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Abstract: Energy-saving scheduling is a well-known issue in the manufacturing system. The flexi-
bility of the workshop increases the difficulty of scheduling. In the workshop schedule, considering 
the collaborative optimization of multi-level structure product production and energy consumption 
has certain practical significance. The process sequence of parts and components should be con-
sistent with the assembly sequence. Additionally, the non-production energy consumption (NPEC) 
(such as the energy consumption of workpiece handling, equipment standby, and workpiece con-
version) generated by the auxiliary machining operations, which make up the majority of the total 
energy consumption, should not be ignored. A sub-batch priority is set according to the upper and 
lower coupling relationship in the product structure. A bi-objective batch scheduling model that 
minimizes the total energy consumption and the total completion time is developed, and the multi-
objective gray wolf optimizer (MOGWO) is employed as the solution to obtain the optimal schedule 
scheme. A case study is performed to demonstrate the potential possibilities concerning NPEC in 
regard to reducing the total energy consumption and to show the effectiveness of the algorithm. 
Compared with the traditional optimization model, the joint optimization of NPEC and PEC can 
reduce the energy consumption of standby and handling by 9.95% and 22.28%, respectively. 

Keywords: multi-level structure; non-production energy consumption (NPEC); sub-batch priority; 
multi-objective gray wolf optimizer (MOGWO) 
 

1. Introduction 
Scheduling has been certified to be critical in manufacturing for improving the 

productivity of the manufacturing system and utilization of equipment, as well as short-
ing the manufacturing cycle [1]. Traditional machining scheduling typically envisions 
product processing phases where jobs are independent of each other and are not sequence 
constrained. In the conventional processing scheduling method, the two processes of pro-
cessing and assembly are separated from each other, which will lead to the destruction of 
the original parallel relationship between processing and assembly [2]. Generating a pro-
cessing sequence on the base of the assembly process would reduce the frequency of this 
phenomenon. Nevertheless, because the process is complicated (such as product hierar-
chy, number of workpieces, and processing steps), the resolution of these problems con-
sidered processing sequence in machining systems is more difficult than traditional ma-
chining scheduling. Moreover, it is an NP-hard problem [3]. 

Temporally, the completion time of workpieces is affected by the hierarchy of the 
product tree. For example, a product that includes 10 levels is processed from the bottom 
up. If each level is processed when the previous level is finished, without a doubt, it will 
prolong the entire production cycle. Therefore, batching the workpieces and making the 
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scheduling scheme in the production of the multi-level structures have practical signifi-
cance for reducing the completion time. 

The manufacturing industry has consumed large amounts of energy in the process 
of transforming resources into products or services, leading to many environmental prob-
lems [4]. The realization of low-carbon manufacturing is extremely important for improv-
ing the sustainability of the manufacturing industry [5]. Energy-efficient scheduling, 
which can be approved in the manufacturing industry, has achieved energy conservation 
and emissions reduction [6]. Therefore, the scheduling scheme should not only consider 
the rationality of the process sequence for the workpieces but also reduce the energy con-
sumption of the production system. 

The processing energy consumption (PEC) and non-processing energy consumption 
(NPEC) of the machine are the two components of the production energy consumption of 
the workshop. PEC stands for the energy consumption of the machine at the processing 
stage, which is related to the processing power and processing time of the machine. NPEC 
is the sum of standby energy consumption, conversion energy consumption, and han-
dling energy consumption. Compared with the energy consumed by the machine in other 
operating phases, the equipment consumes less energy when processing workpieces, es-
pecially in mass production, which generally only accounts for approximately 10% of the 
total energy consumption [7]. 

Most of the energy consumption in production is generated by auxiliary operations. 
Here, auxiliary operations are defined as operations that are not directly involved in pro-
cessing but indispensable in the production process, such as those for equipment standby, 
state conversion, and workpiece handling. Compared with the energy consumption gen-
erated by the processing phase, the energy consumption generated by auxiliary opera-
tions can be large. Therefore, if the focus of energy conservation is on developments in 
processing and energy-saving equipment [8], the considerable energy-saving potential of 
auxiliary operations will be ignored. In addition, relative to changing a processing tech-
nology or researching and developing more energy-saving processing, an optimized 
workshop scheduling scheme can provide good application value with a low investment 
[9]. Therefore, in a production system based on processing sequences of workpieces, com-
prehensively considering the energy consumption composition in the production process, 
optimizing the allocation of workshop resources, and formulating reasonable scheduling 
arrangements will be more conducive to reducing energy consumption and improving 
efficiency in manufacturing enterprises. 

Gray wolf optimization [10] (GWO) is a new intelligent optimization algorithm pro-
posed in recent years. Compared with the genetic algorithm (GA) and particle swarm op-
timization (PSO), GWO algorithm results are more competitive [11]. At present, the gray 
wolf algorithm has been widely applied in thermodynamics [12], power systems [13], en-
ergy and fuels [14], cloud technology [15], and workshop scheduling [16–18]. Lu [16] em-
bedded genetic operators into the multi-objective GWO to enhance the searchability of the 
algorithm. Qin [17] used the improved multi-objective gray wolf algorithm to solve the 
casting shop scheduling to minimize the production cycle, total production cost, and total 
delivery delay. Lu [18] added a random search model based on traditional GWO search 
to enhance global search capability. Although GWO has been successfully used in many 
different types of production environments, there is limited literature on GWO to solve 
energy-saving scheduling problems in a machine-shop, especially to optimize auxiliary 
production energy consumption. Therefore, we extended the single-objective GWO to the 
multi-objective GWO to consider completion time and total energy consumption minimi-
zation. 

Reducing energy consumption through NPCE optimization and minimum comple-
tion time are major design goals. The research motivation and research problem will be 
clearer in the discussion of background research, and then the related mathematical model 
will be introduced, followed by the MOGWO algorithm and how it is applied to optimize 
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the bi-objective scheduling problem; finally, a presentation of a case study will demon-
strate the model and algorithm in the case of two different energy consumption optimi-
zation objectives and different algorithms. 

In the rest of this paper, the current research progress will be introduced in Section 2 
and a bi-objective model based on the research problem is established in Section 3. In Sec-
tion 4, the working procedure of MOGWO of this optimization problem is described. Sec-
tion 5 conducts case analysis and comparison. Finally, Section 6 summarizes this article. 

2. Literature Review 
The scheduling research of multi-level structure products was first studied for an 

assembly workshop [19,20]. Li et al. [21] developed four batch strategies to solve three 
different multi-level product assembly problems. Lu et al. [22] studied tree-like products 
scheduling problems in an assembly workshop, aiming to minimize the assembly com-
pletion time. Wan et al. [23] proposed a visual modeling and scheduling model for assem-
bly processing based on a workflow for the assembly process of complex products and 
designed heuristic scheduling rules. Suharyanti et al. [24] investigated the optimal lot size 
of complex products in the job shop. Batching can effectively reduce product production 
cycles. However, the scheduling research on multi-level structure products is not enough 
to solve the problem of collaboration production because sequence constraint scheduling 
should be compatible with the assembly sequence and has higher complexity. 

