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Abstract: Several approaches have been applied for the evaluation of formation organic content. For
further developments in the interpretation of organic richness, this research proposes a multivariate
statistical method for exploring the interdependencies between the well logs and model parameters. A
factor analysis-based approach is presented for the quantitative determination of total organic content
of shale formations. Uncorrelated factors are extracted from well logging data using Jöreskog’s
algorithm, and then the factor logs are correlated with estimated petrophysical properties. Whereas
the first factor holds information on the amount of shaliness, the second is identified as an organic
factor. The estimation method is applied both to synthetic and real datasets from different reservoir
types and geologic basins, i.e., Derecske Trough in East Hungary (tight gas); Kingak formation in
North Slope Alaska, United States of America (shale gas); and shale source rock formations in the
Norwegian continental shelf. The estimated total organic content logs are verified by core data
and/or results from other indirect estimation methods such as interval inversion, artificial neural
networks and cluster analysis. The presented statistical method used for the interpretation of wireline
logs offers an effective tool for the evaluation of organic matter content in unconventional reservoirs.

Keywords: total organic carbon (TOC); tight gas; shale gas; source rock; factor analysis (FA); interval
inversion; artificial neural network (ANN); Hungary; Alaska; Norway

1. Introduction

The continuing demand for hydrocarbons, despite the overall decline in the industry
due to the strongly emerging low-carbon advocacy, is evident in the further development of
unconventional reservoirs. Several technologies and studies are being developed for further
understanding of the distribution, accumulation patterns and resource evaluation of these
complex reservoirs, among others. Unconventional reservoirs are such reservoirs from
which the retrieval of hydrocarbons is commonly accomplished by methods beyond known
traditional methods. These unconventional formations belong to those oil and gas resources
for which industrial productivity is possible only by changing the rock permeability or fluid
viscosity to alter the permeability–viscosity ratios [1]. In contrast, conventional resources
are available for industrial production without the extra measures taken in the former.
This general term is applied to such formations/techniques to differentiate them from
conventional approaches.

These resources vary, including tight gas formations, shale gas, heavy oil, gas hydrates
and coal bed methane tar sands [2]. Shale gas reservoirs as both source and reservoir for
natural gas have a distinct response to well logs when compared to non-hydrocarbon-
bearing source rocks [3]. This distinct response is due to the physical properties of the
organic matter contained in these formations. The organic richness of these formations,
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expressed as total organic carbon (TOC in weight percent) content, and the clay volume
are very important parameters for the evaluation of shale gas reservoirs. This study shows
that these two parameters contribute majorly to the variances in the datasets. This is
thus explored by employing the factor analysis technique to extract the underlying/latent
variables for a quantitative description of the parameters.

The standard method for the determination of TOC involves the geochemical measure-
ment of core samples (whole cores, cuttings or sidewall cores) in laboratories. However,
the process involved in obtaining cores is expensive and time-consuming. Moreover, the
millimeter-scale variability common in mudstone makes it very problematic to select multi-
ple samples with the same attributes [4]. Thus, only a few samples collected at strategic
intervals are analyzed. For huge shale formations, hence, information on the TOC is not
continuous along with the interval. Moreover, the heterogeneous nature of these rocks,
sampling errors and misses or destruction of samples may lead to inconsistencies in the
analysis. An alternative to the geochemical processes lies therefore in the application of
wireline logs with higher vertical resolution.

Furthermore, when using only open-hole wireline logs and geochemical measure-
ments of core samples in linear approximations method (e.g., spectral gamma-ray, clay
indicator and ∆logR methods), some limitations and restrictions should be considered
since some logs can be affected due to the natural characteristics of the well (e.g., specific
lithology, complex mineralogy and type of fluid contained in pore space). For instance, the
resistivity log plays an important role in TOC estimation (i.e., Passey’s method), although
it is affected by many factors such as clay and pyrite volume and the bulk volume of water
in the formation, and all these factors might be misleading during the TOC estimation
applying methods based on resistivity logs. Additionally, the lack of enough data along the
investigated interval makes the calibration procedure necessary to establish an accurate
linear model difficult [5].

On the other hand, wireline logs have always played a major role in the determination
of shale volume, which can also be confirmed by laboratory analysis. This is a very crucial
step in the characterization of hydrocarbon reservoirs, especially as a lot of other important
parameters are obtained from the estimated shale volume. A lot of these methods depend
on the natural gamma-ray log, with more advanced methods employing the spectral
gamma-ray log, which separates the thorium, uranium and potassium concentrations
in their different energetic windows. Due to the evident observed well log responses of
organic shale formations, various approaches have been developed for the estimation
of organic richness and shale volume using wireline log data. This work is a further
development in that regard.

By using the method of exploratory factor analysis, the underlying and unobserved
relationships between the measured variables (e.g., well logs) are identified [6]. In this
study, the factors are extracted from the input logs, and emphasis is placed on the first two
factors for the estimation of shale volume and organic content. By application of the factor
analysis technique, a strong assumption is made. As long as these well logs give distinct
signatures or responses to the lithology and the organic content of the formations—for
those unconventional resources/shale formations where the lithology and organic content
are the predominantly controlling variables—a factor analysis model, as suggested in this
work, will accord a higher explained variance to them. When the number of the extracted
factors is greater than two, the nth extracted factor will have an explained variance with
very little to meaningless contribution to the interpretation of the log data.

