation of this fraction.

Based on this, the task of synthesizing the SG protection system can be formulated as
follows: it is necessary to determine the structure at which

min
S(mk)

C = f1(S(mk)), max
S(mk)

P = f2(S(mk), λ,µ,ϕ(t), Q, ε, δ) (15)
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and restrictions on the main criterion functions are fulfilled

P ≥ Pmin; C ≥ Cmin, (16)

besides supporting criteria K3min ≤ K3k ≤ K3max, Kpk ≤ Kpmax, ∀k ∈ {1, . . . , S}, respec-
tively, mean the vectors of the intensity of the tasks coming for processing to each element
of the protection system, the vectors of the intensity of their solution and the vectors of
the lifetimes of situations containing the indicated tasks; vectors Q and ε denote the corre-
sponding probabilities of an erroneous solution of tasks by the elements of the protection
system, determined by their functional Q and group tasks, in accordance with the nature
of the coordination links in the system, determined by the matrix δ.

The problem posed is a two-parameter problem of vector optimization with mutually
opposite criteria in the factor space “efficiency—survivability”. Its general solution can be
found through the use of various methods of scalarization of vector criteria. The essence
of the most effective of them comes down to the standardization of criteria and their
subsequent additive convolution.

To determine the values of the normalizing criteria for cost and efficiency, direct and
inverse optimization problems are considered. The statement of the direct problem is
reduced to the following: it is necessary to determine

max
S(mk)

P = f2(S(mk), λ,µ,ϕ(t), Q, ε, δ) (17)

under restrictions on the main criterion functions and under the restrictions on the auxiliary
functions considered above. The inverse problem can be formally represented as follows:

min
S(mk)

C(S(mk)), C = C1 +
S−1

∑
k=1

mkCk (18)

with the appropriate restrictions on the main criterion and auxiliary functions. In view
of the significant nonlinearity of the criterial function P(·) in synthesis problems in the
first approximation, it is more convenient to use the parameter t of the total time losses for
solving operational problems.

Then the direct synthesis problem will be as follows:

min
S(mk)

t
(
S(mk), λ,µ,ϕ(t)

)
. (19)

At the same time, restrictions on the main criterion auxiliary functions should be
carried out. In this case, the criteria t(·) and P(·) and, consequently, the solution of the
problem, are determined either analytically under the conditions of sufficiently strict
constraints, or by the method of statistical modeling.

Direct and inverse problems can be solved within the framework of one optimization
procedure, during the implementation of which both the first and the second functionals are
fixed. Analytical methods of calculations have a number of indisputable advantages, which
include their simplicity, clarity, and the ability to effectively interpret the results. On the
basis of statistical calculation methods, data can be obtained that describe the main trends
in the changes in the structure of the management system of the SG protection system.

4. Implementation Issues of the SG Protection System Management Methodology
4.1. General Description of the SG Protection System Management Methodology

The proposed methodology for the SG protection system management in conditions
of cyberattacks contains three stages.

At the first, auxiliary, stage, the SG information resources and its protection system are
modeled, both in conditions of cyberattacks and without them. The modeling is performed
by building and using formal models. As a result of this simulation, the values of the



Energies 2021, 14, 5963 16 of 39

transition probabilities are determined. This stage can be called the learning stage. To
determine the transition probabilities, the elements of the planar graphs considered above
are used.

At the second, main stage, the prediction and detection of cyberattacks are carried out
based on the use of a neural network with LSTM. Based on the machine learning methods,
the analysis of transition probabilities, as well as anomalies in the functioning of thw SG
elements and its protection system, caused by the impact of cyberattacks, is carried out.
The recurrent LSTM neural network detects anomalies using a threshold value.

At the third stage, based on predicting and detecting cyberattacks, decisions are made
to change the logical structure of the SG protection system and assess the impact of these
changes on the overall SG survivability, which can be determined using one of known
methods [48].