A scheduling problem that comprehensively considers the optimization of the en-
ergy consumption with the traditional targets (completion time/production cost) is com-
plex, and it is particularly important to carry out in-depth research on this [25]. At present, 
a large amount of energy waste occurring in processes that have nothing to do with equip-
ment processing operations has been found. Dahmus and Gutowski [7] analyzed the en-
ergy consumption of machining and proved that the actual processing operations only 
accounted for a small part of the total energy consumption, whereas auxiliary operation 
energy consumption accounted for 30–50%. The idle time of the machine occupied 16% of 
the total completion time [26]. Thus, the NPEC is large. Based on the knowledge regarding 
total energy consumption, it has become a trend to decompose the total energy consump-
tion and reduce energy waste through optimization of the scheduling scheme. Wang [27] 
simulated a processing process and classification of energy consumption by product qual-
ity. In general, the total energy consumption can divide into PEC and NPEC, where NPEC, 
as indicated above, refers to the energy consumption generated by auxiliary operations 
such as equipment start-up, shutdown, and idling. 

In recent years, more and more research of NPEC has been conducted thoroughly. 
Luan et al. [28] studied the energy consumption of non-cutting status and established an 
accurate power model to accurately predict the power of the feed motion. Liu et al. [29] 
improved the machine utilization rate by 8.2% by optimizing the processing sequence for 
the workpieces. Peng et al. [30] considered standby energy consumption. Wu et al. [31] 
studied a renewable energy scheduling problem of a flow shop and established a multi-
objective renewable energy power supply model, intending to reduce the processing and 
idle energy consumption during processing. Gilles et al. [32] investigated the impacts of 
batch production on energy consumption and order completion time. It was considered 
that batching could effectively reduce the number of conversions and equipment standby 
time, thereby reducing the conversion energy consumption and standby energy consump-
tion. Che et al. [25] used a clustering algorithm to determine whether a shutdown opera-
tion was required between two tasks to reduce the standby energy consumption and/or 
optimally sort the processing tasks. Liu et al. [29] integrated scattered short standby peri-
ods into a long standby time and judged whether off or assigned other tasks. Wang et al. 
[33] considered the power changes in the standby state and processing states of the ma-
chine. However, the above research mostly focused on the conversion and standby energy 
consumption separately. In the research of NPEC, they should be considered more sys-
tematically. 
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In the research articles above, most of the influences of workpiece handling on the 
energy consumption of the workshop were ignored. However, it is more realistic to con-
sider the scheduling and optimization of such handling. The impact of handling on energy 
consumption has generally not been considered [34–36]. The handling of workpieces be-
tween machines is also part of auxiliary processing, and its energy consumption should 
belong to the NPEC in the system. Different from previous studies, the NPEC would be 
determined based on the energy consumption of the equipment standby, conversion, and 
workpiece handling. In addition, a machine may perform many processing tasks, and the 
frequent shutdown and start-up of the equipment will increase energy consumption. 
Therefore, this part of the energy consumption is generally not considered. 

Based on the above discussion, the research on multi-level product production and 
energy-conscious scheduling in the machining workshop is limited. The existing work-
shop scheduling methods cannot meet the requirements of production and energy saving 
because each mode has its characteristics. The research on NPEC should be considered 
when proposing a scheduling method that is different from the traditional optimal energy 
consumption scheduling. Therefore, the scheduling model of the machining workshop is 
more complicated than that of the traditional workshop. To bridge this gap, a scheduling 
method was introduced specifically for machining workshops to minimize completion 
time and energy consumption. 

3. Problem Statement 
3.1. Related Product Structure 

In real-world production, a product is a combination of a group of parts/components 
with order constraints and can be represented using a tree structure diagram. The pro-
cessing and assembly of products are conducted according to the tree structure. The edges 
in the tree represent the assembly constraint relationships, the leaf nodes are the 
parts/components, and the root node is the final product. Each level’s leaf node can be 
called a child node of its upper-level node, and the processing starts from the lowest-level 
leaf node. It is composed of n parts/components with order constraints. The production 
of components includes several processes, each process is handled by a machine (in M), 
and the alternative processing equipment for different processes can be identical. 

According to the structural characteristics and commonalities between products, the 
literature [37] has generally summarized product structures into three types: flat, tall, and 
complex. The corresponding product structure trees are shown in Figure 1. The flat type 
is a single-layer product and is directly assembled from first-level parts into products. The 
tall type has multiple levels of parts/components, and each sub-workpiece contains at 
most two nodes. The complex type is a multi-layer composite of flat- and tall-type tree 
structures, in which at least one parent node contains more than two child nodes, as 
shown in Figure 1. The nodes of each tree are arranged hierarchically, where level 0 rep-
resents the complete product, and level 1 is the hierarchical arrangement of parts. For 
example, the structure of the B product is divided into 1–3 levels, and the branch nodes 
under it are called components, such as P1 and P2. The production sequence is as follows: 
first produce the workpieces J3 and J4, and then the superior P2 and J2 for production, and 
so on. 

Based on the coupling relationship(s) between the parts/components in the product 
structure, batch production and handling are conducted, in which each type of workpiece 
is divided into equal batches, and the numbers and size of the sub-batch of each product 
are determined, as well as the sub-batch production and handling sequence. A batch 
scheduling problem based on the product structure will face difficulties caused by the 
coordination of the processing times between the workpieces. The arrangement of the 
production sequence of each sub-batch to meet the coupling sequence of the products is 
very important. For example, in the mass production of the workpieces in a machining 
workshop, each type of workpiece can be divided into an equal number of sub-batches. 
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According to the coupling relationship between the workpieces and the production time 
of the workpiece, the lower-level workpieces are produced first, and then the start pro-
cessing time of the upper-level workpieces will be later than the next level of workpieces, 
minimizing machine standby while optimizing handling equipment to reduce NPEC. 

P1

P2

Flat Tall

P1

Complex0 level

1 level

0 level

1level

2 level

0 level

1 level

2 level

3 level

J1

J2

J3 J4

J1

J1

A B C

J1 J2 J3 J4

J3J2

A, B and C represents different product 
types
Pi : components
Ji  : parts

: operations
: represents different structure of Pi /Ji

 
Figure 1. Three types of product structure. 

3.2. Problem Definition and Assumptions 
The problem can be expressed as follows. Related sets and decision variables are 

shown in the Appendix A. 
1. The product contains n types of workpieces J = {J1, J2, J3, ..., Jn}, the number of work-

pieces Jj is Qj, and each workpiece contains Oj processes. 
2. There are h types of handling equipment in the workshop. A specific piece of han-

dling equipment is expressed as Hh. The handling speed and power of the same type 
of handling equipment are the same; the speed of Hh is Vh, the power when handling 
parts/components j is 𝑃, and the rated capacity of the workpiece j on the handling 
equipment is Sjh. 

3. After a certain process of the workpiece is processed on equipment m, it needs to be 
transported to the selected equipment m’ of the next process. The locations of all 
equipment in the workshop are fixed, and the distance between equipment m and 
equipment m’ is dmm’. After the last process of a batch of workpieces is processed on 
equipment m, they are transported to assembly workshop P for assembly. The dis-
tance between equipment m and assembly workshop P is dmp. 
The following assumptions are used in the scheduling. 

• Alternating machines for different processes can be the same. 
• Each type of sub-batch of workpieces can only be transported to the next process 

processing equipment for processing/waiting after the previous process is completed 
according to the process sequence. 

• At most, one workpiece is processed on each machine at a time, and one workpiece 
is processed on at most one piece of equipment at any time. 