The simultaneous estimation of these two parameters as proposed in this study
carries an advantage by increasing the overdetermination ratio so as to obtain reliable
results. The described technique is shown as a reliable method, as it has been applied
to both synthetic and real datasets from wells drilled into different geologic forma-
tions. The accuracy of the method is also compared to other evaluation methods for
verification of the acquired results.
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2. Materials and Methods
2.1. Geological Settings

The datasets analyzed for this study were obtained from different geological
environments, Derecske Trough (Hungary), North Slope (AK, USA) and North Sea
(Norway). This was necessary to test the feasibility of the proposed TOC evaluation
method, as well as to identify its limitation(s). Moreover, while the first three datasets
are described as belonging to an unconventional petroleum system, the Norwegian
dataset originated from a source rock associated with a conventional petroleum system.
The formations from which these wireline logs were obtained have all been identified
as having potentials for oil/gas production.

2.1.1. Derecske Trough, Hungary

The interpretation from the synthetic/observed datasets was applied to a tight gas
formation in Hungary, situated in the Neogene Pannonian Basin known as the Derecske
Trough. The Middle Miocene sandstones and Upper Miocene formations are major plays
of interest for tight gas exploration in Hungary. The Middle Miocene play corresponds
to the Badenian sandstones that are located in depths greater than 3000 m. This play is
formed mainly by sandstones with 6 to 10% porosity and low permeability; the source
rocks are believed to be deep-water marine Middle Miocene shales, which mostly remain
unexplored in the deepest part of the subbasins. However, where they have been explored,
the Badenian shales have proved to be fair- to good-quality source rocks. The Upper
Miocene play corresponds especially to the turbidites of Szolnok Formation, the major
source rock of which is the underlying Endrőd Formation that is described as a highly
overpressured Upper Miocene brackish-water shale. The zone of interest is a continuous
basin-centered accumulation, with low porosity, between 5 and 8%, and low permeability,
and is situated deep within the basin—reaching depths of over 3000 m. The TOC values in
the play are generally low [7] but reach the requirements for unconventional reservoirs (>2%
TOC). An extensive description of the geology of the Pannonian Basin and hydrocarbon
exploration details of the investigated area can be read in [8].

2.1.2. North Slope, Alaska, USA

Alaska has two major oil and gas operations going on in the northern part of the state
and the Cook inlet region in the southern part of the state. The analyzed well section is of
the Jurassic to Lower Cretaceous Kingak formation (known as the K1 sequence) situated in
the North Slope area. It is one of the three oil and gas source rock systems in the region.
Lying at a burial depth of over 2700 m, the 300–380 m basal sequence is identified to be of
marine and terrigenous origin, having organic matter from both sources and deposited in a
marine siliciclastic setting during the opening of the Canadian basin [9,10].

The Kingak formation has been described as a dark-gray to dark-olive-gray shale
and subordinate siltstone, claystone and clay ironstone [11]. The upper part is clay shale,
silty shale and siltstone that have red, rusty-weathering ironstone beds. The lower section
consists of a dark-gray to black fissile paper shale, dark-gray clay shale, minor claystone
and beds and nodules of red-weathering ironstone [12]. The organic carbon content in the
Kingak Shale formation varies from less than 0.6 to over 3.0 wt%. The thermal maturity of
the formation presents a complex pattern that seems not to be related to the present-day
depth of burial. The vitrine reflectance at a burial depth of 600 m is 0.5%, while it is 0.4% at
depths of 3000 m [13].

A feasibility study of the factor analysis method was made using well logs of North
Inigok 1 well drilled into the formation. The 90 m long interval analyzed in this study was
earlier identified as a potential source rock using Passey’s method. The results obtained
were verified using core data obtained from the section.
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2.1.3. North Sea, Norway

Several datasets obtained from various wells drilled into geologic formations in the
Norwegian continental shelf are also analyzed in this study. These are from prominent
fields with established prospects for hydrocarbon production. Major potential source rocks
in the region include the Farsund and Mandal shale formations. The formations are source
rock beds linked to conventional reservoirs in the region. These black shale formations,
equivalents of the Kimmeridge Clay, are very rich in organic materials and were deposited
in the Jurassic.

The analyzed formation has been described with a varying thickness of tens of meters.
It is formed by dark grey-brown to black, slightly calcareous to non-calcareous, carbona-
ceous claystone. It shows a very high level of radioactivity, as it contains a considerable
amount of organic carbon content. Moreover, it is characterized by anomalously high
resistivity and low velocity and density properties. Some stringers of limestone–dolomite
and even sandstone can be found in some areas [14]. The organic richness of formations
from one of such wells is discussed based on the results from the analysis carried out using
the proposed method.

2.2. Traditional Determination of Organic Richness

Total organic carbon is the quantity of organic material deposited in a rock that can
be converted into oil or gas, depending on the form of kerogen present. TOC in source
rocks (and reservoir rocks as with shale gas reservoirs) can be determined analytically by
established principles in geochemistry. While a few of the constraints with this method
have been highlighted earlier, it is noteworthy to mention that it is the most accurate, and
it is recommended that all TOC inferred from indirect well logging methods be calibrated
to values measured using laboratory-based geochemical methods [15]. The need for the
development of improved well logging methods is a result of high vertical variability in
organic material in formations especially as a result of geologic and biotic conditions, as
well as a complex function of many other interacting processes during deposition and
burial [4]. To increase the vertical resolution of the estimated TOC, several wireline logging
methods have been derived.

