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Abstract: This paper proposes multilevel architecture for an intelligent control system for the complex
chemical energy technological process of yellow phosphorus production from apatite-nepheline ore
processing waste. The research revealed that, when controlling this process, one has to deal with
large amounts of multiformat and polymodal information, and control goals differ at different levels
not only in effectiveness criteria, but also in the structuredness of the level problems. On this basis,
it is proposed that intelligent methods be used for the implementation of information processes
and control goals at individual levels and the whole system. The artificial intelligence methods
underlying the informational model of a control system offer solutions to problems of analyzing
control processes at different hierarchy levels, namely the initial level of sensing devices, the levels
of programmable logic controllers, dispatching of control and production processes, enterprise
management and strategic planning. Besides, the intelligent control system architecture includes
analytical and simulation models of processes occurring in the multistage procedure of ore waste
processing by a plant consisting of a granulating machine, a conveyor-type multichambercalcining
machine, and an ore thermal furnace. The architecture of information support for the control system
comprises a knowledge-based inference block intended for implementing the self-refinement of
neural network and simulation models. Fuzzy logic methods are proposed for constructing this block.
The paper considers the deployment of control algorithms for a phosphorus production system using
the Matlab software environment on the basis of a modern complex system development paradigm
known as the model-oriented design concept.

Keywords: information model; intelligent control systems; waste processing

1. Introduction

The implementation of projects in the field of new flow sheets for the recycling of
wastes from various industries is currently one of the ways of reducing the adverse effects
of human industrial activity on the environment [1–3]. The importance of such processing
increases notably when the amount of waste is large and when it is rich in chemical
and mineralogical composition. This enables us to classify such wastes as technogenic
deposits [4,5].

Waste processing requires design and construction of advanced plants performing
complex, multistage, and interrelated technological operations of processing various raw
materials. A special contribution to performing these operations is made by their informa-
tion support solving a complex of satellite control and optimization problems, including
those aimed at increasing the energy and resource efficiency of processing and its environ-
mental safety [6,7].
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Large processing plants, such as mining-and-processing integrated works, were de-
signed and constructed tens of years ago, when less attention than now was paid to the
tasks of reducing energy and resource consumption and decreasing the adverse effect on
the environment. These tasks can be solved along two lines: (i) implementation of novel
processes with entire re-equipment; (ii) optimization of existing technological concepts by
implementing industrial waste recycling, upgrading information support, and improving
control schemes. The former case requires considerable material and time consumption,
and sometimes suspension of production. Therefore, in terms of minimization of material
costs, the latter line can be a reasonable alternative as a short-term solution (before general
modernization of production), which implies an integrated approach due to complement-
ing existing procedures by waste recycling, as well as optimization of control schemes and
information support of the process by means of advanced digital solutions.

The apatite-nepheline ore waste processing plant discussed in this paper is a complex
chemical and energy technology system (CETS). It comprises three successively arranged
process units: a granulator, a conveyor type multi-chamber calcining machine, (CTMCM),
and an ore thermal furnace (OTF) [8]. The control of the CETS requires forming a complex
hierarchic information support, which, besides the functions of collecting information from
the gauging equipment and control, would perform intelligent monitoring of the health of
the CETS, predictive analysis, and optimization of energy and resource consumption.

The aim of this study is to develop intelligent control system architecture for a complex
CETS of recycling wastes from apatite-nepheline ore processing for the production of yellow
phosphorus. The research tasks were to analyze the structure of the technological chain
of ore waste processing, the proposed mathematical models of separate units (including
their use for operation mode optimization), and experience in using advanced information
systems for supporting technological processes, as well as to develop an information model
of the control system for the CETS of recycling apatite-nepheline ore processing waste.

The paper describes the composition and functions of data conversion and process-
ing elements in the CETS control loop, which determine the proposed structure of the
information model. It also presents some aspects of the project on its implementation.