• The processing and handling equipment are available at the initial moment. 
• A process is not interrupted once it starts processing. 
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• The equipment requires preparation time before processing different types of work-
pieces successively; in contrast, processing the same types of parts does not require 
preparation time. 

• The number of pieces of handling equipment is limited. If the number of sub-batches 
of workpieces is greater than the rated capacity of the handling equipment, multiple 
pieces of equipment must be moved simultaneously or multiple times by one piece 
of equipment. 

• The time required for loading and unloading workpieces is ignored. 

3.3. Problem Formulation 
3.3.1. Objectives 

During workpieces processing, there are three main states of equipment: the pro-
cessing state, conversion state, and standby state. The equipment power and state vary 
with time [25], as shown in Figure 2. 𝑆  and 𝐶  represent the start and completion times 
of the ith operation on device m, respectively, and Oj(1)i(1) 

m represents the Oji processing on 
equipment m. 

P（m）

Time

Time

m

NPEC

processing conversion

standby

P1

P2

P3

P3

con con consatandb
y

Sm1 Cm1 Sm2 Cm
2 Sm3 Cm3 Sm4 Cm4 Sm5

Gantt 
Chart

Oj i
m
1 1 Oj i

m
2 2 Oj i

m
3 3 Oj i

m
4 4 Oj i

m
5 5

 
Figure 2. Gantt chart of m and the distribution of corresponding power. 

The total energy consumption of the production system is composed of the PEC (Ep) 
and NPEC (En) during the processing of components and parts. Of these, the NPEC con-
sists of the state transition energy consumption (Es), the standby energy consumption (Ew), 
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and the handing energy consumption (Ed) (including the energy consumption of the mov-
ing parts/components between machines and moving to the assembly workshop when 
finished). 
• The energy consumption criterion E 

It consists of the PEC and NPEC. Specifically, this energy consumption metric is 
given as follows: 

E = Ep + En (1)

The PEC consumed by all workpieces owing to the processing, as shown in Equation 
(2), as follows 

Ep = ∑ ∑ ∑ ∑ αj
w
m=1

Oj
i=1

Bj
k=1

n
j=1 TBjkim (2)

The NPEC consists of the equipment standby energy consumption (Ew), conversion 
energy consumption (Es), and handling energy consumption (Ed). The equation is given 
by Equation (3), as follows: 

E = Ew + ES + Ed (3)

Among them, Ew refers to the idling state where the equipment is on non-stop, and 
no parts/components are processing on the machine. The formula for the energy con-
sumption during the standby period is shown as follows: 

Ew = ∑ ∑ ∑ (SBj(k+1)im
w
m=1

n
j=1

Bj
k=1 −CBjkim)𝑃௪) (4)

In the above, SBj(k+1)m represents the start time of the (k + 1)th sub-batch of j on the 
processing equipment m, CBjkim represents the kth sub-batch on equipment m completion 
time, and 𝑃௪ is the standby power of the machine. 

Es represents the energy consumption of the equipment state transition. In Equation 
(5), |αj-αjᇲ | is the absolute value of the difference in energy consumption involved in 
switching power owing to processing different types of workpieces (j → j′); Rjj’m is a 0–1 
variable. If the processing of the workpiece on equipment m is different from the work-
pieces to be processed, Rjjᇲm = 1; otherwise, Rjjᇲm = 0. 

Es = ∑ ∑ ∑ ∑ Rjkim
M
m=1

Oj
i=1

Bj
k=1

n
j=1 Rjj′m|αj-αj′| (5)

The workshop handling energy consumption is related to the sub-batch quantity Bpj 
and sub-batch Qpjk of j, selected handling equipment Hh, distance dmm′ between the equip-
ment, and distance dmP between the equipment and assembly workshop P. Ed represents 
the energy consumption during handling. The transportation of workpieces includes two 
parts: one part comprises transporting the current sub-batch process to the next pro-
cessing machine after the completion of the current sub-batch process, and the other com-
prises transporting it to assembly workshop P after the last process of the sub-batch pro-
cess is completed. The two parts of energy consumption are described in detail as follows. 
This can be expressed using Equation (6). 

Ed = Eh 
jkimm′+Eh 

jkmP (6)

After the process Oji is processed on equipment m, the workpiece will be transported 
to the next process Oj(i+1). The energy consumption  Ejkimmᇲ h  of the transportation equip-
ment Hh at the selected equipment m′ is shown in Equation (7). 

Eh 
jkimm′ = ∑ ∑ ∑ ∑ ∑ Sjkih

1H
h=1

w
m=1

Oj
i=1

Bj
k=1

n
j=1 H1 

jkimhnjkPh 
j th 

jkimm’ = ∑ ∑ ∑ ∑ ∑ Sjkih
1H

h=1
w
m=1

Oj
i=1

Bj
k=1

n
j=1 H1 

jkimh Qpjk

Sjh
ඈPh 

j

ௗᇲ  (7)

Here, njk represents the number of pieces of handling equipment required for the kth 
sub-batch of j, and th 

jkimm’ indicates the time that Hh moves j from process Oji of equipment 



Energies 2021, 14, 6079 8 of 26 
 

 

m to m’. Sjkih
β  is a 0–1 variable. If Hh was selected to handle the ith process of the kth sub-

batch of j, then Sjkih
β  = 1; otherwise, Sjkih

β  = 0. Hβ 
jkimh is also a 0–1 variable. β can take two 

values, 1 and 2; β = 1 indicates that the workpieces are transported between equipment; β 
= 2 indicates that the workpieces are transported from the last piece of equipment m to 
assembly shop P. If the ith process of the kth sub-batch of j is transported by Hh, then Hβ 

jkimh 
= 1; otherwise, Hβ 

jkimh = 0. 
After the workpieces j are processed, they are transported from equipment m to as-

sembly workshop P by Hh. The energy consumption EjkmP
h  of Hh is given by Equation (8), 

as follows: 

Eh 
jkmP = ∑ ∑ ∑ XjkOjm

H
h=1

Bj
k=1

n
j=1 S2 

jkihH2 
jkimhnjkPh 

j th 
jkmP = ∑ ∑ ∑ XjkOjm

H
h=1

Bj
k=1

n
j=1 S2 

jkihH2 
jkimhQpjk

Sjh
ඈPh 

j
dmP
Vh

 (8)

In the above, th 
jkmP represents the time taken by Hh to transport the kth sub-batch of j 

from m where the last process is located to the assembly workshop P. XjkOjm is a 0–1 var-
iable. If the last process of the kth sub-batch of j is completed on equipment m, then XjkOjm 
= 1; otherwise, XjkOjm = 0. 

• The makespan criterion C 
The makespan criterion is defined as the maximum time for the last sub-batch for the 

equipment in the workshop to be processed and transported to the assembly workshop; 
CBjBjOjm represents the completion time of the last process Oj of the last sub-batch Bj of the 
workpiece j on the equipment m. In addition, XjkOjmS2l 

jB jOjhH2 
jBjO represents the completion of 

the processing of the part j after choosing the handling equipment h and transporting it to 
the assembly workshop. The calculation is shown in Equation (9), as follows. 