Diverse empirical (linear) well-log-based estimation methods have been developed to
obtain an accurate TOC estimation; for instance, spectral gamma-ray log [16–18], bulk den-
sity log [19,20], clay indicator [21] and ∆logR methods [22] are the best-known (empirical)
techniques used nowadays. However, all these methods have their drawbacks; i.e., some
limitations and restrictions should be taken into account since some logs can be affected
due to the natural characteristics of the well (e.g., specific lithology, complex mineralogy
and type of fluid contained in the pore space).

For instance, the resistivity log plays an important role in TOC estimation (i.e., Passey’s
method), although it is affected by many factors such as clay and pyrite volume and the
bulk volume of water in the formation, and all these factors might be misleading during the
TOC estimation applying methods based on a limited number of well logs. Additionally,
the lack of enough data along the investigated interval makes the calibration procedure
needed to establish an accurate linear model difficult. Some studies have been conducted
to analyze the importance of using different methods, such as statistical approaches, for
estimating TOC content [5] since different petrophysical properties of the formation are
considered in different well logs. For instance, the total and spectral gamma-ray logs
commonly have an abnormally high response in highly organic-rich black shales that
are potentially source rocks [17] due to the enrichment of uranium. Furthermore, the
presence of organic matter can result in alteration of the formation resistivity, making such
logs suitable to analyze the TOC, as in Passey’s method, since organic matter is usually
nonconductive and highly increases the resistivity of the formation.

Porosity-based logs are used in Passey’s and clay indicator methods. These methods
are based on the facts that organic matter or kerogen reduces the density of the rock due
to its relatively low density and high acoustic transit times and that neutron records are
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affected by hydrogen in organic matter. Consequently, porosity will be overestimated using
any of these logs [23]. Methods presently applied include the natural gamma spectroscopy
method, which explores the relationship between uranium content and TOC to estimate
the latter; the total gamma-ray intensity method; the bulk density method; and the ∆logR
method, which estimates TOC by overlapping porosity and resistivity [3,15,24].

2.3. Determination of TOC by Factor Analysis

Factor analysis is a multivariate statistical method that involves the reduction of a
large dataset (several observed variables) to a relatively lesser number of factors (the latent
variables) by finding the interrelationship between the observed variables. By reducing the
dimension of variability, we are able to explore unobserved properties of the rock that are
responsible for the observed well log responses. The latent factors, supposedly accounting
for the intercorrelations of the response variables, should thus be uncorrelated after they
are extracted from a large observed dataset [25–27].

The formulation of the statistical problem can be made by first creating an N-by-K
matrix of the original data:

D =



d11 d12 · · · d1k · · · d1K
d21 d22 · · · d2k · · · d2K

...
...

. . .
...

...
...

dn1 dn2 · · · dnk · · · dnK
...

...
...

...
. . .

...
dN1 dN2 · · · dNk · · · dNK


, (1)

where N is the total number of data (depth) points and K is the number of logging
data/response variables. For the given dataset D, if both observed variables and la-
tent factors are measured in deviations from their means, it leads to the following factor
analysis model:

D = FLT + E, (2)

where F is the N-by-a matrix of the extracted factors and LT is the transposed K-by-a matrix
of the factor loadings (practically being the correlation coefficients between observed
variables and latent factors), and E is the N-by-K matrix of residuals or unique part of the
matrix D. The objective of the factor analysis method is the determination of the number
of factors and estimation of the factor loadings that suitably explains the variables in
the dataset. The factor analysis algorithm applied in this work is based on the Jöreskog
solution [25], which gives a quick estimate of the factor loadings:

L =
(

diagS−1
)−1/2

Ω(Γ − ε I)1/2U, (3)

where Γ is the diagonal matrix of the first a number of sorted eigenvalues (λ) of the
sample covariance matrix S, Ω is the matrix of the first a number of eigenvectors and U
is an arbitrarily chosen a-by-a orthogonal matrix. According to the approximate solution
of Jöreskog the optimal number of factors is given for ε ≤ 1, which is a mathematical
assumption. The factor loadings are usually rotated for an easier interpretation of the
extracted statistical variables. We apply the ‘varimax’ technique, which specifies few data
types to which the factors strongly correlate [28]. Then, the matrix of factor scores is
calculated using matrix D by a linear approach [29]

FT =
(

LTΨ−1L
)− 1

LTΨ−1DT, (4)

where Ψ = N−1ETE is the diagonal matrix of specific variances, which does not explain
the variances of measured variables. The limitation of Jöreskog’s solution applied to the
factor analysis problem is that the procedure is noniterative and relatively noise-sensitive,
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especially when outliers are present in the analyzed dataset; however, it is very fast to
compute. For a more advanced solution, factor analyses assisted by artificial intelligence
methods can be used, e.g., a differential genetic algorithm-based approach [30] or the
iteratively re-weighted factor analysis to obtain a more robust estimation for the factors
and the related petrophysical parameters [31].

A new set of well logs (factor logs or factor scores) extracted by the above procedure
is scaled into arbitrary domains and correlated with variables in the dataset. In this case,
the extracted factors aid the interpretation of the shale volume and organic richness of the
formations. The statistical factors thus become a new mathematical model for interpretation
of the parameters of interest, i.e., shale volume and organic content of the formation. The
algorithm is applied to a set of theoretical logs, and the conclusions drawn are further
applied to data from real wells. The first factor (F1) was described earlier in [32], and an
empirical relationship was established for the estimation of shale volume. However, only
the factor with relation to the organic content of the formation, in this case, the second
factor (F2), is relevant to this work.