2. The Potential of Phosphorus Extraction from Apatite-Nepheline Ore Waste

Intensive human industrial activity produces large amounts of phosphorus-containing
waste (P-waste). When moving into the environment, it causes eutrophication and litter-
ing of large territories near mining-and-processing integrated works, adversely affecting
human health. Until recently, plant cultivation was the main source of P-waste; however,
P-waste from phosphate mining and phosphorus chemical production is currently show-
ing the most rapid growth [9]. According to the data provided by the Mining Institute
of the Kola Science Center of the Russian Academy of Sciences, only for three mining-
and-processing complexes (Apatit JSC (Kirovsk, Russia), Olkon JSC (Olenegorsk, Russia),
and Kovdor GOK JSC (Kovdor, Russia)), the amounts of technogenic raw materials ac-
cumulated in the Murmansk region of Russia increased from 2500 Mt in 1985 to 6764 Mt
in 2015.

Phosphorus-containing technogenic wastes from the mining-and-processing com-
plexes situated in the Murmansk region differ in the mineralogical and chemical com-
positions of the substrates; however, all of them are mainly fine siliceous-carbonate raw
materials with complex phosphate oolites. The increasing consumption of phosphates
generates a threat of phosphorus resource depletion; therefore, apatite-nepheline ore waste
recycling is of crucial importance in solving these problems. The heterogeneity of the
characteristics of technogenic waste from raw materials to be dressed necessitates the
application of new approaches to the construction of CETS for phosphorus production
from apatite-nepheline ore waste with regard to the variability of the characteristics of
batches from different dumps.

Analysis of the potential of extracting phosphorus from apatite-nepheline ore waste
testifies that, e.g., the dumps of the Apatit JSC (P2O5 of about 0.3 to 0.5%) can yield an
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apatite product with a phosphorus content of 25 to 30% after processing. This phosphorus
concentration is fairly sufficient for agricultural needs. The product, in turn, can be for-
warded for further dressing, which results in the additional output of the finished product.

This study of the composition of the dumps shows that they consist mainly of a fine
raw material, which determines the expediency of its preliminary palletization followed by
heat treatment. This method, implemented in the CETS discussed in this paper, enables one
not only to make phosphorus-containing products, but also to transport phosphorite pellets
to be subsequently processed within logistically efficient P-waste utilization systems.

3. Materials and Methods

The procedure of control of the complex CETS for producing phosphorus from apatite-
nepheline ore waste is characterized by multilevel architecture; each level engaged in
solving the general problem, i.e., ensuring maximum phosphorus production volume, and
takes into account the specificity of the problems of each level, starting from actuators and
ending with the level of decision making by enterprise management.

The hierarchical structure of the information model for the CETS control system can
be considered in terms of both the executed functions and the facilities used to provide
information interaction:

− the initial level presenting information processes providing collection and preprocessing
of signals from sensors, including intelligent ones, and sensing devices (normalization,
standardization, etc.) mounted on different units and in different zones of the process
equipment;
− the level of programmable logic controllers connected by a fieldbus for effective and
coordinated information exchange, including interlevel one, and elaboration of controlling
actions following the embedded algorithm;
− the level of control dispatching, represented by automated jobs and SCADA software
packages (Supervisory Control and Data Acquisition) allowing real-time operation of the
systems for collecting and processing of data with the object of monitoring or control;
− the level of controlling production processes at which specialized applied software of the
MES class (manufacturing execution system) is used to solve problems of synchronization,
analysis, and optimization of product manufacturing [10,11];
− the level of enterprise management at which resource (production, HR, finance, logistics)
management is automated by means of ERP systems (Enterprise Resource Planning) [12,13];
− the level of strategic planning when various OLAP systems (online analytical processing)
are used to aggregate and analyze information from large amounts of data structured
according to the multivariate principle [14,15].

It is expedient to improve the information support of the CETS on the basis of ad-
vanced technologies towards digital integration and intellectualization of data processing
algorithms at all levels [15,16]. The intelligent control system architecture for the CETS is
shown in Figure 1, where the blocks highlighted by a thick frame represent the proposed
generalized information model of the conversion and processing of the data contained in
the control loop. The information flows shown in Figure 1 are marked by thick arrows,
whereas the thin arrows show actions at the level of physical processes and signals.