 C=   CBjBjOjm

M

m=1

n

j=1
+    XjkOjmS

jBjOjh
2 HjBjOjh

2 dmP

Vh

H

h=1

M

m=1

n

j=1
 (9)

The multi-objective model is shown in Equations (10) and (11). 

f1 = min Cmax (10)

f2 = min E (11)

3.3.2. Constraints 
Two issues should be considered in the scheduling: 

• The influences of the division of the workpieces into sub-batches, process equipment 
selection, equipment standby, and state transition in the processing process on the 
energy consumption and completion time must be considered. 

• The number of handling equipment types is limited, and a type of handling equip-
ment needs to be selected during the handling process. If a sub-batch of workpieces 
is larger than the rated capacity of the handling equipment, multiple pieces of han-
dling equipment must be selected for simultaneous or multiple handling. 
The batches of workpieces should satisfy the condition that the sum of the divided 

sub-batch batches is equal to the processing quantity of the workpieces; moreover, the 
number of divided sub-batches should not exceed the total quantity of workpieces. 

⎩⎪⎨
⎪⎧Qj=  Qjk

Bj

k=1
2≤Bj≤Qjk

 (12)

The workpieces are split into equal batches. If the number of batches is not an integer, 
it is rounded down, and the remaining workpieces comprise a single batch. 
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Qjk= ቊ උQ
j
÷Bjඏ   k≤Bj-1

Q
j
-උQ

j
÷Bjඏ×(Bj-1)  k=Bj

 (13)

If the processing type of the current workpieces is the same as that of the workpieces 
being processed, there is no need to switch the state of the machine; otherwise, the state 
needs to be switched. 

Rjjᇱm= ቊ0,Pjʹk’i’m=NPjkim

1,Pj’k’i’m≠NPjkim
 (14)

The scheduling is performed according to the sub-batch priority relationships of the 
parts/components in the product structure tree. The process starts processing time at the 
completion time of the last sub-batch process in the selected equipment, and the sub-batch 
workpieces after the previous process are completed and transported according to the 
maximum value between the device moments. 

൝ SBjkOj1m = CBjkojm  =0 

SBjkim = max{CBm
n-1,CBjk(i-1)m’  + tjkimm’

h }
 (15)

The production process of the same sub-batch should not be interrupted. 

CBjkim=SBjkim+TBjkim (16)

The part production sequence should meet the requirement that the production time 
of the lower-level parts/components is earlier than the start-up time of the upper-level 
parts/components; that is, the start-up time of the first process in the n-level parts/compo-
nents sub-batch should be later than the (n + 1) level parts/components. 

Sjn1 ≥ Sj(n+1)1 (17)

Among them, Sjn1 is the start time of the first process of the n-level parts/components, 
and Sj(n+1)1 is the start time of the first process of the first sub-batch of the (n + 1) parts/com-
ponents j. 

For two adjacent processes for the same workpiece, the processing sequence con-
straints between the processes need to be met, and the next process can only be conducted 
after the previous process is completed and the workpiece is transported to the selected 
equipment m′ for the start of the next process. 

SBjk(i+1)m’≥Rjj’mRjkim +TBpjkoji+tjkimm’
h  (18)

In each process, Oji can only select one piece of machine for processing. 

 MPjim

w

m=1

=1 (19)

One type of handling equipment is selected for each handling instance. 

 Hjkimh
β =1

H

h=1

 (20)

4. Multi-Objective Gray Wolf Optimization Algorithm 
4.1. Basic Gray Wolf Optimization Algorithm 

Mirjalili [10] proposed the gray wolf optimizer (GWO) in 2014. The core of the algo-
rithm is to manage an optimization problem by imitating the hunting process of a gray 
wolf population. Owing to its balance of local and global search capabilities, convergence 
speed, and depth balancing, it has attracted widespread attention since its proposal. 
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The basic idea is that α wolf was chosen to be the most suitable plan, and β wolf and 
δ wolf were the second and third optimal plans. The rest are ω. α and β are the guiders of 
hunting, followed by δ and ω wolf. The equation for simulating the corresponding behav-
iors is defined as follows. 

Dሬሬሬ⃗  = หCሬሬ⃗ ·Xpሬሬሬሬ⃗ (t)-Xሬሬ⃗ (t)ห (21)

Dሬሬሬ⃗  = หCሬሬ⃗ ·Xpሬሬሬሬ⃗ (t)-Xሬሬ⃗ (t)ห (22)

Among them, Dሬሬሬ⃗  represents the distance to the prey, t indicates the current iteration, 𝑋ሬሬሬሬ⃗  represents the prey’s position vector, and �⃗� represents the wolf’s position vector. The 
coefficient vectors are represented by Aሬሬ⃗  and 𝐶, and the formula is: 

A ሬሬሬ⃗ = 2a⃗·r1ሬሬሬ⃗ -a⃗ (23)

Cሬሬ⃗  = 2r2ሬሬሬ⃗  (24)

In the search process, a⃗ linearly decreases from 2 to 0 and is used to emphasize de-
tection and discovery of prey. R1ሬሬሬሬ⃗  and r2ሬሬሬ⃗  are selected in the range [0,1] randomly. α, β are 
the guider in hunting, and δ wolves also can join the hunting. The location of the prey 
(optimal) is unknown. Simulating the hunting behavior of gray wolves, α, β, and δ wolves 
are assumed to be more familiar with the potential location of their prey. In each hunt for 
prey, the three best solutions represented by α, β and δ wolves will be saved and used in 
each search, guiding other wolves to the possible position of the prey. The hunting for-
mula is given by Equation (25–27). 

Dαሬሬሬሬሬ⃗  = หC1ሬሬሬሬ⃗ ·Xαሬሬሬሬሬ⃗ -Xሬሬ⃗ ห,Dβሬሬሬሬሬ⃗ =หC2ሬሬሬሬ⃗ ·Xβሬሬሬሬ⃗ -Xሬሬ⃗ ห,Dαሬሬሬሬሬ⃗ =หC1ሬሬሬሬ⃗ ·Xαሬሬሬሬሬ⃗ -Xሬሬ⃗ ห, (25)

X1ሬሬሬሬ⃗  = Xαሬሬሬሬሬሬ⃗ -A1ሬሬሬሬ⃗ ⋅Dαሬሬሬሬሬ⃗ ,X2ሬሬሬሬ⃗ =Xβሬሬሬሬ⃗ -A2ሬሬሬሬ⃗ ⋅Dβሬሬሬሬሬ⃗ ,X3ሬሬሬሬ⃗  = Xδሬሬሬሬሬ⃗ -A3ሬሬሬሬ⃗ ⋅Dδሬሬሬሬሬ⃗  (26)

Xሬሬ⃗ (t+1) = X1ሬሬሬሬ⃗ +X2ሬሬሬሬ⃗ +X3ሬሬሬሬ⃗
3  (27)

All in all, GWO starts with guiding the search process by α, β, and δ. When ห𝐴ห  > 1, 
they diverge and look for prey; otherwise, they find and attack the prey. Finally, if the 
stopping criterion is met, the optimal solution (i.e., prey) is output. In brief, in each itera-
tion of the algorithm, individuals in the population were divided into α, β, δ and ω. The 
first three belong to the individuals at the decision-making level, representing the histor-
ical solution of optimal, suboptimal, and third optimal. ω corresponds to the other indi-
viduals. In the algorithm iterations, α, β and δ are locating prey and guiding ω to update 
its position, completing a sequence of actions including approaching, surrounding, and 
attacking the prey. 