The extracted factor of interest is scaled to arbitrary values ranging from 0 to 1.
In order to find the relationship between the scaled factor and parameter of interest, a
gradient descent regression technique is applied to search for optimal values for the linear
regression parameters. We find that TOC can be estimated from the scores of the second
statistical factor:

TOC(F2) = θ1F2 + θ2, (5)

where θ1 and θ2 are site-specific regression coefficients. Using core data or other informa-
tion sources, the well logs can be calibrated to minimize the distance between the observed
and theoretical (linear regression-based) TOC logs. Similar to the first factor acting as a
good shale indicator, the second factor can be interpreted as an organic factor, and the
simultaneous interpretation of them can be used to separate the sweet spots from organic
matter-free shale intervals and help the quantitative interpretation of well logs.

2.4. Application of Interval Inversion

To validate the results of factor analysis, inversion tools are also used in this study.
Generally, well logging data are inverted using a local approach, also known as point-by-
point inversion, meaning that all available logging data at a given depth point are jointly
inverted to determine the petrophysical parameters at that same depth point [33]. However,
inverse theory is inherently mathematical and thus has limitations; mainly, fewer logging
tools than petrophysical parameters (e.g., effective porosity, water saturation, clay and silt
content, mineral volume fractions, zone parameters and several derived parameters) to
be investigated lead to a low data-to-unknown ratio, decreasing the estimation accuracy
and reliability of the parameters. Studies conducted at the Geophysical Department of the
University of Miskolc have found solutions to this problem; a new approach called interval
inversion has been introduced that increases the data-to-unknown ratio of the well logging
inverse problem and the accuracy and reliability of inversion estimation [34].

The interval inversion method gives an estimation of depth-dependent petrophysical
parameters using response functions that are defined for longer processing intervals over a
geological formation. Hence, the solution of the forward problem for the kth measurement
type is

d(calculated)
k (z)= gk(m1(z), . . . , mi(z), . . . , mP(z)), (6)

where mi is the ith petrophysical property (i = 1, 2, . . . , P, where P is the total number of
unknowns), gk represents the response function of the kth investigation device (k = 1, 2,
. . . , K, where K is the number of applied logging tools) and z is the depth coordinate. For
the discretization of model parameters, the following series expansion-based formula is
used [35]:

mi(z) =
Q(i)

∑
q=1

B(i)
q Pq−1(z), (7)
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where Bq is the qth expansion coefficient, Pq−1 is the (q−1)th-degree Legendre polynomial
as depth-dependent basis function assumed to be known quantity and must be selected
according to the characteristics of the depth variation of petrophysical parameters and Q(i)

is the requisite number of expansion coefficients for describing the ith model parameter
along the processed interval. The simplest geological model is the layer-wise homogeneous
model that can be described as a combination of unit step functions as basis functions
taking the least unknown parameters. Furthermore, for more complex geological situations,
where there are inhomogeneities within the formation, higher-order polynomials can be
used. Combining Equations (6) and (7), the response function now depends on depth
coordinates; therefore, the model parameters are interchanged by the series of expansion
coefficients leading to a highly overdetermined inversion problem since the required
number of expansion coefficients to describe the model parameters is smaller than the
number of inverted data. For solving the inverse problem, we apply a genetic algorithm-
based inversion approach, which assures to search for the global minimum of the deviation
between the measured and calculated well logs and provides an initial-model independent
solution [36]. In shale gas formations, the inversion method previously gave accurate
estimation for kerogen volume (Vk), porosity (Φ), water saturation in invaded and virgin
zone (Sx0 and Sw), matrix (here quartz) volume (Vma), clay content (Vc) and silt content
(Vs), including their estimation errors in a joint inversion procedure [37]. In this study,
we apply the same methodology and use the following response functions to calculate
synthetic well logs point by point along a well:

GR = VcGRc + VsGRs + VmaGRma + VkGRk, (8)

K = VcKc + VsKs + VmaKma + VkKk, (9)

U = VcUc + VsUs + VmaUma + VkUk, (10)

TH = VcTHc + VsTHs + VmaTHma + VkTHk, (11)

PEF = Φ[Sx0PEFw + (1 − Sx0)PEFh] + VsPEFs + VcPEFc + VmaPEFma + VkPEFk, (12)

RHOB = Φ[Sx0RHOBw + (1 − Sx0)RHOBh]+
+VsRHOBs + VcRHOBc + VmaRHOBma + VkRHOBk

(13)

NPHI = Φ[Sx0NPHIw + (1 − Sx0)NPHIh]+
+VsNPHIs + VcNPHIc + VmaNPHIma + VkNPHIk

(14)

AT = Φ[Sx0ATw + (1 − Sx0)ATh] + VsATs + VcATc + VmaATma + VkATk, (15)

RD =
a∗Rw

Φm∗Sn∗
w

− Rc(Vc − Vk)
2 + V 2

k KRF, (16)

where GR is natural gamma-ray intensity, U is uranium concentration, K is potassium
concentration, TH is uranium concentration, PEF is photoelectric absorption index, RHOB
is bulk density, NPHI is neutron porosity, AT is acoustic travel-time and RD is deep
resistivity data. Subindices w and h refer to pore water and hydrocarbon, respectively; Rc
is clay resistivity, Rw is pore-water resistivity, m* is cementation exponent, a* is tortuosity
factor, n* is saturation exponent and KRF is a kerogen resistivity correction term. TOC is
directly derived from the inversion results as the ratio of VkRHOBk/KcRHOB, where Kc is
the kerogen conversion factor, the value of which is normally chosen as 1.2.

