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Abstract: In the photovoltaic industry, there is great interest in increasing the power output of solar
cells to achieve grid parity and to promote the widespread use of solar cells. However, despite many
developments, a phenomenon called light-induced degradation causes the efficiency of solar cells
to deteriorate over time. This study proposes a treatment that can be applied to cells within solar
modules. It uses a half-bridge resonance circuit to induce a magnetic field and selectively heat Al
electrodes in the solar cells. The electrical state of a solar module was measured in real time as it
was being heated, and the results were combined with a kinetics simulation using a cyclic reaction.
As the temperature of the solar module increased, the time taken to reach the saturation point
and the recovery time decreased. Moreover, the value of the saturation point increased. The light-
induced degradation activation energy was similar to results in the existing literature, suggesting
that the kinetic model was valid and applicable even when 72 cells were connected in series. This
demonstrates that an entire solar module can be treated when the cells are connected in series, and in
future multiple modules, could be connected in series during treatment.

Keywords: p-type; PERC; light-induced degradation; module; kinetic model; cyclic reaction;
activation ernegy; half-bridge resonance circuit

1. Introduction

A major aim of the photovoltaic industry is to increase the power output of solar cells
in order to attain grid parity and promote their widespread use. In the last quarter of 2020,
the market price of solar modules was 0.21 USD/Wp, and the price has been decreasing
more rapidly than predicted using the PV learning curve [1,2]. At present, passivated
emitter and rear contact (PERC) solar cells that use p-type wafers account for 82% of the
global photovoltaic power market, and they expected to account for at least 50% of the
market until 2031 [1]. These p-type PERC (p-PERC) solar cells generate a back surface field
(BSF) using an aluminum (Al) electrode, and it is easy to control the area of the BSF via the
electrode printing process. Moreover, these cells are very economical because it is easy to
produce a junction by changing the heat treatment condition, which allows the BSF and
an electrode to be formed simultaneously. Thus, p-PERC crystalline silicon solar cells are
widely used, and they can achieve a power conversion efficiency of 24.0% [3].

Despite improvements in the power conversion efficiency of solar cells, the generation
power of solar modules decreases over time. There are several causes of this long-term
degradation, but a phenomenon called light-induced degradation (LID) is among the
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most notable. LID is caused by a boron oxide complex (BsO2i), which is generated by the
combination of substitutional boron (Bs) and interstitial oxygen dimers (O2i) diffused in
the matrix of p-type silicon wafer. This switching process consumes electrons and holes,
which degrades the minority carrier lifetime [4]. BsO2i exists in a bistable state (square or
staggered), and it switches between states in response to light irradiation. This switching
process consumes electrons and holes, which degrades the minority carrier lifetime in
p-type solar cells [4]. It has been reported that BsO2i will recover its initial efficiency if it is
heated at 200 ◦C, in the dark, for 10 min; this is called the recovery process [5]. When a solar
module is installed outside the field, it will show degradation of 2.5% in the first year with
the LID phenomenon, and 0.6%/y thereafter, due to various causes [1]. LID can reduce
the power output of solar cells by 10%, and various studies have attempted to mitigate
this effect [6–8].

When the photovoltaic industry was first developed, there was much focus on the
development of devices with high power conversion efficiency to increase the energy
generation per unit area. Thus, the energy density increased rapidly with the efficiency of
solar cells, but this was accompanied by various adverse effects. In particular, there were
problems with long-term reliability, typically LID, that had a negative effect on performance
and caused economic losses during the warranty period. Consequently, the concept of
levelized cost of electricity (LCOE) was introduced to evaluate the cost of solar modules
and the profit from power generation; this concept is now widely used in the photovoltaic
power generation industry. The LCOE increases as the reliability of solar modules decreases
with the LID phenomenon. Therefore, preventing or limiting LID will reduce the LCOE,
which will be beneficial to the power generation market.