4.2. Application of Multi-Objective Gray Wolf Algorithm 
The multi-objective gray wolf algorithm (MOGWO) [38] added two new components 

based on the gray wolf algorithm by Mirjalili in 2016. The first component is the archive, 
which served to store the currently acquired non-dominant Pareto optimal solutions. 
Then comes the leader selection strategy, which helps decision-makers to choose α, β and 
δ as the leader of the search process from the archived results. The basic flow chart is 
shown in Figure 3. 
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Figure 3. Multi-objective gray wolf algorithm flow chart. 

4.2.1. Encoding and Decoding Mechanism 
Before applying the MOGWO algorithm to a specific problem, we designed an en-

coding and decoding scheme. It connects the solution space of the problem with the search 
space under consideration. Hence, designing the correct codec scheme is an important 
issue that affects the performance of the algorithm. 

Code design is based on the types of parts/components and the number of batches. 
In each chromosome, a gene is represented by three or four numbers. For example, “301” 
represents the first sub-batch of the third parts/components, and “1003” represents the 
third sub-batch of the tenth parts/components. In addition, the number sequence in the 
chromosome represents the processing operations of each sub-batch of parts/components. 
As shown in Figure 4, each type of part/component needs to go through multiple pro-
cessing operations. The first occurrence of “101” represents the first processing operation 
of the first sub-batch of parts/components J1, and the second occurrence represents the 
second processing operation, and so on. Taking an example for illustration, the optional 
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processing equipment of three types of workpieces and the processing time for each pro-
cess are shown in Table 1. 

1 3 5 3 2 3 1 4 3

101 201 101 301 201 101 301 201 301sub-batch

machine 
allocation

J1 J2 J3 J2 J1 J2 J2 J3J1

Job1 Job2 Job1
 

Figure 4. Chromosome coding, for example. 

Table 1. Equipment scheduling problem, for example (unit: min). 

Sub-Batch Quantity Operations M1 M2 M3 M4 M5 

101 30 
O11 2 - 5 - 6 
O12 - 6 5 6 - 
O13 4 3 - - 8 

201 40 
O21 5 - 4 - - 
O22 9 5 - 6 - 
O23 - 5 4 7 - 

301 30 
O31 6 - 9 10 - 
O32 5 7 - 6 - 
O33 - 8 6 - 7 

According to the coding method of the part/component arrangement, it can be as-
sumed that the position of a gray wolf individual in this problem is [1–3], that is, the pro-
cessing order of the parts/components is 1-3-2. Then, the part/component placement is 
decoded into a viable scheduling scheme. A Gantt chart corresponding to the first sub-
batch of parts/components is shown in Figure 5. Through the decoding process, a suitable 
machine is selected for each process in each station for processing, and the order of each 
part and the start time are determined to obtain the objective function value. In Figure 5, 
initially, all the processes of the first sub-batch of J1 are arranged on the machine that can 
process it earliest, and then the other sub-batches of other parts/components are sched-
uled. The various processes of the parts/components are arranged on the machine that can 
complete its processing earliest; if the processing completion time on the allocated ma-
chine is less than the earliest processing start time of the scheduled parts/components, it 
will be arranged before the scheduled parts/components (and so on for the remaining 
parts/components). Each sub-batch of parts is arranged before the position of each ma-
chine; otherwise, it is arranged behind the arranged parts/components. 
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Figure 5. Gantt chart of first sub-batch. 

4.2.2. Initialization 
Initial solutions can affect the obtaining of the optimal solution to a degree. In our 

study, the problem can be divided into two sub-problems: equipment selection and pro-
cess sequencing. Therefore, in the initialization phase, the most suitable processing equip-
ment with the lowest processing energy consumption and processing time is selected 
based on the above encoding and decoding scheme. Then, the sorting plan is obtained 
according to the processing priority rules of the workpiece and the remaining load at 
most. 

4.2.3. Roulette Selection 
In a multi-object search space, comparing solutions is usually not easy; thus, the 

leader selection mechanism has been designed to solve this problem. The leader provides 
the α, β, and δ wolves in the least crowded search places. The selection is performed by 
using the roulette method. The probability of each hypercube is calculated as follows: two 
individuals are randomly selected from N individuals each time, and the individuals with 
the lower ranking levels are selected first. If the ranking levels are the same, the crowding 
degree is the first large individual to generate a population of N/2 individuals. The process 
merges the two generated populations into a new progeny population (population size is 
N). 

4.2.4. Social Hierarchy 
Due to the Pareto advantage of multi-objective planning, the optimal result is usually 

not a single, which is called a “trade-off solution” in multi-objective planning. According 
to the Pareto dominance relationship, a population can be divided into several levels. The 
first-level solution (non-dominant solution or compromise solution) can be expressed as 
a solution. If there are more than three levels in the whole, β and δ are the second- and 
third-level solutions. In this study, social stratification was conducted by assuming these 
three situations: 
• Select α, β and δ randomly from the non-dominated level or the first level. 
• Select α and β from the current two levels. 
• Select α, β, and δ wolves from the first three levels, respectively (only have two lev-

els). 

4.2.5. Update Operator 
In this study, individuals are no longer updated according to the decision level, and 

a hybrid search method combining local search and global search is adopted. The wolf 
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pack generated by each iteration of the algorithm is divided into two parts: the search and 
tracking operations are carried out, respectively. Then, in the process of searching, the 
number in each group is dynamically adjusted to achieve the purpose of the individual 
update. 

4.2.6. Sorting Replacement Strategy 
Different from the basic GWO algorithm, the newly generated solution is evaluated 

based on two fitness values: maximum time to completion and total energy consumption. 
The parent population and progeny individuals produced by global search and local 
search operations combined to a large new species, then using the non-dominated sorting 
method and crowded degree to sort the new species. Among them, based on the classifi-
cation of the solutions, the sorting method reduces the computing complexity, and the 
crowded degree calculation can save with low levels of similar solution and keep the di-
versity of the solution space. At the same time, the distribution of individuals on the cur-
rent Pareto frontier should be as broad and uniform as possible, and the introduction of 
an elite retention mechanism is conducive to maintaining excellent individuals and im-
proving the overall evolution level of the population. 

5. A Case Study 
5.1. Data Preparation 

Taking into account the following 10 × 10 production workshop example based on a 
realistic situation, it comprehensively considers the quantity required for each type of part 
or component, its handling energy consumption, and its level in the product structure. 

For the three different types of products, their complex structures were different, re-
sulting in different processing priorities and handling complexities. As described above, 
the flat product structure is a single layer, that is, all components have the same priority, 
and the processing and handling scheduling are relatively simple; in contrast, tall and 
complex products contain multi-layered parts/components structures. Taking a typical 
tall product as an example, the specific product structure tree is shown in Figure 6. In the 
figure, B represents the corresponding product, and the arrow in the figure represents the 
position of part Ji. The part Pi in the product structure was divided into different levels; 
each component or part had a certain demand; they were mixed in batches, and the pro-
duction was completed. Subsequently, it was transported to the assembly workshop by a 
transport vehicle for assembly. 