Let us assume that the TDTN protection system uses m types of protection means and
n copies of each ones. Then the probability Pdet of reaching the k-th PIR by the attacker
is determined by the formula of total probability as a result of solving the following
statistical problem:

Pdet =
n

∑
i=1

P(Hi)Zi

(
NZ

i

)
+

2n

∑
j=i+1

P
(
Hj
)
Zj

(
NZ

j . . . NZ
n

)
, (20)

where NZ
i is a number of crucial nodes of the TDTN connected with PIR of the i-th type, ex-

posed of the cyberattack; NZ is a total number of crucial nodes of the TDTN connected with
all of the protected PIRs; P(Hi) is the probability of the hypotheses about the achievement

of a cyberattack of the protected PIR of the i-th type; Zi

(
NZ

i

)
=

(NZ−NZ
i )

NZ is the weight of

the i-th protection mean for PIR; Zj

(
NZ

j . . . NZ
n

)
= Zmaxj +

∑m−1
j=1 Zj

n−m+1 is the total weight of the
protective mean used in the SG TDTN protection system.

Basing on the fact that the TDTN protection system includes n protection means,
the complete group of events of the cyberattack on a particular protection means will be
determined by a set of hypotheses Hi, the total number of which is 2n.

4.2. Software Implementation

To calculate the strong and weak components of the composition graph, we define the
correspondence:

G = (X, A), (21)

where X—nodes of the graph G, denoting states, A—arcs of the graph G, specifying
connections between states.

The mixed asymmetric graph G in accordance with Expression (21) is shown in
Figure 12. We use G as a knowledge model, which is information about the complete
alphabet of events (signs of threats, security criteria, incidence of events, and strong and
weak components). We also take into account the weight coefficients of the arcs of the
graph G in the knowledge model:

L(α) = ∑
(xi,xj)∈α

zij, (22)

where L is the total weight of paths of the mixed antisymmetric graph G, zij is the arc (edge)
weight, α is the cardinality of the path.



Energies 2021, 14, 5963 17 of 39

Figure 12. Mixed asymmetric graph G = (X, A).

The mixed asymmetric graph G, shown in Figure 12, reflects the concatenation of the
graphs of the “Threat Models” (Figures 4 and 5), “Protection Systems” (Figures 6–8), and
“Protected Resources” (Figure 1). This transformation allows us to highlight the strong and
weak partial subgraphs of the graph G; adjacent arcs; and also set the cost of each oriented
route that is necessary to select the optimal security policy.

The software for the proposed methodology is implemented in Python using the
Pandas library, which was used to process and analyze the data. The Pandas library is
written in the C, Cython, and Python programming languages. The presented library
makes Python a powerful tool for data analysis and makes it possible to build pivot tables,
perform groupings, and provide convenient access to tabular data at a high level. In
addition to the Pandas library, the NumPy library was used, which is a lower-level tool that
provides work with high-level mathematical functions, as well as multidimensional arrays



Energies 2021, 14, 5963 18 of 39

(tensors). In general, the software implementation is based on the iterative optimization
method. This approach is that each node x of the graph G = (X, A) is associated with
a sequence of states: sx,t ∈ Sn, t ∈ {0, . . . m}. The states are updated according to the
following expression:

sx,t+1 = F(sx,t, ∑(x, a) ∈ G, M(sx,t, sa,t, wx,a)). (23)

In other words, at the first iterations, for each edge a of the graph G = (X, A), the
alphabet of events is calculated using the function M (the event depends on the states of
the nodes sx,t and the weights of the edges sa,t), and then all of the events are summed and
the state of the node is updated using the function F (both functions are parameterized
as usual with variable learning parameters). In our case, function F is implemented by
LSTM. Given that, the algorithms for traversing the knowledge model G take into account
the differences between the types of links and estimate the weights of different links L(α)

from the point of view of the problem of ensuring the security of the protected SMART
resources, and do not use a common set of weights that was initially identified during
training on the graph.

The LSTM artificial neural network used in the experiment is organized in accordance
with the scheme shown in Figure 13.

Figure 13. Diagram of the LSTM artificial neural network.

Hyperparameters of an artificial neural network are configurable parameters that
allow one to control the learning process of the model. For example, in neural networks,
you determine the number of hidden layers and the number of nodes in each layer. The
performance of the model largely depends on the hyperparameters. Hyperparameter
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tuning, also called hyperparameter optimization, is the process of finding a hyperparameter
configuration that leads to better performance. This process usually requires significant
computing resources and is performed manually. The presented hyperparameters of the
neural network are optimized for our experiment and allow us to configure the network on
a limited dataset to search for impacts on the network, to ensure the adequacy of the model.