2.5. Application of Artificial Neural Networks

For further possibilities to validate TOC values derived from factor analysis, we apply
an artificial intelligence algorithm as well. Artificial neural networks (ANNs) are highly
adaptive computational tools that have gained popularity in many fields of science and
engineering. An ANN technique was used in [38], where an empirical correlation to
determine the TOC for Barnett and Devonian shale formations based on conventional logs
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was obtained with high accuracy. The well logs were entered into the input nodes, and
TOC was predicted from the estimates provided in the output node.

The theory of ANNs was conceptualized by [39–41], who based their research on the
study of the human brain processes, such as perceptual interpretation, abstraction and
learning. These characteristics are the most important highlights of ANNs since the ability
of learning and adaptability makes them attractive; for instance, ANNs can be improved
by evolutionary computational techniques that allow doing classification, nonparametric
multiple regression and time series analysis [42]. The mathematical structure and behavior
of an ANN are simpler than those of the biological one, which is mainly formed of three
parts: the dendrites, the soma and the axon. Those components all together are known as a
neuron. The neuron receives an input signal from other neurons connected to its dendrites
by a process known as synapses, electric nerve impulses between neurons. These impulses
are attenuated with an increasing distance from the synapse to the soma or cellular body of
the neuron, which activates an output depending on the total impulse. The output signal is
transmitted by the axon and distributed to other neurons.

In our application, we apply a multilayer perceptron model (MLP) using a three-layer
neural network for all the field cases, with input features in the first layer, a hidden layer
with five nodes and an output layer with the estimated parameter (TOC). In the second
layer, the rectified linear activation function is applied, with a linear activation function
in the output layer. One of the major constraints of the ANN technique is that it is highly
computationally expensive. With the many variables associated with well logs, the neural
networks receive too many features, thereby making the procedure more computationally
expensive. In this study, an Adam optimization-assisted ANN algorithm is employed to
increase the efficiency of the computation. The technique is an extension of the random
gradient descent algorithm. It has the advantage of iteratively updating the network
weights in the training data as learning progresses, as opposed to the use of a single
learning rate as with the case of the gradient descent method. Individual adaptive learning
rates for different parameters are computed from estimates of the first and second moments
of the gradients [43]. Efficient for large datasets, this optimization technique has the added
advantage of being computationally efficient as it requires little memory and is relatively
simpler. The RMS is applied as the measure of the error. The batch size is the number of
training examples in one forward/backward pass. The higher the batch size, the more
memory space we need. If one has 1000 training examples and the batch size is 500, then
it will take 2 iterations to complete 1 epoch. The number of epochs is a hyperparameter
that defines the number of times that the learning algorithm will work through the entire
training dataset. The total number of epochs is set to 100. After completing the training
phase using the same control parameters for all wells, we apply the network for predicting
TOC along the wells.

3. Results

The factor analysis technique assumes the existence of unobserved variables in the
analyzed datasets, which accounts for the variances over a given interval. The method
is applied first to a synthetic dataset (Well 1), and the inferences drawn from the results
obtained were used to analyze other datasets from real wells drilled in oil fields in different
basins (Hungary, Well A; USA, Well B; and Norway, Well C). Moreover, various sets of well
logs are used, as obtained from these wells, and thus the relationship between the organic
factor and these well logs is compared and examined. The detailed information on these
wells and in situ measurement types can be found in Table 1. It must be mentioned that one
significant distinction between these datasets used for this analysis (besides the basins from
which they are derived) is that while the synthetic data is modeled after an unconventional
reservoir and Wells A and B are also unconventional reservoir formations, Well C is a
source rock interval associated with a conventional petroleum system and comprises two
formations—the Mandal and Farsund formations of the Norwegian North Sea region. In
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all cases, however, the latent information extracted from the factor analysis technique is
used for the estimation of TOC.

Table 1. Well logging data summary of the analyzed wells.

Location Index Interval Length Well Log Suite

Fictitious place Well 1 40 m GR, K, U, TH, PEF, RHOB,
NPHI, AT, RD

Hungary Well A 50 m GR, K, TH, U, NPHI, RHOB,
RD, RS

USA Well B 92 m GR, AT, RHOB, NPHI, RD

Norway Well C 110 m AT, GR, NPHI, PEF, RD,
RHOB, TH, U

3.1. TOC Estimation Results
3.1.1. Synthetic Modeling Experiments

The wireline logs form a 401-by-9 theoretical log data matrix obtained from a model
shale interval of 40 m in depth. Sampling rate of data is 0.1 m, and hence there are 401 data
points. The well log suite includes the natural gamma-ray intensity (GR); spectral gamma-
ray intensity logs such as uranium (U), thorium (TH) and potassium (K); photoelectric
absorption index (PEF); density (gamma–gamma) (RHOB); sonic interval time of P-wave
(AT); neutron porosity (NPHI); and deep (laterolog) resistivity (RD) logs. To mimic real
well logging measurements, different amounts of random noise can be added to the above
synthetic data computed by Equations (8)–(16). In this study, the kth noisy data at a given

depth are computed as d(synthetic)
k = dk(1 + N(µ,σ)), where the µ = 0 is the expected value

and σ is the standard deviation proportional to the desired noise level. Based on this
approach, we added 5% Gaussian distributed noise to the theoretical well logs calculated
by Equations (8)–(16). Two statistical factors are extracted using Equation (4), and these
new latent variables can be applied for quantitative description of the lithology (shale
volume) and the organic content of the formation (TOC). The factor loadings estimated
by Equation (3) are listed in Table 2. While the first factor (shale factor) had a high
loading, especially for logs associated with the shale content of the formation (L(GR) = 0.91,
L(K) = 0.97, L(TH) = 0.97), the uranium log which is more associated to the organic content
of the logged interval had no correlation with it. However, a high loading was measured
for the uranium log with the second factor (L(U) = 0.87, greater than other associated well
logs), hence the term “organic factor”.