Table 2 displays the detail settings of the components, parts, and equipment. The 
parts and the components are set to 6 and 4, respectively. The rated capacity of the work-
piece on the handling equipment is listed in Table 3. In batch scheduling, the production 
batch had a U-shaped relationship with the production cycle. In general, production 
batches that are excessively large or small will lead to a longer production cycle. In this 
study, each workpiece was divided into 2–3 batches, as shown in Table 4. There were three 
types of handling vehicles, each of which has three available equipment. The power of the 
handling vehicle was 20 kW, the speed was 30 m/min, and the distance between the as-
sembly workshop and production workshop was 200 m. The information of each type of 
part and component and the required power is shown in Table 4. In the workshop, the 
distance between adjacent equipment is 5 m. All cases were simulated in MATLAB 
R2016b and were tested many times. The algorithm was programmed using Matlab2016b 
on a personal computer with an Intel(R) Core (TM) i5-930M CPU @ 2.50 GHz. The values 
of the algorithm parameters were determined by preliminary experiments, and the spe-
cific parameters were determined by comprehensive experiments as follows: number of 
iterations: 250; the number of grids per dimension:15, and population size: 20. 
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Figure 6. Product structure tree of tall. 

Table 2. Parts/components information (10 × 10). 

Parts/Components 
 Equipment (Preparation Time/Processing Time) (min) 

Oji M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

J1 
O11 [2,18] [3,15] — [3,20] — — — — — — 
O12 — — — — — — — [3,20] [2,14] — 
O13 [3,17] [2,20] — [3,21] — — — — — — 

P1 
O21 — [2,12] [3,20] — — — [2,15] — — — 
O22 [2,15] [2,14] — — [3,18] — — — — — 
O23 — — — — — — — [3,17] [2,20] — 

P2 
O31 — [3,20] [4,20] — — — [4,18] — — — 
O32 — — — — — — — — [2,18] [3,15] 

P3 

O41 [1,15] [1,10] — [2,10] — — — — — — 
O42 — — — — — — — [2,16] [2,14] — 
O43 [2,15] [2.5,17] — [4,18] — — — — — — 
O44 [2.5,16] [2,15] — — [3,15] — — — — — 

J2 
O51 [2,20] [3,25] — [2.5,16] — — — — — — 
O52 — — — — — — — — [3,20] [4,20] 
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O53 — [3,28] [3,30] — — — [5,25] — — — 

J3 
O61 — — — [1,15] [2,25] [2,30] — — — — 
O62 — — — [2,22] [4,20] — — — — — 
O63 [2,20] [1,10] — — — — [1,15] — — — 

P4 
O71 — — — [1,10] [2,25] [2,30] — — — — 
O72 — — — [2,15] [3,10] [2,20] — — — — 
O73 [3,15] [3,18] [4,30] — — — — — — — 

J4 
O81 — — — [1,20] [3,25] — — — — — 
O82 [3,15] [3,25] — — — — [4,30] — — — 
O83 — — [2,10] — [3,15] [2,16] — — — — 

J5 
O91 — — [1,10] — [2,15] [1,20] — — — — 
O92 — — [3,15] — [2,20] — — — — — 
O93 — [1,5] [2,5] — — — [2,7] — — — 

J6 
O101 — — [2,10] [3,15] — [3,20] — — — — 
O102 — — [1,15] [2,10] — [2,18] — — — — 
O103 [1,10] [3,15] — — — — — — — — 

Table 3. The rated capacity of the workpiece on the handling equipment. 

Workpiece
H J1 P1 P2 P3 J2 J3 P4 J4 J5 J6 

H1 60 50 40 70 65 50 90 68 70 70 
H2 40 60 80 85 70 70 110 80 60 70 
H3 30 60 70 60 80 60 100 60 60 83 

Table 4. Other information about workpieces. 

Workpiece J1 P1 P2 P3 J2 J3 P4 J4 J5 J6 
Types (part/com) part com com com part part com part part part 

level 1 1 2 2 3 3 3 3 4 4 
Quantity 300 300 600 300 600 300 900 300 600 300 
αj(kW) 20 15 20 25 22 25 30 20 15 20 

Symbols in Gantt chart Job1 Job2 Job3 Job4 Job5 Job6 Job7 Job8 Job9 Job10 
Quantity of sub-lots in 5.2 2 2 3 2 3 2 2 2 2 2 

Quantity of sub-lots in 5.3.1 2 3 3 2 3 2 3 2 3 2 

5.2. Result Analysis 
In the experiment, taking into account the total energy consumption and completion 

time as the objective function and comprehensively considering all the energy consump-
tion involved in the production process, the MOGWO algorithm was used to solve the 
problem. As shown in Figure 7, the values of the two optimization objectives stabilize at 
the 189th iteration. Figure 8a shows the population distribution results after 200 iterations. 
There are eight solutions set in Figure 8b. The point with lower energy consumption and 
early completion time than others was a selection in Figure 8b. The Gantt chart of this 
scheme is shown in Figure 9. As the total energy consumption optimization reduces the 
equipment conversion and waiting time, the completion time is 38,400.86 min, and the 
total energy consumption is 356,750 kWh. Table 5 displays the handling process of the 
first sub-batch of each workpiece between the machines and the workshop, where J01 (J = 
1, 2, 3, ..., 10) represents the first sub-batch of the Jth workpiece. 
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Figure 7. Convergence process of two objectives: (a) convergence process of C objective; (b) convergence process of E 
objective. 

 
(a) (b) 

Figure 8. Results obtained considering PEC+NPEC: (a) final population distribution; (b) Pareto frontier distribution. 

 
Figure 9. Gantt chart of the optimized schedule scheme. 
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Table 5. One sub-batch handling process for each kind of workpiece. 

J01 Quantity Operations M H 
Start Time 

(min) 
End Time 

(min) 
Starting Lo-

cation Arrival Location 

(J1) 101 150 O11 M2 H1 7756 7756.5 M2 M9 
  O12 M9 H1 20,907.5 20,907.8 M9 M4 
  O13 M4 H2 24,058 24,064.5 M4 P 

(P1) 201 100 O21 M7 H2 2250 2250.5 M7 M2 
  O22 M2 H2 14,861 14,861.5 M2 M9 
  O23 M9 H3 33,914 33,920.5 M9 P 

(P2) 301 200 O31 M3 H2 4004 4004.5 M3 M10 
  O32 M10 H3 7007.5 7014 M10 P 

(P3) 401 150 O41 M2 H2 1500 1500.5 M2 M8 
  O42 M8 H2 3100.5 3101 M8 M1 
  O43 M1 _ 4601 4601 M1 M1 
  O44 M1 H1 6201 6207.5 M1 P 