Hyperparameters of the experimental neural network are: module optimizer—“Adam”;
loss function (average absolute error)—“MAE”; the size of the data array for LSTM train-
ing is 10; the number of training epochs is 10; activation function (input layer)—“Than”;
activation function (output layer)—“Relu”; the number of layers is 7; the dimension of the
input/output tensor is 3/3.

The values of the hyperparameters for LSTM are determined a priori. With well-
selected hyperparameter values, the LSTM network detects well-known computer attacks
with a probability close to 1, and unknown attacks—with a probability exceeding 0.8.

Machine learning methods are implemented using the scikit-learn library, and neural
networks are implemented using the Keras framework. The graphs were built using the
Matplotlib module based on the obtained dataset. All calculations were performed in the
Jupiter notebook integrated development environment. Simulation modeling based on
GNS3 software was used to generate traffic.

Cyberattacks, such as distributed denial of service (DDoS), reconnaissance, backdoor,
exploits, fuzzers, and “scanning the network and its vulnerabilities”, were taken into
account as implemented attacks. Considering the above, the traffic structure, packet header
length, flags, checksum, and some others were considered as the main characteristics under
study in the dataset.

For the experiment, using the IXIA Perfect Storm tool (Figure 14), a special dataset was
generated. It includes the reference traffic and was used to train the system and analyze
the traffic without anomalies and the abnormal traffic.

Figure 14. Tool for software implementation of the “IXIA Perfect Storm” cyberattack.

Abnormal traffic included 55.0% of cyberattacks, which are divided into ten types,
namely: fuzzers (ε1), analysis (ε2), backdoors (ε3), DDoS (ε4), exploits (ε5), generic (ε6),
reconnaissance (ε7), shellcode (ε8), worms (ε9), and “scanning the network and its vulnera-
bilities” (ε10).
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Cyberattacks were carried out for the following protocols: dns, http, smtp, ftp, ftp-
data, pop3, ssh, ssl, snmp, dhcp, radius, and irc. They were used to test the effectiveness of
the method under consideration and to identify its merits over other methods.

Determination of the efficiency criterion for the recognition of the cyberattacks (µP) by
the neural network is performed by the formula

µP =
l

∑
k=1

n

∑
m=1

PPAk

(
ε

Ak
Yk

yk

)
K
(
εAm

Ym

)
, (24)

where k = 1, . . . , l is a number of supposed types of cyberattacks M =
(
Mij, Bi.j

)
(see

Table 1); m = 1, . . . , n is a number of the supposed attacked SG resources—subgraphs
GTi1 −GTi6 (see Figures 3–6); PPAk is a probability of the error-free cyberattack recognition,
k = 1, . . . , l; εAk

Yk
is a set of the types of the cyberattacks on SG resources under a priori

alphabet of attack events (Ak) and a priori alphabet of signs of cyberattacks (Yk); {yk}
are the vectors of signs of cyberattacks, k = 1, . . . , l; K

(
εAm

Ym

)
is a gain function from

recognizing attack targets ϑYn , which are classified in the alphabet of cyberattacks.
Next, using the Argus and Bro-IDS tools, the data was analyzed and tagged into

44 features with a class label. The total number of records is equal to 82,332. Table 2 shows
a sample from the resulting dataset with the indication of the main features.

Table 2. Dataset of network traffic (a sample).

Record
Number

Dataset Features

Attack Category

se
rv

ic
e

st
at

e

dp
kt

s

sb
yt

es

db
yt

es

ct
_d

st
_s

rc
_l

tm

is
_f

tp
_l

og
in

ct
_f

tp
_c

m
d

ct
_fl

w
_h

tt
p_

m
th

d

ct
_s

rc
_l

tm

ct
_s

rv
_d

st

is
_s

m
_i

ps
_p

or
ts

la
be

l

1 ospf INT 20 0 1280 1 2 0 0 0 1 1 0 Reconnaissance
2 ospf INT 20 0 1280 1 2 0 0 0 1 1 0 Reconnaissance
3 ospf INT 20 0 1280 1 2 0 0 0 1 1 0 Backdoor
4 ospf INT 20 0 1280 1 2 0 0 0 1 1 0 DoS
5 sctp INT 2 0 104 1 2 0 0 0 1 1 0 Exploits
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