Table 2. Factor loadings rotated using the varimax algorithm for Well 1.

Well Log Shale Factor (F1) Organic Factor (F2)

GR 0.91 0.32
K 0.97 0.09
U −0.03 0.87

TH 0.97 0.12
PEF 0.56 0.64

RHOB 0.20 0.60
AT 0.76 −0.43

NPHI 0.95 −0.01
RD −0.65 −0.22

Regression analysis showed that the Pearson’s (linear) correlation coefficient between
the organic factor and TOC (estimated from different sources such as inversion and core
measurements) is high (R = 0.88). We minimize the cost function J(θ) (the error between the
measured and estimated values of TOC) in iterative steps by using the gradient descent
algorithm. The iteration steps preset for the regression analysis is 1000 steps with learning



Energies 2021, 14, 5978 10 of 17

rates (α) of 0.1, 0.3, 0.01, 0.03, 0.001 and 0.003. As a result, the regression coefficients entered
into the empirical equation for TOC estimation, as defined in Equation (5), are 0.35, 3.75
and 3.24 for θ1, θ2 and J(θ), respectively. The regression model is illustrated in Figure 1a. In
the same figure, we can compare the results of regression analyses of all wells involved in
this study. As it is seen, the factor variable is unscaled, and it is inherently a standardized
quantity. It is demonstrated that the suggested method gives consistent results and is
applicable using different datasets and geological environments.

Figure 1. TOC vs. organic (second) factor regression plots: (a) synthetic modeling case (R = 0.87); (b) Pannonian Basin,
Hungary (Well A) (R = 0.74); (c) Alaska, USA (Well B) (R = 0.88); (d) North Sea, Norway (Well C) (R = 0.84).

The results of factor analysis can be seen in Figure 2. In the first four tracks, the
noisy synthetic wireline logs are plotted. The theoretical logs are calculated by Response
Equations (8)–(16) and are contaminated with 5% Gaussian distributed noise. On the
fifth track, the resultant factor logs can be seen. The first factor indicates the amount of
shaliness, while the second one is proportional to the total organic content. On the sixth
track, the organic content estimation results can be found. TOC_FA log is estimated from
factor analysis, while TOC_inversion is the result of interval inversion using 20th-degree
Legendre polynomials as basis functions in Equation (7). The independent results agree
well and are also confirmed by the k-means cluster analysis of the same well logs [44]. The
cluster number log calculated by nonhierarchical clustering using a robust weighted least
squares distance metric as similarity criterion assumes four different lithology categories,
where dark colors indicate the organic matter-rich (possible reservoir) intervals and lighter
colors show shale deposits containing lower concentrations of uranium.

3.1.2. Results in Well A

Well logging data were previously collected in a Miocene tight gas interval in Derecske
Trough, East Hungary. The input dataset includes the natural gamma-ray intensity log
(GR); spectral gamma-ray intensity logs such as uranium (U), thorium (TH) and potassium
(K); photoelectric absorption index log (PEF); bulk density log (RHOB); compensated
neutron porosity log (NPHI); and shallow (RS) and deep (laterolog) resistivity (RD) logs.
The loadings of the two extracted factors are included in Table 3. The natural gamma ray,
thorium and potassium logs have an average loading (L) of 0.9, and the Uranium log has
a factor loading of L(U) = 0.7. The organic factor shows a moderate correlation with total
organic content in Well A (Figure 1b); this result is consistent with our synthetic modeling
experiments. The Pearson’s correlation coefficient between the second factor and TOC
is R = 0.74 (that between the first factor and inversion derived shale volume is R = 0.9).
The regression coefficients (estimated in the same manner presented in Section 3.1.1) in
Equation (5) are 0.38, 0.75 and 0.34 for θ1, θ2 and J(θ), respectively.
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Figure 2. Result of factor analysis in Well 1. Denotations are as follows: natural gamma-ray (GR), spectral gamma-ray (K, U,
TH), photoelectric absorption index (PEF), bulk density (RHOB), neutron porosity (NPHI), acoustic travel-time (AT), deep
resistivity (RD), TOC log from interval inversion (TOC_inversion) and TOC log from factor analysis (TOC_FA). The shale
factor is Factor 1; the organic factor is Factor 2. The last track shows the depth distribution of four identified clusters.

Table 3. Factor loadings rotated using the varimax algorithm for Well A.

Well Log Shale Factor (F1) Organic Factor (F2)

GR 0.93 0.36
K 0.98 −0.06

TH 0.81 0.50
U 0.08 0.70

NPHI 0.89 0.25
RHOB 0.65 0.49

RS −0.81 −0.35
RD −0.79 −0.17

The results of factor analysis can be seen in Figure 3. The gamma-ray and porosity
logs (bulk density (RHOB) and neutron porosity (NPHI)) show gas indications in the tight
gas formation. In the first four tracks, the observed well logs are plotted. On the fifth
track, the resultant factor logs can be seen; the first factor indicates the amount of shaliness,
while the second one is proportional to the total organic content. On the sixth track, the
organic content estimation results can be found. TOC_FA log as a result of factor analysis
is validated by interval inversion (based on 40th-degree Legendre polynomials) estimation
(TOC_inversion), artificial neural network prediction (TOC_ANN) and core laboratory
measurements in some points (TOC_core). The agreement is acceptable, and the cluster
analysis results highlight different intervals. The color codes of rock types are the same as
in the synthetic case.