(J2) 501 200 O51 M2 H3 12,759 12,759.5 M2 M9 
  O52 M9 H3 16,759.5 16,759.7 M9 M7 
  O53 M7 H2 33,118 33,124.5 M7 P 

(J3) 601 150 O61 M4 H1 21,115 21,115.1 M4 M5 
  O62 M5 H2 32,564 32,564.4 M5 M2 
  O63 M2 H1 38,965 38,971.5 M2 P 

(P4) 701 300 O71 M6 - 12,005 12,005 M6 M6 
  O72 M6 H2 24,710 24,710.5 M6 M2 
  O73 M2 H3 37,464 37,470.5 M2 P 

(J4) 801 150 O81 M4 H1 11,751 11,751.3 M4 M7 
  O82 M7 H1 23,224 23,224.2 M7 M5 
  O83 M5 H2 34,817 34,823.5 M5 P 

(J5) 901 200 O91 M3 H2 18,865 18,865.3 M3 M5 
  O92 M5 H2 29,560 29,560.4 M5 M2 
  O93 M2 H2 30,560.4 30,566.9 M2 P 

(J6) 1001 150 O101 M6 - 3003 3003 M6 M6 
  O102 M6 H2 18,708 18,708.5 M6 M1 
  O103 M1 H2 29,572 29,579.5 M1 P 

5.3. Comparison Analysis 
5.3.1. Comparison with the Traditional Model without Considering the NPEC 

Different from the experiment above, only PEC is considered in the energy consump-
tion model in this section. As shown in Figure 10, the values of the two optimization ob-
jectives stabilize at the 158th iteration. Figure 11a shows the population distribution re-
sults after 200 iterations. There are 10 solutions set in Figure 11b. The point with lower 
energy consumption and earlier completion time than others is selected in Figure 11b. The 
Gantt chart of this scheme is as shown in Figure 12, the total completion time is 40,900.43 
min, and the PEC is 227,000 kWh. 
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Figure 10. Convergence process of two objectives: (a) convergence process of C objective; (b) convergence process of PEC 
objective. 

  
(a) (b) 

Figure 11. Results obtained in comparison experiment: (a) final population distribution; (b) Pareto frontier distribution. 

 
Figure 12. Gantt chart of the optimized scheme from the traditional model. 
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Table 6 displays the energy consumption values and completion times for the two 
optimization schemes. As could be seen from the table, owing to the reduced standby and 
conversion time, the total completion time is better than that of the comparative experi-
ment; in terms of energy consumption, the PEC values of the two schemes are very close; 
the slight difference in processing times may be owing to the different preparation times 
required on different equipment. The optimization of the handling equipment is not con-
sidered in the comparative experiment. The handling energy consumption in the compar-
ative experiment is estimated through the historical handling time, and the energy con-
sumption in our experiment is optimized. As could be seen in Table 6, the optimization of 
the handling energy consumption can significantly reduce the NPEC, thereby reducing 
the total energy consumption. Compared to the comparative experiment, the standby en-
ergy consumption and handling energy consumption are reduced by 9.95% and 22.28%, 
respectively. The utilization rates of each machine in the two experiments are shown in 
Figure 13. It can be seen from the figure that the machine utilization is mostly higher than 
that in the comparative experiment. 

Table 6. Comparison of energy consumption and time of two experiments. (unit: kWh). 

 Optimize (PEC+NPEC) Optimize PEC 
Ep 2.33 × 105 2.27 × 105 
Ew 4.75 × 104 5.33 × 104 
Es 550 588 
Ed 1.57 × 104 2.02 × 104 
C 38,400.86 40,900.43 

 
Figure 13. Comparison in Cp/C for machines. 

5.3.2. Algorithm Comparison with the NSGA-II 
In this section, the most popular multi-objective heuristic algorithm NSGA-II [39] 

was selected in the experiment for comparative analysis. NSGA-II is an improvement of 
the NSGA algorithm. It is one of the most outstanding evolutionary multi-objective opti-
mization algorithms so far. The parameters of the algorithm are set as follows: the popu-
lation size is 100, the maximum number of iterations is set to G = 200, crossover probability 
Pc = 0.9, and the mutation probability Pm = 0.2. The parameters of MOGWO are set in 
Section 5.1. They use the same initialization strategy and encoding scheme. 
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Comparing the performance of multi-objective optimization algorithms is more 
based on the following criteria: (a) the degree of similarity between the solution set ob-
tained by the operation result and the real Pareto solution set, that is, convergence; (b) the 
uniformity of the solution set on the Pareto frontier, namely diversity; (c) comprehen-
sively measuring convergence and diversity. According to references [40,41], the follow-
ing two indicators are used for algorithm performance evaluation: Δ metric and inverted 
generational distance. The real Pareto frontier of the research in this paper is the set of 
non-dominated solutions in the final solution set. However, the real Pareto frontier is not 
known. The final solution set is obtained by the calculation example through multiple 
independent operations of the algorithm. The specific introduction and calculation for-
mula of these two indicators are given below. 

Δ metric: Describe the uniformity of the Pareto front obtained by the algorithm. The 
calculation method is as follows. The smaller ∆, the more even the solution is, and the 
better the performance of the algorithm. When ∆ is equal to 0, it indicates that the solution 
obtained by the algorithm is uniformly distributed in the solution set space, generally only 
appearing under ideal circumstances. 

Δ = 
df+dt+ ∑ หdi-dതหn-1

i=1

df+dt+(n-1)dത  (28)

Here, df and dt are the distances between the boundary point of the Pareto frontier 
obtained by the algorithm and the actual Pareto frontier boundary point of the problem 
to be solved; n represents the number of solutions in the Pareto frontier obtained by the 
algorithm operation, and di represents the value obtained by the algorithm operation. �̅� 
represents the average value of all dt. 

Inverted generational distance: A variant of iterative distance not only reflects the 
convergence of the algorithm but also shows a diversity index, which is a comprehensive 
evaluation index. The formula of IGD is as follows: 

IGD(S, P*)=
∑ dist(x,S)

x∈P*ቚP*ቚ  (29)

Among them, dist(x, S) represents the individual x ∈ P* to the nearest Euclidean dis-
tance on S, and |P*| is the cardinality of the set P*. The smaller the value of IGD, the more 
it can approach the entire PF. In addition, when IGD(S, P*) = 0, it means S is a subset of 
P*. 

In this paper, two intelligent optimization algorithms are selected for comparison. 
The results are shown Table 7. The table counts the minimum, average, and standard de-
viation of the indicators. 

Table 7. Comparison of two algorithms. 

Evaluation Index 
MOGWO NSGA-II 

Min Agv Sd Min Agv Sd 
Spread 0.343 0.553 0.107 0.522 0.677 0.115 

Inverted generational distance 0.074 0.089 0.021 0.090 0.125 0.029 

From Table 7, we can draw the following two points: 
• According to the spread value (∆) in the table, MOGWO is better than the NSGA-II 

algorithm, and the MOGWO algorithm is more evenly distributed than the solution 
set obtained by NSGA-II. It is due to the neighborhood search mechanism of the 
MOGWO, which can increase the probability of obtaining the optimal solution, 
thereby improving the uniformity of the solution set distribution, and the algorithm 
has better optimization capabilities. 
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• According to the inverted generational distance value in the table, the solution ob-
tained by MOGWO has better convergence and distribution than the NSGA-II algo-
rithm. This is because of the unique hierarchical system of the MOGWO algorithm, 
which can be selected from different dominance levels. The optimal solution to im-
prove the convergence and distribution of the algorithm was chosen. 
The Pareto frontiers obtained by the two algorithms are shown in Figure 14. Obser-

vation shows that the solution obtained by using the MOGWO algorithm is numerically 
smaller than the other solution set, that is, it can dominate the solutions obtained by 
NSGA-II. Additionally, MOGWO proves to be effective in reducing the total energy con-
sumption of scheduling plans. Therefore, the selected algorithm has the best solution ef-
fect. 

 
Figure 14. Comparison of two algorithms. 