82328 udp INT 2 0 1510 1 1 0 0 0 1 5 0 Fuzzers
82329 udp INT 4 0 1216 1 1 0 0 0 1 6 0 Fuzzers
82330 udp INT 4 0 1216 1 1 0 0 0 1 6 0 Fuzzers
82331 tcp FIN 10 6 590 1 1 0 0 0 1 5 0 Fuzzers
82332 tcp FIN 10 6 590 1 2 0 0 0 2 4 0 Fuzzers

The following features are used in Table 2:

service—a service used (may be as ospf, http, ftp, smtp, ssh, dns, ftp, udp, tcp etc. or ’-’);
state—indicates the state and its dependent protocol (ACC, CLO, CON, ECO, ECR, FIN,
INT, MAS, PAR, REQ, RST, TST, TXD, URH, and URN or ‘-‘ if the state is not used);
dpkts—the number of packages from the destination to the source;
sbytes—the number of bytes in the transaction from the source to the destination;
dbytes—the number of bytes in the transaction from the destination to the source;
ct_dst_src_ltm—the number of connections between the same destination address and the
initial port in the last 100 connections;
is_ftp_login—is equal to 1 if the user has access to the file transfer protocol (FTP) session by
password, otherwise—0;
ct_ftp_cmd—the number of connections that have a command on the FTP session;
ct_src_ltm—the number of connections with the same source address in the 100 last connections;
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ct_srv_dst—the number of compounds containing the same service and destination address
in the last 100 connections;
is_sm_ips_ports—if the source and destination IP addresses are equal and the port numbers
are equal, then this variable is 1, otherwise—0;
label—is equal 0 for normal and 1 for attacked records.

In the dataset, there are nine attack categories: Fuzzers, Analysis, Backdoors, DoS,
Exploits, Generic, Reconnaissance, Shellcode, and Worms.

The Tcpdump tool was used to capture raw, unprocessed traffic. Cyberattacks were
carried out using the KaliLinux distribution kit.

As the scenario under study, the traffic corresponding to the SG TDTN of St. Petersburg
(Russia) was selected. This network contains 50 high-voltage substations (substations
110–220 kV), 2200 distribution points and transformer substations, as well as more than
80,000 metering devices (Figure 15).

Figure 15. Functional diagram of the metropolitan SMART grid.

The management of the TDTN elements and management of the network security is
carried out from the central communication node (CCN).

The simulated traffic was a set of data of interest to operators and dispatchers of the
SG power system. This data contained the following parameters:

• Power factor values;
• Power quality parameters in the entire system;
• Distributed measuring system parameters;
• Equipment condition parameters;
• Parameters of the state of protection means;
• Information about the places of damage and failures;
• Load of transformers and lines;
• Profiles and forecasts of electricity consumption and some other parameters.
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5. Experimental Results
5.1. Evaluation of the Management Methodology for the SG Protection System

To solve the problem associated with predicting and detecting a cyberattack, it is very
important not only to determine machine learning algorithms or neural networks, but also
to highlight the parameters that are most susceptible to anomalous deviation during the
course of the attacker’s influence.

Consider a particular case of using the graph G = (X, A) by a LSTM network. Let
us construct a transitive adjacency graph G′ to prevent a DDoS attack. Based on the
threat model for SG resources, the classifier of the threat model X7(X7.1, X7.2, X7.3, X7.4, X7.5)
contains from 1 to n threats. Let X7.1 be a DDoS cyberattack type that affects the protected
SG resources of the “information availability” (X44) and “network bandwidth” (X59) types.
Let us formulate a context diagram for a particular case of a cyberattack on the SG resources
G′ =

(
X′, A′

)
, where X1, X2, X3, . . . , X70 ∈ X′ and A1, A2, A3, . . . , A51 ∈ A′ (Figure 16).

Figure 16. Mixed asymmetric adjacency graph G′ =
(

X′, A′
)
.

After detecting and classifying the attack on the SG resources, the recurrent neural
network compares the attack countermeasures. This involves the elements of the Dg
subgraph (see Figure 8). The elements of the bipartite subgraph Dg define the protection
strategy X16(X60, X61, X62, X63, X64) of the SG resources X44 of “information availability”
and X59 of “network bandwidth” against attacks such as X7.1 (attacks such as DDoS) based
on the requirements of X15(X67, X70) to the protection system to prevent attacks such as
X7.1 (Figure 17):

X44 ⊕ X67 ⊕ X16(X60 . . . X64). (25)

When detecting the DDoS cyberattack, each protocol was initially considered sepa-
rately based on the dataset of the network traffic (Figures 18–24).
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Figure 17. Implementation of the defense response against exposure to SG resources for the graph G′ =
(

X′, A′
)

to prevent
DDOS attack.