3.1.3. Results in Well B

The well interval processed is a shale gas reservoir in Alaska, USA. The available
wireline logs are as follows: deep induction (RD), neutron porosity (NPHI), density (RHOB),
sonic travel-time (AT) and natural gamma-ray (GR). The analyzed interval depth ranges
from 3450 to 3500 m with 601 measured data points. The loadings of the two extracted
factors are included in Table 4. The factor analysis result showed that, unlike in the previous
two cases, the first factor had its highest correlation with the NPHI log, while that with the
natural gamma-ray was low (0.12). Neuron porosity and bulk density logs are both highly
sensitive to shale volume, which is also confirmed by the results of factor analysis. Despite
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this difference from the previous results, the first factor is still correlated highly with the
shale volume (R = 0.84). On the other hand, the second factor, which correlates highly
with the natural gamma-ray log (L(GR) = 0.96), has a very weak relation to shale volume
(R = −0.22) and a strong correlation with TOC (R = 0.88) (Figure 1c). The regression
parameters defined for the mathematical relationship between the organic factor and TOC
are 1.79, 6.60 and 5.63 for θ1, θ2 and J(θ), respectively.

Figure 3. Result of factor analysis in Well A. Denotations are as follows: natural gamma-ray (GR), spectral gamma-ray (K,
TH, U), neutron porosity (NPHI), bulk density (RHOB), shallow (RS) and deep resistivity (RD), TOC estimates from interval
inversion (TOC_inversion), TOC estimates from factor analysis (TOC_FA) and TOC estimates of artificial neural network
(TOC_ANN). The shale factor is Factor 1; the organic factor is Factor 2. The last track shows the depth distribution of four
identified clusters.

Table 4. Factor loadings rotated using the varimax algorithm for Well B.

Well Log Shale Factor (F1) Organic Factor (F2)

RD −0.90 0.05
NPHI 0.91 0.37

GR 0.12 0.96
RHOB −0.73 −0.49

AT 0.84 0.39

The results of factor analysis can be seen in Figure 4. The natural gamma-ray log
shows high-intensity values around 3010 m; this zone is identified as a sweet spot. Cluster
analysis separates four different zones; each contains some amount of kerogen most signifi-
cantly in the black-colored zone (track 8). (The color codes of rock types are the same as
in the previous cases.) In the first five tracks, the measured wireline logs are plotted. On
the sixth track, the well logs of the two extracted factors can be seen. On the seventh track,
the total organic content prediction results can be found: factor analysis (TOC_FA), inter-
val inversion using 30th-degree Legendre polynomials (TOC_inversion), artificial neural
network (TOC_ANN) and core analysis from literature resources (TOC_core). Different
evaluation methods give consistent results; unfortunately, no core data can confirm the
maximum of the TOC curve, which is given only by well log analysis.
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Figure 4. Result of factor analysis in Well B. Denotations are as follows: natural gamma-ray (GR), bulk density (RHOB),
neutron porosity (NPHI), sonic travel-time (AT), deep induction resistivity (RD), first factor (Factor 1), second factor (Factor
2), TOC estimates from interval inversion (TOC_inversion), TOC estimates from the factor analysis (TOC_FA) and TOC
estimates of artificial neural network (TOC_ANN). The last track shows the depth distribution of four identified clusters.

3.1.4. Results in Well C

The evaluation procedure is tested also in a Norwegian well. The processed wireline
logs are as follows: natural gamma-ray intensity (GR), spectral gamma-ray intensity logs
such as uranium (U) and thorium (TH) concentrations, photoelectric absorption index
(PEF), bulk density (RHOB), acoustic travel-time (AT), neutron porosity (NPHI) and deep
resistivity (RD). The factor loadings of the two statistical variables extracted from the above
dataset are included in Table 5. From the point of view of TOC estimation, it is favorable
that the uranium log has a high correlation with the organic factor (L(U) = 0.95), consistent
with the previous wells where the uranium log is available. The second factor also has a
relatively high measure of correlation with the sonic and resistivity logs, which also implies
that the logs can be used to effectively estimate the TOC quantities for the section using
Passey’s (∆logR) method.

Table 5. Factor loadings rotated using the varimax algorithm for Well C.

Well Log Shale Factor (F1) Organic Factor (F2)

AT 0.70 0.68
GR 0.24 0.89

NPHI 0.70 0.66
PEF 0.53 0.17
RD 0.45 0.86

RHOB −0.40 −0.58
TH 0.83 0.15
U 0.16 0.95

The regression relationship between the organic factor and TOC is also valid in Well
C. The regression analysis specified the parameters 0.14, 6.47 and 2.27 for θ1, θ2 and J(θ),
respectively. The measured correlation coefficient between the two parameters is R = 0.84,
and the straight line as a regression model can be seen in Figure 1d. The results of factor
analysis can be studied in Figure 5. In the first five tracks, the observed well logs are plotted.
In lithology logs, it can be seen that besides almost a constant rate of thorium concentration,
the uranium content is mostly responsible for the total natural gamma-ray counts. The
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photoelectric absorption index log shows some mineral variations at the upper portion
of the section, and an abundance of pyrite minerals causes the local maximal deflections
of the PEF curve. On the sixth track, the well logs of the two extracted factors can be
seen. Next to it, one can find the TOC estimations based on factor analysis (TOC_FA), the
classical Passey’s method (TOC_Passey), artificial neural network (TOC_ANN) and core
lab measurements (TOC_core). The clusters formed by the k-means clustering algorithm
primarily indicate the TOC variation along the processed interval.