5.4. Sensitivity Analysis 
Sensitivity analysis was used to compare the influence of energy consumption of dif-

ferent auxiliary production operations in this section. If the objective function value and 
fitness value of different optimization operations change greatly, the sensitivity coefficient 
and the corresponding auxiliary production operation will be large and sensitive. 

Sensitivity analysis is the importance of factor variables of the model to the value of 
the optimization objective function. The calculation is shown in Equation (30), as follows. 

SfA = ∆ f /f
∆A / A

 (30)

Here, SfA represents the sensitivity of target function value f to parameter A, and 
ΔA/A means the rate of change of a parameter; Δf/f represents the change rate of the target 
function value caused by the change of factor variable ΔA. The sensitivity of total energy 
consumption to EW, Es, and Ed will be analyzed in our experiment. In this analysis, ΔA/A 
represents the rate of change relative to historical observations when different auxiliary 
operation optimizations are considered. The change rate of total energy consumption due 
to different auxiliary operations of optimization is expressed by Δf/f. Table 8 shows the 
sensitivity coefficients under different optimization schemes; the larger the sensitivity co-
efficient, the higher the sensitivity of the target to the variation of parameters. 

Table 8 compares the changes in total energy consumption when considering differ-
ent combinations of auxiliary optimization operations. Among them, A represents the 
scheduling scheme without considering auxiliary operation optimization, where Ew, Es, 
and Ed are historical forecast values. The standby time, conversion operation, and han-
dling operation are considered separately, and the scheme is expressed by A1, A2, and A3, 
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respectively. Data indicate the three sensitivity coefficients are all positive and the target 
function value has a certain sensitivity to parameter changes, proving that the optimiza-
tion model proposed in our research can obtain satisfactory results in reducing energy 
consumption, but there have been slightly different changes in the target function to the 
parameter between three schemes. From Table 8, energy consumption is significantly re-
duced by optimizing standby time, and the target quantity changes significantly to Ew; 
second is handling energy consumption optimization, followed by conversion energy 
consumption. In this research, due to the large standby time and handling times, the en-
ergy consumption optimization effect is relatively significant, especially in the case of 
large total energy consumption. Through the sensitivity analysis of the above optimiza-
tion scheme, it is reasonable and effective to comprehensively consider the NPEC in the 
optimization model. 

Table 8. Sensitivity coefficients under different optimization combinations. 

Schemes 
MOGWO 

ΔA/A Δf/f SfA 
Ew Es Ed 

A 5.33 × 104 588 2.02 × 104 - - - 
A1 4.63 × 104 - - 13.13% 2.32% 0.18 
A2 - 523 - 11.05% 0.22% 0.02 
A3 - - 1.49 × 104 26.24% 1.76% 0.07 

6. Conclusions and Future Works 
This study researched energy consumption optimization in the production process 

of a machining workshop, starting from the assembly relationship between the parts/com-
ponents of the multi-level product structure. By analyzing the existing energy consump-
tion research, we conducted a systematic study on the NPEC of the workshop. The re-
search was mainly conducted from the following two aspects. 
• The production of a multi-level product structure is combined with energy consump-

tion optimization. The start processing times of different levels of workpieces are set, 
and the characteristics of the PEC and NPEC in the production system are consid-
ered. With the goal of minimum completion time and energy consumption, equip-
ment standby, workpiece conversion, and handling constraints are established, and 
the MOGWO is adopted to solve the problem. 

• The total energy consumption optimization results are compared with those of an 
optimization plan considering only the PEC. The results show that after considering 
the NPEC optimization as proposed here, the standby energy consumption and han-
dling energy consumption are reduced by 9.95% and 22.28%, respectively. This pro-
vides a feasible research direction for the study of energy-saving scheduling in work-
shops. 
Production scheduling considering energy-saving measures is of great significance 

for the realization of energy savings and emissions reduction. This study has a set of lim-
itations: for example, we suppose the same power during the standby time and there is 
no interruption in the processing that limit the versatility of our method. For future works, 
other possibilities, such as equipment failures and emergency order insertions, will be 
further integrated into the optimization model. 
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Nomenclature 
C completion time 
TP processing time 
Ep energy consumption of processing 
Ew energy consumption of stand by state 
Ed energy consumption of handling 
EjkmP

h  energy consumption of the kth sub-batch of j transported from m to P 
Bjk the kth sub-batch of workpiece j 
dmm’ distance between machines 
Sm

i  start time of the ith operation on the machine m Cm
i  completion time of the ith process on the machine m 

CBm
n  completion time of the nth process on machine m 

Oji the jth operation of the workpiece j 
w each type of workpiece is processed on w sets of equipment 
tjkimm’
h  transportation time of from m to m′ 

SBjkim start time of the ith operation of the kth sub-batch about workpiece j on machine m 

CBjkim 
completion time of the ith process of the kth sub-batch about workpiece j on ma-
chine m 

Pj’k’i’m kth sub-batch ith operation of workpiece j is processed on equipment m 
Sjh rated capacity of work j on equipment h 
αj, αj’ the processing power of workpiece j, j’ 
Emax total energy consumption 
TR setup time 
En non-processing energy consumption 
Es conversion energy consumption 
Ejkimm’

h  energy consumption of the workpiece j transported from m to m’ 
Qj quantity of workpiece j 
Qjk quantity of j of Bjk 
dmP distance between processing workshop and P 𝑃 power of handling Hh 
SBm

n  start time of the nth process on the machine m 
Oj(1)i(1)m  ith operation of workpiece j processed on machine m 
njk the number of h required for the kth sub-batch of workpiece j 𝑃௪ standby power of machine 
Sjn1 start time of the first process of n-level parts/components 

TBjkim 
processing time of the ith operation of the kth sub-batch about workpiece j on 
equipment m 

Rjkim 
the set-up time of the ith operation of the kth sub-batch about workpiece j on 
equipment m 

NPjkim 
the kth sub-batch and the ith operation of the jth workpiece are being processed on 
the m 

Vh speed of Hh 
MPjim each process Oji can only choose one piece of machine for processing 

tjkmP
h  the time it takes for Hh to transport the kth sub-batch of the workpiece j from the 

equipment m where the last process to the assembly workshop P 
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Appendix A 

Table A1. Sets. 

Nomenclature Description 
J Parts set; J = {J1, J2, J3, …, Jn} ∪ {P1, P2, P3, …, Pn}, j ∈ J 

M a finite set of M machines; m = 1, 2, 3, …, M 
H a finite set of H handle equipment; Hh ∈ H; h = 1,2,3 
Oj Process set; Oji ∈ Oj, i = 1, 2, 3, …, Oj 
Bj Number of sub-batch of j; j = 1, 2, …, n 

Table A2. decision variables. 

Nomenclature Description 

Rjj’m 
If the currently processed part/component j of the processing equipment 
m is different from the part/component j’ to be processed, then Rjj’m =1, 
otherwise, Rjj’m = 0. 

Sjkih
β  

If the equipment Hh is handling the ith process of the kth sub-batch of 
parts/components, then Sjkih

β  = 1, otherwise, Sjkih
β  = 0. 

Hjkimh
β  

If the ith process of the kth sub-batch of the part/component j is carried 
by the equipment Hh, then Hjkimh

β  = 1, otherwise, Hjkimh
β  = 0. 

XjkOjm If the last process of the kth sub-batch of j is completed on machine m, 
XjkOjm = 1, otherwise, XjkOjm= 0. 
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