Figure 18. FTP protocol.
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Figure 19. DNS protocol.

Figure 20. HTTP protocol.
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Figure 21. SMTP protocol.

Figure 22. SSH protocol.
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In Figures 18–24, abnormal zones are designated in red, and normal zones are des-
ignated in green. Blue lines display network packets. The Y axis displays the length of
the network packet, and the X one is a time axis. As can be seen from Figures 18–24, it is
almost impossible to visually distinguish between normal and abnormal behavior.

We use the LSTM autoencoder to predict anomalies in the time series (Figure 25).
Due to the strong correlation of multivariate time series and the multiscale nature of

a process with fast (long-term) and slow (short-term) subprocesses, feedforward neural
networks usually perform poorly. A more accurate predictive model can be developed
using a neural network with LSTM cells.

Let us look at the training process of the LSTM model (Figure 26).
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Figure 26. Training process of the model.

We disabled data movement during model training by setting the parameter shuffle = False,
because order is important in the time series data (you cannot allow random sampling).
Figure 27 is a plot of the loss function showing how the model was trained. It can be seen
from this graph that the loss function decreases during training.

Figure 27. Loss function.
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We used the mean absolute error (MAE) to calculate the “reconstruction error” because
it gave us better results compared to the mean square error (MSE) and the root mean square
error (RMSE):

MAE =
1
N

N

∑
t=1

∣∣Z(t)− Ẑ(t)
∣∣, (26)

RMSE =

(
1
N

N

∑
t=1

(
Z(t)− Ẑ(t)

)2
)−2

, (27)

where Z(t) is the actual value of the time series, Ẑ(t) is the projected value predicted by
the algorithm.

In both the MSE and RMSE, the errors are squared before they are averaged, resulting
in higher weights assigned to larger errors. This makes the model more sensitive to noise
that can cause false alarms. Since our data is inherently noisy, we have determined that an
“anomaly” is a spike or trend that lasts at least 5 s. Therefore, in this model, we need a loss
function that is more “forgiving” for small spikes in one or two functions.

The simplest way to determine what is an anomaly is as follows: “Anything above a
fixed threshold is considered an anomaly, otherwise a normal value.”

By plotting the distribution of the loss function (Figure 28) in the training set, an
appropriate threshold value can be determined to identify the anomaly. In doing so, we
need to check that this threshold is set above the “noise level”. Any anomalies noted should
be statistically significant above the background noise.

Figure 28. Distribution of learning loss.

Figure 28 shows the recovery error measured by the MAE. From the distribution of
losses, a threshold value of 0.001 can be set to detect an anomaly. Figure 29 outlines the
threshold value.
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Figure 29. Static threshold value on test data.

Mathematically, the static threshold is calculated as the overall mean plus 2 standard
MAE steps for all of the trained data (Figure 30).

Figure 30. Calculation of static threshold value.

Figure 31 depicts the result of the anomaly detection using the neural network.
As can be seen from this figure, the neural network is very sensitive to sudden bursts.

The drawing is noisy and full of anomalies, although it is not. “Noise” is seasonality, which
tells us that we should use a dynamic threshold that is sensitive to the behavior of the data.

We decided to use the exponential moving average (EMA) threshold to detect anomalies:

EMAn =

(
Value · α

1 + N

)
+

(
EMAn−1 ·

(
1− α

1 + N

))
, (28)

where N is the number of values of the original function to calculate the moving average, a
is a coefficient that can be selected randomly, ranging from 0 to 1.

Figure 32 shows the average loss of the indicators: the static threshold is highlighted
in purple, the moving average threshold is in red, and the exponential average threshold is
in green.
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Figure 31. The result of the algorithm.

Figure 32. Dynamic threshold on test data.
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After calculating the loss distribution and anomaly threshold, we can visualize the
model output (Figure 33). As it can be seen from this figure, the number of false positives
has decreased because the trained model was not so sensitive to emissions.

Figure 33. The result of the algorithm.