Various attempts have been made to address the LID problem. For example, impurities
such as germanium (Ge), phosphorus (P), and gallium (Ga) have been implanted to change
the impurities available inside the p-type solar grade wafer. This method prevented some
LID effects, but it also increased costs because there were greater deviations in the resistivity
according to the ingot length. This was due to differences in the segregation coefficient
caused by changes in the impurities when the Czochralski (Cz) method was used to grow
the wafers. To overcome the problems of the impurity implantation method, a phase shift-
based technique was developed, where a metastable state was produced by continuously
irradiating a solar light source at or above 130 ◦C [9,10]. With this method, the efficiency of
the solar cell was not recovered perfectly, but it did not decrease further after the slight
initial LID. However, these anti-LID properties disappear if the cell is placed at >100 ◦C in
the dark, for 10 min, and the LID phenomenon will occur again thereafter. Hence, this is
considered a metastable state [11,12]. In particular, the degradation phenomenon occurring
in multi-crystalline silicon solar cells was named light- and elevated temperature-induced
degradation (LeTID) and many studies were conducted [13–20]. It has been reported that
these degradation characteristics have different reactivities in mono-crystalline and multi-
crystalline silicon solar cells [16,21–26]. As a result of these studies, it was found that the
deterioration process can be equally caused by a current injection in the dark state without
the irradiation of a light source in the solar module [14,21,27–29].

Current methods aim to prevent LID by using a belt-furnace to conduct high-temperature
rapid thermal treatment (RTP) of solar cells during the manufacturing process. This process
provides a certain level of anti-LID state, but it is lost during the subsequent module
lamination process, which involves a vacuum adsorption state at approximately 200 ◦C
for >20 min. Therefore, the LID phenomenon occurs again later in the module using the
anti-LID solar cell. To prevent this, LID treatments must be applied after the solar module
is constructed.

The key point for effective anti-LID technology lies in the development of technology
that can keep the solar cells’ temperature >130 ◦C. Currently, a large chamber can be used
to heat a 72-cell solar module using hot air. However, this method takes a long time to heat
the solar cells inside the module because the encapsulant has high thermal resistance. In
addition, the external temperature of the module is higher than that of the solar cell due to
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the temperature gradient, so the encapsulant may be damaged in the process. Moreover,
this method increases the temperature of the environment around the solar cell, which
takes a long time for heating/cooling, and thus, there is increased energy use and costs to
maintain the large closed environment.

This study aims to develop technology that will minimize damage to the encapsulant
by selectively heating the cells inside a solar module, rather than supplying external
thermal energy. This will be achieved using an induced magnetic field and the principal
of an induction heater, to heat the Al electrode in the rear side of the solar cells using a
previous study [30]. Copper coil patterns will be used to apply the induced magnetic field
to the module, and a half-bridge resonance circuit will be used to create a high-frequency
electromagnetic field. The treatment of the LID process was induced by current injection
using an external power source as the solar module is heated. Finally, the treatment of the
LID process was monitored in situ, and kinetic simulation analyses were also performed
based on the measurements.

2. Materials and Methods
2.1. Treatment of LID Apparatus and Half-Bridge Resonance Circuit

The treatment of the LID apparatus is shown in Figure 1. The induction coil patterns
consisted of a pseudo-square shape, approximately the same size as a solar cell. The
coils were made from 20 strands of copper wires (diameter = 0.35 mm, and approximate
length = 15 m).

Figure 1. Schematic diagram of remote heating apparatus for a p-PERC solar module for the treatment
of LID.

A high-frequency electromagnetic field was produced using a half-bridge resonance
circuit, which applied an alternating current (AC) to the coil with an oscillation output of
3000 W. The power supplied to the half-bridge resonance circuit was direct current (DC),
48 V, and 62 A; the 3000 W output was obtained using a rectifier. A solar cell placed on the
coil was then heated via induction heating.

The relative permeability of Al is 1.00000065, which is similar to that of air and is very
small compared to that of Fe, which is 5000–6000; therefore, Al is rarely used in induction
heaters [31]. However, the solar cells in this study used Al as the rear anode, with an area
of ∼240 cm2 and a thickness of ∼36 µm. Even though the hysteresis was small due to weak
eddy currents from the induced magnetic field and the low relative permeability, heat was
generated effectively because the relative volume of Al in the cells was extremely small.