The formation of the goal of management at each level of the above information model
hierarchy is governed by local tasks; however, each higher level is based on the results
of control obtained at the lower level. In view of the diversity of these goals, and the
complexity of goal achievement, local software is developed for each level, which provides
integration with the neighboring levels for information interaction.

The Goal Achievement Program and Control Algorithm blocks are two stages of form-
ing controlling actions on actuators, i.e., the program determines the change of information
support levels, at each of which a specialized algorithm for achieving the goal of this level
is applied.
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Figure 1. The structure of the CETS intelligent control system.

Actuators mean not only engineering devices of lower levels, but also resources
implementing control at the level of enterprise management and strategic planning.

The control structure presented in Figure 1 possesses the properties of self-learning
and adaptation to the changing external environment conditions and control goals. For
this purpose, blocks of models and a knowledge-based inference system are included in
the information model, which analyze the results and generalize the control experience,
using it for goal, program, and control algorithm correction.

The complexity of the CETS leads to the fact that the analytical models of individual
CETS units are developed on different conceptual bases, and they do not always agree
in input-output in terms of both signal nomenclature and representation form [9,17]. Be-
sides, the complexity of describing the physical, thermal-hydraulic, and physical-chemical
processes in the CETS, and the necessity to take into account the effect of random factors,
including the external environment, justifies the application of simulation models, the
results of experiments with them being also used in the knowledge-based inference system.

In the presented architecture of the CETS control system, machine learning is used
for predictive analysis, particularly for predicting the health of the individual CETS units
and evaluating the remaining useful life (RUL) of the equipment [18,19]. In view of
the polymodality of the information on the CETS, ensemble decisions based on various
machine learning methods are used to analyze it, namely deep convolutional and recurrent
neural networks, decision trees, statistical procedures of data processing, which are chosen
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on the basis of the pre-assessment of incoming information in terms of its pragmatic value
for simulation goals.

The knowledge-based inference system can use various knowledge representation
models; however, a fuzzy logic paradigm was chosen in this case, where the requirements
on the determination of parameter values are lower and processing of linguistic variables is
allowed, this being important in the application of expert judgements. These circumstances
favor the widespread use of fuzzy systems when controlling various objects, among other
things, in terms of the minimum energy consumption criterion [20,21].

The Control Algorithm block involve stuning of control algorithms, i.e., various proce-
dures at different levels, which are governed by the controller structure and the control
goals. The level of the programmable logic controllers implements algorithms for control-
ling the actuators directly acting on the input material and energy flows of the control
object. At this level, algorithmically simple proportional integral derivative (PID) con-
trollers and their modifications successfully manage control tasks; however, it is a separate
task to tune them. To do this, numerous methods have been developed [22], including
those using fuzzy logics, machine learning, and genetic algorithms [23–25]. PID-controllers
are often embedded in real-time systems where control algorithm parameters change
slowly or demonstrate vagueness, thus making prediction very difficult and lagged [26].
These controllers are used not only to maintain the absolute values of the parameters,
but also to adjust their interrelations, e.g., in the task of ensuring the specified yield of a
substance in a technological process. Practical use of controllers encounters a number of
difficulties caused by the necessity to determine the characteristics of a control object, as
well as control system nonlinearity and nonstationary state; however, the application of
machine learning methods to the tuning of PID controllers enables these difficulties to be
successfully overcome [27].

In the CETS under study, the proportion of yellow phosphorus in the gas fraction
evacuated from the OTF reactor zone is important. However, in one form or another, the
parametric controller tuning methods require the calculation of the optimization criterion
for neural network training, base formation or population selection, and this leads to
additional time and computational resource consumption.