Let us approximate the graph (Figure 34).
An analysis of the experimental results showed that the ability of the recurrent neural

network not only to learn, but also to develop rules for resolving collisions associated
with the anomalous behavior of traffic controlled by LSTM allows for early warning of
intrusions into the SG network from the outside.

Based on these warnings, the synthesis of the management system of the SG protection
system is carried out. A timely, error-free decision to change the protection system affects
the overall survivability of the management system.

The calculation results showed that before the management decisions were made to
change the protection system, the survivability of the SG fragment under consideration
was 0.75. After the synthesis of the protection system, the survivability increased to 0.93.

Thus, the proposed method for controlling the active protection of information and
telecommunication SG resources allows to not only detect cyberattacks in a timely manner,
but also to take measures to control the protection in a mode close to real time.
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Figure 34. Approximation up to 5000 packets.

5.2. Comparative Evaluation of the Management Methodology for the SG Protection System

Formally, the management process can be represented as a tuple 〈Y, U, O〉, where Y is
a vector of common coordinates that characterizes the system problem and the management
goal; U is a vector of influence; O is a control object (Figure 35).

Figure 35. Management process.

The goal of the management process is determined by the relation ZY ⊂ KY, where
KY is the aggregate set of Y values at which the states of the control object meet the
requirements, and ZY is the aggregate set of Y values that arise during the operation of the
control object.

In real management systems, when there is not enough a priori information about
the control object, the action U is carried out by the controller P (Figure 36), which is
functionally interconnected with the output states of the control object and the independent
influences imposed on it. In such a situation, it is necessary, depending on the state of the
vectors Co (side effects on the control object) and Cp (side effects on the controller P), to
constantly change the properties and the order of the controller functioning. A generalized
diagram of the management process is shown in Figure 36, where Qo, QCo , and QCp are
signs-identifiers of the properties of the control object and vectors Co and Cp.

Figure 36. The process of adaptive control with a priori insufficient information about changing the
parameters of the control object and the states of the controller.

For those management systems that operate under conditions of continuously chang-
ing influences, i.e., when the steady-state regime is absent at all (and this is fully true for
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the SG), we will give a definition of their resilience. A management system is resilient
if its output parameters remain limited under conditions of exposure to limited magni-
tude disturbances. The argument Lo reflects in Figure 36 the fact that the properties of P
change when the properties of the control object change as a result of external and internal
independent disturbances.

The classical model of a management system is a feedback model with real-time
adjustable coefficients. The coefficients of such a controller are adjusted during each
control cycle in accordance with the estimated system parameters. A closed-loop control
is a process in a system where a controlled (controlled) variable is constantly monitored
and compared with a setpoint, i.e., with a reference variable. Depending on the result
of such a comparison, the input variable of the system is changed so that the output
variable is adjusted to the specified value, regardless of all of the deviations. As a result of
such a reaction of the system, a closed flow of actions arises. The use of feedback in the
management of the SG protection system makes it possible to take into account information
not only about the desired process, but also about the actual process of functioning of all of
the components of the protection system.

Another well-known model of a management system is the Lyapunov reference
model [49]. Adaptive control systems using the Lyapunov model are designed so that
the output of the controlled model matches the output of a predefined model that has the
desired characteristics. Such a system should be asymptotically stable, i.e., the controlled
system keeps track of the parameters of the reference model with zero error. Moreover,
transient processes at the stage of adaptive (learning) control have guaranteed limits.

Let us carry out a comparative analysis of the proposed management system of the
SG protection system with those discussed above. Stability, convergence rate, operation
under noise conditions (targeted and natural influences), required memory size, etc. were
chosen as the comparison criteria. The results of the comparative analysis are presented in
Table 3. The following symbols are used in the table: “−” is the worst indicator; “+” is the
average indicator; “+ +” is the best indicator.

Table 3. The results of the comparative analysis of the management system.

Criterion
Closed-Loop Control

with Adjustable
Coefficients

Adaptive Control
with Reference

Model

LSTM Based
Management

Convergence rate + + + +
Resilience of the feedback − + + +

Tracking error + + + +
Software interference

minimization + + − + +

Complexity of the
control program − + +

Real-time operation + + + +
Robustness of the
model mismatch − + + +

System response time − + + +

The system response time (tR) when detecting abnormal traffic deviations was mea-
sured within the specified limits (0 < tR < 500MC). The system with a neural network
core showed the best result of—on average, for 10 epochs of experiments—358.3 ms. For
systems with feedback control and adjustable coefficients, as well as adaptive control using
a reference model, the response time was 521.4 ms and 476.9 ms, respectively. Thus, it can
be seen that the proposed approach demonstrates a gain in time for detecting cyberattacks
in comparison with the known solutions up to 30%.