The temperature of the solar module backsheet was measured without contact using
an infrared (IR) thermometer. Once the target temperature was achieved, a solid-state
relay (SSR), installed between the rectifier and the half-bridge resonance circuit, was used
to prevent further heating via a proportional integral derivative (PID) controller. The
temperature was maintained within <±0.2 ◦C of the target. Power was supplied to the
solar module via a switching mode power supply (SMPS) that could regulate the voltage.
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Observations of the power supply to the module were made in real time using a multimeter
circuit installed in a microcomputer. All of the signals generated by the apparatus were
collected by a computer, which also functioned as the PID controller, and stored the
SMPS results.

The heating method of the apparatus was in contact with the induction heating coil
and the solar module was positioned upside down, as shown in Figure 2. To selectively
heat the cell inside the module, it was necessary to minimize the materials that would react
with the magnetic field; therefore, the induction coil plate containing the induction heating
coil was made from polycarbonate (PC), which does not react to magnetic fields. Moreover,
PC is suitable for use in rapid thermal processes as it does not experience permanent
deformation at temperatures up to 100 ◦C, and it is highly resistant to temperature changes.
As shown in Figure 2, the space between the solar cell and the induction heater was
minimized using a frame hole structure, thereby improving the remote heating efficiency.
The system was designed so that it could easily be mass produced, as such, no additional
procedures were required to make the temperature measurements. Once the solar module
was placed in the treatment of LID apparatus, temperature measurements were made
without contact using an infrared thermometer located behind the module.

Figure 2. Schematic illustration of a cross section of the p-PERC solar module remote heating apparatus.

2.2. Solar Cell Module & LID Healing Process

The solar module used in this study was fabricated using solar cells with a monofacial
PERC structure made from a p-type M2 size mono-crystalline silicon pseudo-square wafer.
The solar module contained 72 solar cells connected in series, and external power injection
was supplied through a junction box. The module measured 90 × 180 × 35 cm, and it
weighed 32 kg including the external Al frame. As shown in Figure 2, the solar cells were
protected by a 3 mm-thick front layer of glass, the ethylene-vinyl acetate (EVA), and a back
sheet. We designed a customized apparatus to enhance the treatment of LID process and it
can also monitor whole process properties. To operate the remote heater, the module was
positioned so that the front glass was in contact with the surface of the induction heating
coil, as shown in Figure 2. The module was fixed to the groove at the bottom of the coil
plate by its dead weight, without additional fasteners.

The treatment of LID process on the solar module was different from that for a solar
cell due to the temperature limitation of encapsulated materials in our experiment. In
a solar cell, LID is recovered by thermal treatment at 200 ◦C for 10 min, but the same
conditions could damage the encapsulant on solar modules. Instead, the solar module was
mounted on the treatment of LID apparatus at room temperature, then the heat was ramped
up using the induction heating mechanism. Because the solar cells were heated directly
by induction, the heating rate was much higher than it was with the thermal conduction
method. In this study, the experiment was performed with three target temperatures: 100,
120, and 130 ◦C as shown in Figure 3. Once the target temperature was achieved, a 10 min
stabilization process was used to stabilize the temperature of the cell. When the solar
module reached its steady state, power was supplied by an external power source, and
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changes in the supplied power were measured and recorded in real time. The external
power was applied under a constant voltage (CV). To maintain a constant current injection
condition, the power was adjusted from 35 to 40 V according to the temperature, as the
open-circuit voltage varied with the temperature of the solar module. The current applied
under the CV condition was set to 5 A immediately after the external power was supplied.
When LID proceeded due to the CV condition, the open-circuit voltage of the solar cell
decreased, so the current of the external power source had to be increased to maintain
the constant voltage. When the treatment of LID process occurred, the current changed in
the opposite way. Because 72 solar cells were connected in series, it was hard to measure
fine changes in the voltage for each solar cell. This was achieved by obtaining sensitive
measurements of the changes in the current caused by applying external power in CV
mode, which could then be used to find the changes in the open-circuit voltage. Finally,
after completing the solar cell treatment of LID process, the external power was turned
off and the operation of the half-bridge resonance circuit was stopped to prevent remote
heating of the solar module. After the heating stopped, the module quickly reached room
temperature via air cooling. Once the temperature reached equilibrium, the module was
removed from the induction heating device.

Figure 3. Experimental procedure used to treat LID in a p-PERC solar module. CV: constant voltage.