The presence of three units in the CETS, and several quantities to be controlled in
each of them, necessitates using numerous controllers, this being shown in Figure 2, where
PIDG, PIDCTMCM, and PIDOTF are PID controllers of the corresponding units, N, M, and K
are the number of control channels in these units. Such controllers are currently created
on the basis of programmable logic controllers as specialized hardware modules, or by
program methods, with the use of specialized libraries [28,29].
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The arrangement of controllers shown in Figure 2 results in the fact that their tunings
are optimized independently, without consideration of the optimality of the whole CETS in
terms of this or that quality criterion. In order to overcome these difficulties, it is proposed
that a neural network embedded in the control loop be applied. Its fragment for one
control channel is shown in Figure 3. The blue color highlights the blocks belonging to
the modified structure of an artificial neuron with the function of activation (q), which is
termed the PID neuron. Displacement in the PID neuron structure is not used since there
are only three parameters in the PID control law.
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Figure 3. Control channel architecture with an artificial PID neuron.

The proposed PID neuron architecture is based on its analogy with the PID controller,
i.e., both are parametric models that are adaptable to the changing conditions of the external
environment. The weights of the PID neuron synapse are put in correspondence to the
proportional (kk), integral (kp), and differential (kd) components of the control law.

In the architecture presented in Figure 3, the PID controller is tuned in two stages:

− primary optimization of the controller parameters kk, kp, and kd with the application of
standard procedures;
− controller parameter refinement during operation due to PID neuron training on the
basis of the incoming data with the subsequent transmission of the found synapse weights
kk, kp, and kd into the controller.

At the first stage, the controllers can be tuned with the application of the analytical and
simulation models of the control object and controlled external actions. Dynamic models
be used here, whose parameters are determined by acceleration characteristics [30], as well
as models based on neural networks [31,32].

At the second stage of tuning, model construction is unnecessary when the PID
neurons are integrated in the loop of information conversion in the control system. In this
case, the controller tuning parameters are adapted in real time with the use of constantly
renewed data.

A control error taken as a basis for coefficient adjustment acts as the neuron network
(PID neuron) training error.

The collection of PID neurons of individual control channels for the whole CETS
represents an artificial neural network. Its architecture is shown in Figure 4.
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The blue color in Figure 4 indicates neurons belonging to the part trained during
tuning. Actuator and control object models are excluded from the training process and
grouped into a “frozen” part. This term is used in the neural network theory to denote the
part excluded from training.

4. Results

In order to develop the elements of the intelligent control system for the CETS, we
chose the Matlab software environment for scientific and technical calculations and simula-
tion, which has a rich set of data analysis tools, including those for the application of fuzzy
logics (Fuzzy Logic Toolbox), deep machine learning (Deep Learning Toolbox), dynamic
system simulation and simulation modeling (Simulink). In the Deep Learning Toolbox
there is a tool for creating a predicting controller using a neural-network-based model of
a nonlinear object designed for predicting the future efficiency of the object in terms of
some criterion. The controller then computes the control input optimizing the efficiency of
the object within a specified future time span. In the implementation of the PID neuron,
the PID controller tuning coefficients are extracted from the array of synapse weights,
which in Matlab are implemented as the IW cell array of the dimensions Nl × Ni, where
Nl is the number of network layers (net.numLayers) and Ni is the number of network
inputs (net.numInputs).

Taking into account the complexity of the CETS under study, we adduce the results of
implementation of one architectural concept in the presented intelligent control system,
namely a neural controller. A granulator having several input parameters is chosen
for consideration: G1 is the crude ore mass flow rate, D is apatite-nepheline ore waste
dispersion and u is moisture mass fraction in the waste. The output parameters for the
granulator are as follows: G2 is green pellet mass flowrate, r is raw granule radius, f is
granule moisture and ε is pellet porosity. The illustrative example is restricted to the
consideration of one control channel G2 (G1).