In order to determine the dependence of the cyberattack detection time on the volume
of analyzed data, several experiments were carried out using the proposed method for
two additional datasets. They differ from the base one, containing, as mentioned above,
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82,332 records. The first additional dataset contained about 164,000 (i.e., it was about two
times larger than the baseline). The second additional dataset contained approximately
41,000 records (i.e., it was about two times smaller than the base one). The experiments
have shown that for the first additional dataset, the average attack detection time was
1150 ms, and for the second—150 ms. Thus, the dependence of the time to detect attacks
on the volume of analyzed data has a power-law character with a low exponent. The
dependence of the system response time on the amount of processed data is presented in
Figure 37.

Figure 37. Dependences of the system response time from the volume of the processed data and the learning era.

Figure 37 discusses 3 datasets and 10 neural network learning eras. The Y axis
corresponds to the response time of the system (i.e., the cyberattack detection time). The
graph has three different dependences that show that the cyberattack detection time is
reduced with each learning era. However, additional computing power is required to
ensure the model scalability.

To obtain a comparative assessment of the proposed methodology for the accuracy
of detecting cyberattacks, work [47] was selected. In this work, an LSTM-based classifier
of attacks was studied, and its assessment was carried out at the KDD Cup 1999 dataset.
The experiments carried out in [47] showed that the LSTM model has a higher efficiency in
detecting and classifying cyberattacks than such well-known classifiers as k-mearest neigh-
bor, support vector machine, multilayer perceptron, decision tree, and naïve Bayes. In [47],
the following values were obtained: detection rate (DR) is 98.88% and false alarm rate
(FAR) is 10.04%. In our work, the values of these indicators, averaged over all datasets, are:
DR = 98.55% and FAR = 8.95%. It can be seen that our values for the accuracy of detecting
cyberattacks based on LSTM are close to that of [47], but the experimental conditions are
not comparable—we used a more complex data set, which included contemporary attacks,
and we believe that our approach allows us to achieve greater confidence by combining
the LSTM theory and the flat graph theory.

The experiments included testing the theory first without using the neural network
core of the control and management system and then using it. In both cases, the type,
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duration, and sequence of computer attacks (fuzzers, analysis, backdoors, DDoS, rxploits,
generic, reconnaissance, shellcode, worms, and “scanning the network and its vulnerabili-
ties”) on the information and telecommunications resources of the experimental computer
network were identical.

The analysis of the experimental results revealed not only characteristic changes in the
”pattern“ of useful traffic, but also the fact that the ability of a recurrent neural network not
only to learn, but also to develop rules for resolving collisions associated with abnormal
behavior of traffic controlled by LSTM allows us to warn in a timely manner of intrusions
into the SG network from the outside. Thus, the proposed method of managing the active
protection of SG information and telecommunications resources allows one not only to
detect cyberattacks in a timely manner, but also to take measures to control the protection
in a mode close to real time.

On the basis of these warnings and recommendations, the synthesis of the SG protec-
tion system management system can be carried out. A timely, error-free decision to change
the protection system affects the overall survivability of the control system. The calculation
results showed that before making management decisions to change the protection system,
the survivability of the SG fragment under consideration was 0.75. After the synthesis of
the protection system, the survivability increased to 0.93. The efficiency of the protection
system increased by 24% per unit of time. According to preliminary calculations, this effi-
ciency will be at least 17% effective under real operating conditions of the SG functioning
in comparison with the protection system without an additional control module using
LSTM algorithms.

An analysis of the results of a comparative analysis of various management systems
shows that the proposed methodology for managing the SG protection system based on
the use of LSTM neural networks has a higher efficiency. Despite the fact that each of
the considered methods has both positive and negative characteristics, it should be noted
that the neural network control method has a number of positive qualities that are poorly
implemented in the first two management systems. The dynamics of the system response
is of particular importance in the management of the SG TDTN protection system time
characteristic of the output variable (∆τ) [50]. As practical experiments show, ∆τ is minimal
for LSTM-controlled systems. In addition, the control system based on LSTM is resistant to
interference when exposed to cyberattacks.