2.3. Kinetic Simulation Analysis

Chemical reaction kinetics theory was used to analyze the degradation and the treat-
ment of LID process, as measured in real time by the recovery apparatus [32,33]. The state
in which there was no LID of the solar module was defined as the initial state, A; the state
in which LID had progressed was defined as B; and the metastable state in which the solar
cell treated from LID with no additional degradation was defined as C. The measurement
results were analyzed under the reversible reaction condition assuming that there was a
cyclic reaction path in which these three states interacted. The governing equations for the
cyclic reaction can be expressed by:

∂Ca

∂t
= k3Cc − ki3Ca − k1Ca + ki1Cb (1a)

∂Cb
∂t

= k1Ca − ki1Cb − k2Cb + ki2Cc (1b)

∂Cc

∂t
= k2Cb − ki2Cc − k3Cc + ki3Ca, (1c)

where Ca denotes the concentration in state A, which has a value between 0% and 100%; Cb
and Cc denote the concentrations in states B and C, respectively; and it is assumed that the
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sum of the concentrations of all states has to be 100%. In addition, k1 denotes the reaction
rate constant in the LID process (state A→ B, degradation), k2 denotes the reaction rate
constant in the process switching from the LID state to the metastable state (state B→ C,
treatment of LID), and k3 denotes the reaction rate constant in the process of switching
from the metastable state to the initial state (state C→ A, destabilization). Then, ki1 denotes
the reaction rate constant in the process of recovery (state B→ A, recovery), and ki2 and ki3
are the reaction rate constants in the re-degradation process (state C→ B, redegradation),
and the process of switching to the metastable state from the initial state (state A → C,
stabilization), respectively.

These nonlinear equations could not be analyzed by a general algebraic method, so
they were converted into a matrix form using the eigenvalue method for modeling [30,34,35].
The transformed matrix was simplified using the general solution, and rearranged using
the inverse Laplace transform, then the concentration of each state was observed over
time. The signals obtained from the treatment of LID process apparatus were fitted prior
to the analysis of the cyclic reaction model for kinetics rate constants. The mathematical
optimization algorithm was used to obtain a numerical solution as the interpretation
of an equation of higher degree, with three initial state concentrations and six reaction
rate constants as variables, was required. The least-squares curve fitting method for the
nonlinear equation and the Matlab program were used to solve complicate numerical
problems.

3. Results

As shown in Figure 4a, the changes in the concentrations of the three states A, B, and
C, over time were simulated using the cyclic reaction theory. The simulation revealed that
the concentration of state A decreased sharply over time, state B increased then decreased,
and state C increased sharply. At 25 ◦C, the concentration of state B, the state where LID
had occurred, increased continuously until it reached a saturation point. However, with
the treatment of LID process, it increased initially and then decreased in this study. As
shown in Figure 4b, the signal changes in the treatment of LID process apparatus exhibited
the same trend as the sum of states A and C. However, the state after the treatment of LID
process was different from the initial state, as with the existing solar cell unit. The result
was ∼2% lower, indicating that there was a kinetic path from state C to state A through the
destabilization process.

(a) (b)
Figure 4. Numerical calculation results with kinetics model on cyclic reaction: (a) total reaction on full state with log
timescale, and (b) combination reaction on double state (A + C) with log timescale.

Figure 5 shows a solar module being remotely heated by the treatment of LID process
apparatus. Although the heat was concentrated around the pseudo-square coil, sufficient
heat was transferred to the surrounding area in p-PERC solar cell. All areas of the 72-cell
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solar module were heated to at least 100 ◦C, and the heat was uniformly distributed around
the centers of the cells. Although the solar module frame was also made of aluminum, the
heating effect was relatively insignificant as the volume was very large compared to the
rear electrodes of the solar cells.

Figure 5. Thermal image of p-PERC solar module applied with remote heating technology using
half-bridge resonance circuit.

The changes measured after external power was applied while heating the solar
module showed different patterns according to the change in temperature, as shown in
Figure 6. When external power with the same conditions was applied, the time taken
to reach the saturation point and the degree of saturation depended on the temperature
change in the solar module. When external power with the same conditions was applied,
the process time taken to reach the saturation point and the degree of saturation depended
on the temperature change in the solar module. It took the longest, 69.61 h, to reach the
saturation point when the solar module was at 100 °C, and the saturation point was 83.67%.
When the temperature of the solar module was increased to 120 ◦C, it took 35.77 h to reach
the saturation point, which was 88.26%. Finally, when the temperature of the solar module
was 130 ◦C, it took just 11.11 h to reach the saturation point, which was 97.43%. As the
temperature of the solar module increased, the time required to reach the saturation point
decreased, and the saturation point values increased.