Figure 5. Result of factor analysis in Well C. Denotations are are follows: natural gamma-ray (GR), thorium concentration
(TH), uranium concentration (U), photoelectric absorption factor (PEF), bulk density (RHOB), acoustic travel-time (AT),
deep resistivity (RD), neutron porosity (NPHI), first factor (Factor 1), second factor (Factor 2), TOC estimates from Passey’s
method (TOC_Passey), TOC estimates from the factor analysis (TOC_FA), TOC estimates of artificial neural network
(TOC_ANN) and TOC estimates measured on core samples (TOC_core). The last track shows the depth distribution of four
identified clusters.

4. Discussion and Conclusions

Traditional Passey’s and modern inversion methods for TOC estimation have been
applied along with the factor analysis approach described in this work. Core data have also
been used to validate the results obtained. While the ∆logR method relies only on the sonic
and resistivity logs for the determination of TOC, the inversion-based methods process
all suitable logs simultaneously, taking advantage of existing mathematical relationships
(i.e., response equations) between the well logs and the organic content of the analyzed
formations. Factor analysis, however, seeks latent factors within the same dataset that
have some relationship with the parameter of interest for the estimation of that parameter,
which in this case is the organic content.

It is observed that the regression parameters for the different wells vary, most probably
due to the high variance associated with organic matter along vertical scales, even in a
single formation. For comparing the results more easily, the factors can be properly
scaled. In [4], this vertical heterogeneity was attributed directly to the geologic and biotic
conditions under which these sediments were deposited. Selection of defined globally
valid regression parameters for the estimation of TOC, therefore, most likely requires more
statistical information/data analysis from surrounding wells and/or calibration of the
extracted organic factor to TOC measured using lab-based geochemistry techniques, as
noted in [15]. However, it is shown in our results that the factors extracted in various cases
are unique to the formation and the wireline logs recorded for such formations.
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Let us compare the factor loadings obtained from the studied wells (Table 6). In the
first two wells, the natural gamma-ray, thorium, potassium, neutron porosity and resistivity
logs have no significant correlation with the organic factor. The relationship between the
relevant factor and organic content of the formation is, however, made evident in the
synthetic case and in Wells 1, A and C (where uranium concentration data are available)
with loadings of 0.87, 0.70 and 0.95, respectively. In Well B, it can be argued that the high
factor loading between the second factor and natural gamma-ray may be a result of the
high organic presence in the formation, as Table 4 shows that the well log has a very poor
factor loading to the shale content of the formation.

Table 6. Comparison of the loadings of the organic (second) factor for the analyzed unconventional
hydrocarbon wells. Symbol (-) indicates no available logs.

Wireline Log
Factor Loading (L(F2))

Well 1 Well A Well B Well C

GR 0.32 0.36 0.96 0.89
K 0.09 −0.06 - -
U 0.87 0.7 - 0.95

TH 0.12 0.5 - 0.15
PEF 0.64 - - 0.17

RHOB 0.60 0.49 −0.49 −0.58
AT −0.43 - 0.39 0.68

NPHI −0.01 0.25 0.37 0.66
RD −0.22 −0.17 0.05 0.86
RS - −0.35 - -

The Passey’s overlay method was inapplicable in the first three cases due to the
failure of the log calibration required by the procedure as described in [22]. The successful
estimation of TOC by the suggested factor analysis technique therefore highlights an
advantage of the method, as calibrations are not necessary for estimating organic contents
of the formation. Because the extracted factor depends greatly on the original logs in the
analyzed well, factors extracted from wells containing different datasets may lead to poor
estimation of the parameters if the same regression coefficients are applied. Observations
from the analyzed wells show that the vertical variability may be correct. The newly
obtained TOC log requires calibration to data of core samples afterward.

In conclusion, it was demonstrated that the results of factor analysis are consistent and
this approach gives reliable results for different well log suites and geological formations.
This study was carried out using datasets from shale gas formations, tight gas sands
sourced by adjacent lying source rocks and a source rock from a conventional reservoir.
The inference drawn from the results obtained in this work showed that, of the two latent
variables extracted, the first one is a shale indicator valid in organic matter-free intervals,
while the second one is an organic factor indicating the presence of shale reservoirs. The
empirical equation for estimating the parameters is site-specific and thus may not be
applied globally. However, with the analysis of datasets from a similar field/formation,
regression coefficients that work best for such areas can be determined. This work can
be further developed to study the effects of level of maturity, kerogen type, depositional
environments, etc., on the extracted organic factor and how this affects the absolute value
of the TOC derived from factor analysis. The in situ estimation of the shale volume and
TOC over a continuous interval can be extended to multidimensional applications using a
2D/3D factor analysis algorithm. All of the algorithms used in this study were developed
in MATLAB and Python. To yield more robust estimation results, the current algorithm can
be combined with other machine learning tools, such as hyperparameter estimation-based
factor analyses. For instance, the control parameters of factor analysis can be automatically
determined by hyperparameter estimation methods. As a result, TOC estimation can be
made more effectively, reliably and accurately along a well or even between several wells.
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