5.3. Discussion

The experiments showed, first of all, that when predicting the impact of cyberattacks in
order to develop control decisions, it is very important not only to determine the machine
learning algorithm or the neural network, but also to identify the parameters that are
most susceptible to abnormal deviations during the attacker’s exposure. In addition, the
experiments demonstrated that the proposed methodology for managing the protection
system, using the flat graph specification and a neural network with LSTM, has a fairly
high efficiency. The main advantage of this approach is the ability to work in real time,
as well as the ability to work with any kind of traffic. Revealing the fact of the impact of
cyberattacks is carried out in a few microseconds, depending on the performance of the
computer technology.

Other advantages of this approach include the low demands on system resources. In
addition, there are practically no restrictions on the linearity of the system in the LSTM-
based control system. Such a control system is effective in conditions of interference in the
communication channel caused by the impact of cyberattacks. The recurrence properties
provide constant additional training and management of the TDTN protection system in
real time, which gives it an advantage over other systems.

However, despite the above listed advantages, this method is not a panacea because,
at this stage, it is not possible to monitor the tracking errors that occur during the operation
of the management systems under the influence of cyberattacks. Insufficient accuracy can
lead to a discrepancy between the characteristics of the system and the conditions for the
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functioning of the management system. In addition, at this stage of implementation, the
management program is very complex.

It should be noted that the conducted studies are still only demonstrating the potential
and effectiveness of the proposed approach to managing the security system in SG TDTN.
The practical implementation and further improvement of this methodology determine
further directions of the research.

6. Conclusions

This paper considered the methodology for using flat graphs for modeling a protected
resource and a management system, as well as the neural network with LSTM for predicting
the impact of cyberattacks on SG TDTN and developing management solutions for the
protection system. The methodology proposed allows one not only to form the architecture
of the SG TDTN protection system, but also to audit the SG security in real time.

In the simulation, the principle of solving the problems of distributing a heterogeneous
resource among interdependent elements was used with the further implementation of
the differentiated approach to creating an integrated protection of elements of smart
power supply networks. The effectiveness of this method over others was shown, and the
possibility of timely management of the protection system of smart power supply networks
was substantiated. The issues of software implementation of the proposed approach were
considered. The experimental results obtained using the generated datasets confirmed the
high efficiency of the proposed approach.

In this paper, we did not consider such subjective parameters as “model complexity”
and the model parameter uncertainty. They will primarily depend on the volume of
tasks to be solved, the number of reference parameters to be set, the available computing
power, data quality, etc. The values of the hyperparameters for LSTM in our research were
determined a priori. As it was shown, the LSTM network detects well-known computer
attacks with a probability close to 1, and unknown attacks with a probability exceeding 0.8.

Machine learning methods were implemented using the scikit-learn library, and neural
networks using the Keras framework. The graphs were built using the Matplotlib module
based on the obtained dataset. All of the calculations were performed in the Jupiter
notebook integrated development environment. A simulation based on GNS3 software
was used to generate traffic.

Cyberattacks, such as DDoS, reconnaissance, backdoor, exploits, fuzzers, and “scan-
ning the network and its vulnerabilities”, were taken into account as implemented attacks.
The traffic structure, packet header length, flags, checksum, and some others were consid-
ered as the main characteristics under study in the dataset.

The proposed methodology, based on graph models and the practical implementation
on LSTM networks, makes it possible not only to detect cyberattacks in a timely manner,
but also to take measures for the active protection of SG resources in real or near real
time. The use of flat graphs makes it possible to take into account (when modeling the
action of an attacker when implementing the cyberattacks) the possibility of applying
the means of protection, the state of the information and telecommunications network in
SG, and the methods of organizing management and communication. Experiments have
shown that the proposed methodology demonstrates up to a 30% gain in time for detecting
cyberattacks in comparison with the known solutions. As a result, the survivability of the
SG fragment under consideration increased from 0.62 to 0.95.

The main difficulty of the application of the methodology is seen in the complexity of
specifying the processes, protocols, and technologies implemented in the SG in the absence
of acceptable datasets for learning LSTM networks and in the absence of a common
topology for constructing SG TDTN. This defines one of the further areas of research. In
addition, further research will be aimed at integrating the proposed methodology into the
existing monitoring and management systems for the SG protection system and optimizing
the output parameters.
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