Figure 6 shows the kinetic simulation result according to the temperature change of
the solar module. As shown in Figure 6a, the experimental and simulated results were well
matched. The initial reaction to the treatment of LID process varied in reactivity according
to the temperature for each solar cells in module. In terms of the initial range, relative
differences were observed, as shown in Figure 6b. Similar trends were observed in the early
stages, up to 1000 s, in terms of the reactivity. After 1000 s, LID and treatment state occurred
in combination, and different trends were observed depending on the temperature. As the
temperature of the solar module increased, the similarity between the experimental and
simulated results after 1000 s increased. As shown in Figure 6b, the experimental results
completely coincided with the simulated results under the 130 ◦C condition.
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(a) (b)
Figure 6. Comparison between the real-time observation results of the LID process of the solar module and the kinetics
simulation results of the cyclic reaction model: (a) linear scale time result and (b) log scale time result.

The kinetic constant can be obtained from the cyclic reaction model at each temperature
by matching the results for the LID and the treatment state of the solar module with the
results calculated using the kinetics model. Figure 7 shows the kinetic constant for each
temperature condition in the treatment of LID process. The change in the kinetic constant
according to temperature can be defined based on the Arrhenius equation as:

Log(k) = Log(A)− Ea

2.30259× kb × T
× 1000 (2a)

Ea = −Slope× 2.30259× kb × 1000, (2b)

where k denotes the reaction rate constant of the kinetic model, A denotes the frequency
factor that uses the same unit as the reaction rate constant, Ea denotes the activation energy
for each reaction path, and kb denotes the Boltzmann constant.

From the data in Figure 7 and Equation (2a), the slope of the simple linear regression
curve was found to be −1000 × Ea / (2.30259 × kb). Equation (2b) was obtained by
expressing Equation (2a) in terms of the activation energy. As shown in Figure 7, the
activation energy, calculated using a simple linear regression analysis for the simulation,
was 0.376961 eV. The coefficient of determination (R-squared) of the simple linear regression
curve was 0.9988, indicating acceptable reliability.

Figure 7. Kinetic constants in the LID process obtained from a kinetic simulation using a cyclic
reaction model, and the activation energy calculated by linear regression.
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4. Discussion

As shown in Figure 6a, the pattern in which the saturation point was reached changed
as the temperature of the solar cell increased from 100 to 130 ◦C. When the temperature of
the solar module increased from 100 to 120 ◦C, the time taken to reach the saturation point
decreased by 48.55%, and the saturation point rose by 5.49%. When the temperature of the
solar module increased to 130 ◦C, the time taken to reach the saturation point decreased
by 84.01%, and the saturation point rose by 16.45%. This suggests that increasing the
temperature of the solar module has a significant effect on the time taken to reach the
saturation point during the treatment of LID process. When the temperature was 130 ◦C,
the final saturation point was 97.43%, indicating that the increase in temperature not
only shortened the time, but also increased the stabilization process from state A to C,
compared to the destabilization process from state C to A. The time required to reach the
saturation point decreased as the treatment of LID process converted state B to state A
more rapidly. The increase in the saturation point was due to the increase in the speed of
the stabilization process.

As shown in Figure 6b, the concordance between the simulation and experimental
results increased as the temperature of the solar module increased. The cause of this
phenomenon could be analyzed in several ways, but a particular consideration of this study
was the fact that the measurement results were the results of 72 solar cells overlapping.
Although the same current flowed through the solar cells, which were connected in series,
the speed of LID and treatment processes varied slightly between individual solar cells
due to slight differences in the characteristics of each cell. When the temperature of the
solar module was 100 ◦C, treatment of LID process occurred slowly, as the activation
energy was insufficient to remove the LID defects. When the treatment of LID process
speed was slow, there were large deviations between the solar cells, unlike the kinetic
model, which assumed that the cells were identical; therefore, the difference between the
experimental and theoretical results increased. As the temperature of the solar module
increased to 130 ◦C, the kinetic constant increased to 137% of that at 100 ◦C, demonstrating
an exponential increase in addition to the large increase in the reaction speed. At 130 ◦C, the
difference between the treatment of LID process speed of the solar cells inside the module
decreased as the overall treatment of LID process speed increased. Thus, the experimental
and simulated results appeared to be consistent, as there was very little deviation between
the 72 solar cells from the very beginning of the treatment of LID process to the subsequent
processes. Therefore, the experimental and simulated results were similar.