In the adjustment loop, process parameters vary with time continuously and the
control device is rated as a discrete element implemented by programable logic controllers;
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therefore, the block diagram of such a loop is discrete and continuous. For simulation, the
block diagram in systems of this form must be converted into either a continuous form or a
discrete one. Transformation into an equivalent discrete system is based on the process
of obtaining a discrete signal with pulse-amplitude modulation from a continuous signal
by time quantization and rectangular pulse formation. The quantization is performed by
an ideal pulse element, and the pulse is formed by a zero-order predictor. An equivalent
z-transfer function is written for the tandem-connected clamp and object (the reduced
continuous part). It can be calculated by different methods. This study uses the Matlab
function c2d (Woc, T), where Woc is the continuous transfer function of the object and T
is the quantization period. The quantization period is selected as the greatest common
deviser of all the object time constants, including the lag time constant.

To tune PID controllers, it is necessary to know the model of the object controlled
through the specified channel. The continuous transfer function for this channel was
obtained by approximation of the acceleration characteristic [30] and has the form

WGG(s) =
0.83e−25s

52s + 1
, (1)

where s is the Laplace complex variable.
The time constant τ = 25 s, and the object constant To = 52 s. The delay e−25s is taken

into account in z-transformation by the multiplier zv, where v = τ/T. Assuming that T = 25 s,
we have v = 1. The discrete transfer function was determined in Matlab by means of the fol-
lowing instruction code: sys1 = tf([0.83], [52 1], ’inputdelay’, 25); sys2 = c2d(sys1,25). This
results in the following transfer function of the reduced continuous part for Equation (1):

WGG_rcp(z) =
0.3168

z(z − 0.6183)
, (2)

where z is a one sampling step delay operator.
The controller type is selected with allowance for the lag time constant to object time

constant ratio, 25/52 = 0.48; this falls in the range [0.2; 0.7], for which the use of a Pic
ontroller is expedient. As a result, the transfer function of an open-loop system with a PI
controller and a reduced continuous part becomes

Wog(z) =
kr((1 + T

Ti
)z − 1)

z − 1
0.3168

z(z − 0.6183)
, (3)

where kr and Ti are the transfer coefficient and the controller time constant.
The optimum controller parameters [33] were calculated from the conditions for

ensuring overcorrection not worse than 25%, and the control time tc < 120–160 s. The
following values were obtained: kr = 0.95, Ti = 33 s.

The model implemented in Simulink is shown in Figure 5. The control task is entered
through the control input terminal and fed to the two branches of the model: one bran-
chiomeres PI controller with calculated parameters, and the other contains a PID neuron
implemented as a Matlab function.

In order to simulate changes in the object parameters, var_k block is introduced in the
model as a Matlab function. The PI controller tunings in branchIremain unchanged, and
correspond to the transfer function represented by Equation (2). The PID neuron synapse
weights change, and this provides control adaptation to the variation of the var_k block
coefficient. Centered Measurement Noise is introduced in the model in order to simulate
instrumentation errors.
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During the experiment, the variation of the var_k coefficient was specified on several
model time intervals, according to Table 1, at a constant control task value (the control task
value remained unchanged within the entire simulation time).

Table 1. Variation of the var_k coefficient on time intervals.

No. Time Interval, s var_k

1 0–2000 0.3168

2 2001–4000 0.38

3 4001–6000 0.15

4 6001–8000 0.42

5 8001–10,000 0.45

Figure 6 presents control system output diagram sat the variation of the var_k coef-
ficient according to the data from Table 1. The blue color indicates the outputs of model
branch I with a PI controller having fixed tunings. The red color highlights the out put of
the model branch containing a PID neuron.
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Figure 6. Simulation results.

The visual analysis of the diagrams suggests that, during PID neuron training, the
system output gradually returns to the specified value, whereas the output of model branch
Icontinues to fluctuate, this being caused by the absence of the adaptation of controller
tuningsto the changes in the var_k parameter of the control object.

The HDL Coder tool is used to deploy the CETS control algorithms on embedded
devices in Matlab. From it, Matlab functions and models in Simulink, and creates a code
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portable to the Verilog and VHDL hardware description language platforms. The thus
obtained HDL code is used to program a field-programmable gate array (FPGA) or to
prototype and design an application-specific integrated circuit (ASIC). Summarizing the
foregoing, we can represent the sequence of the stages in developing the CETS control
system by the scheme illustrated in Figure 7.
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For integration with neural network models created by means of other development
environments, the ONNX interface with a neural network exchange system is used. It is
an open standard format into which machine learning models are transformed from such
platforms and frameworks as TensorFlow, PyTorch, SciKit-learn, keras, Chain, MXNET,
and SparkML.