Although the similarity between the simulated and experimental results increased
with the temperature of the solar module, as shown in Figure 6, the treatment of LID process
occurred in small step curve shape over time. As shown in Figure 6a, a more distinct and
regular shape was observed as the temperature increased. The external power source
applied to the solar module maintained a uniform voltage supply to the solar module using
the CV mode, which could be interpreted as applying the same voltage to the cells inside
the solar module. The same current flowed through the solar cells, which were connected
in series, and the treatment of LID process speed differed between individual p-PERC solar
cells. Therefore, we think the external power was concentrated on the cells with a slow
treatment of LID process speed, it made locally small step curve in measurement data.
This process was more prominent at higher temperatures, and was not readily apparent at
100 ◦C because the treatment of LID process speed was generally slow.

As shown in Figure 7, the activation energy of the LID process was 0.376961 eV with
the kinetic constants varying the temperature. Previous studies have reported various
values in the range of 0.3–0.475 ± 0.035 eV [4,9,30,34–40]. The activation energy value
obtained from the kinetic simulation in this study was not significantly different from the
values reported in the literature, suggesting that the kinetic model was applicable to the
module of 72 solar cells connected in series. Based on these findings, the treatment of LID
process could be extended to a module with 72 cells connected in series, overcoming the
limitations of the treatment of LID processes for solar cells. Moreover, this study has shown
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experimentally that an entire connected solar cell can be treated for LID when multiple
cells are connected in series. Therefore, in future, multiple solar modules can be connected
in series during treatment.

5. Conclusions

In this study, the treatment of LID process was observed in a p-type PERC solar
module, which is the most commonly used solar module in the photovoltaic industry. In
general, the treatment of LID is performed by rapid thermal processing in the solar cell
manufacturing stage, but the subsequent lamination process in the module manufacturing
stage counteracts the treatment of LID process and returns the cells to their original initial
state. This study aimed to prevent this by conducting the treatment of LID after the
fabrication of the solar module. However, the solar module was encapsulated in a polymer,
so external heating was likely to cause damage. To address this, the Al electrode at the rear
side of the solar cell was heated using an induced magnetic field provided by a half-bridge
resonance circuit. We developed the technology to directly heat the cells inside the solar
module by remote heating, and damage to the encapsulant was minimized as no heat was
generated outside the solar cells and module frame. The pattern in which the saturation
point was reached varied as the temperature of the solar module increased from 100 to
130 ◦C. The time taken to reach the saturation point decreased as the treatment of LID
process speed, where state B was converted to state C, progressed more rapidly. In addition,
there was an increase in the saturation point values due to the increased speed of the
stabilization process. As the temperature of the solar module increased, the differences
between the treatment of LID process speeds of the p-PERC solar cells inside the module
decreased as the overall recovery speed increased. This increased the concordance of the
experimental and kinetics simulated results. The LID activation energy measured in this
study was similar to values reported in the existing literature, so the kinetic model used in
this study is likely to be valid; it was also applicable even when 72 cells were connected in
series. Through the results of this study, we confirmed that, when multiple solar cells are
connected in series, the entire connected solar cell can be simultaneously treated for LID.
Therefore, in future, multiple solar modules could be connected in series while they are
treated for LID.
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Abbreviations
The following abbreviations are used in this manuscript:

PERC Passivated Emitter and Rear Contact
BSF Back Surface Field
LID Light-induced degradation
LCOE Levelized Cost of Electricity
Cz Czochralski
SSR Solid-State Relay
PID Proportional Integral Derivative
SMPS Switching Mode Power Supply
EVA Ethylene-Vinyl Acetate
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