The presented MathWorks tools enable one to implement the concept of model-
oriented design of the CETS control system, which is an advanced paradigm of developing
complex systems. The application of this approach places the CETS model in the center
of development, which undergoes evolution in the process of development, i.e., at first
it is a high-level system model in which system components and their interrelations are
described, yet still without a detailed elaboration of the components.

Specific requirements are bound to the components, according to which the latter are
subsequently detailed, with a functional being added to them. This development process
arrangement allows one to design multidomain systems and to study and optimize the
work of whole systems, e.g., like the here-discussed CETS.

At the implementation stage, automated code generation tools are used and trade-off
decisions are studied and optimized. The entire development process, from creation of
requirements to implementation, is accompanied by continuous testing and verification.
The application of a model-oriented approach has enabled errors to be revealed and
eliminated at early stages of project evolution.

5. Discussion

The research yielded a multilevel architecture of an intelligent control system for a
complex CETS producing phosphorus from environmentally hazardous apatite-nepheline
waste accumulating in large volumes in the tailing ponds of mining-and-processing inte-
grated works. The proposed information model determining the scientific novelty of the
research is based on the application of artificial intelligence methods (machine learning,
fuzzy logic) at various levels of control to solving problems of simulation, analysis, accu-
mulation and generalization of experience for control goal achievement optimization. The
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concept of model-oriented prototyping and designing CETS elements enable to execution
of the iterative process of revealing and eliminating errors at various stages of creating a
control system, as well as achieving the highest possible consistency of developed model
sand algorithms with control goals. The research results allow us to recommend it for
use. The selection of Matlab as the implementation environment is debatable; however, its
current versions offer an adequate set of libraries and tools for high-quality prototyping
of systems and for porting them to hardware platforms. Besides, the Matlab support of
the.NETFramework platform and a set of external data, client, and server access inter-
faces enable unit and process models created earlier with the use of various programming
languages to be integrated in the information support of the CETS.

Further research will be aimed at improving and detailing the models of the techno-
logical units of the CETS, as well as at increasing the quality of solutions and decisions
resulting from the application of the artificial intelligence methods used in the information
support of the control system architecture presented in this paper. For this purpose, a stack
of technologies of self-refining digital twins is proposed for use, which provides adaptation
of currently used CETS models to changing environmental conditions and requirements
on process plant operation management.

6. Conclusions

It was found that the amounts of technogenic wastes from apatite-nepheline ore
processing at mining-and-processing integrated works are large and cause significant
environmental damage. It was stated that, in view of the rich chemical and mineralogical
composition of such technogenic deposits, it is expedient to recycle them, and it is urgent
to upgrade the information support of recycling plant control systems.

The architecture of an intelligent control system for a CETS of phosphorus pro-
duction from apatite-nepheline ore waste was proposed, which supports the hierarchy
of the information control model, from the level of controllers to the level of strategic
production planning.

A concept of model-oriented design of a control system for the CETS of phosphorus
production was presented, which provides an iterative process of error detection and elimi-
nation at different stages of creating the control system, as well as the highest compliance
of the developed models and algorithms with the control aims.

A Matlab environment has been proposed for the implementation of the elements of
the intelligent control system for the phosphorus production CETS. The application of the
Matlab-developed program of intelligent tuning of a PID controller in the granulator control
loop was given as an example. The application results showed that the intelligent tuning
of the PID controller, which takes into account changes in the control object parameters,
reduces the fluctuations of the output parameter of the granulator (at a constant control
task) as compared to a controller having fixed tuning.

The presented architecture of the intelligent control system for the CETS can be
improved and upgraded in view of new achievements in the field of machine learning and
information technologies. It can also be adapted to other technological systems through
the application of the concept of model-oriented design.
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